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Abstract 

The JEDI experiment is dedicated to the search for the 

electric dipole moment (EDM) of charged particles using 

storage rings, which can be a very sensitive probe of phys-

ics beyond the Standard Model. In order to reach the high-

est possible sensitivity, a fundamental parameter to be op-

timized is the Spin Coherence Time (SCT), i.e., the time 

interval within which the particles of the stored beam main-

tain a net polarization greater than 1/e. To identify the 

working conditions that maximize SCT, accurate spin-dy-

namics simulations with the code BMAD have been per-

formed on the lattice of a "prototype" storage ring which 

uses a combination of electric and magnetic fields for 

bending. This contribution presents an analysis of the 

mechanisms behind the decoherence, and a technique to 

maximize SCT through the optimization of second-order 

optical parameters.  

INTRODUCTION 

Of all the observable matter antimatter asymmetry in the 

universe only a small fraction is accounted for by the cur-

rently accepted Standard Model (SM). Assuming the CPT 

theorem to hold true, it appears that this asymmetry can 

only be explained by additional CP violating processes 

than those accounted for in the SM [1]. A noticeable mani-

festation of CP violation is the presence of an Electric Di-

pole Moment in a proton, whose magnitude can indicate 

the existence of additional CP violation Beyond the Stand-

ard Model (BSM). While the SM predicts an EDM ≤
10−31 𝑒 ∙ 𝑐𝑚, possible contributions from BSM theories 

could place it orders of magnitude higher. The current up-

per limit on the proton EDM is 7.9 × 10−25 𝑒 ∙ 𝑐𝑚 [2]. 

The JEDI collaboration is currently working on perform-

ing this measurement on protons using storage rings. If the 

spin of the proton is maintained to remain aligned with the 

momentum at all times (in a condition called “frozen 

spin”), the presence of EDM will result in a torque on the 

particle in response to a radial electric field. The visible ef-

fect of this torque can be observed as a gradual build-up of 

vertical polarisation in a stored proton bunch. To achieve a 

precision higher than the current lower limit on the proton 

EDM, the construction of a dedicated electrostatic storage 

ring would be needed [3] [4]. 

THE PROTOTYPE EDM STORAGE RING 

The Prototype Storage Ring aims to demonstrate the 

principle of frozen spin for protons in a “scaled-down” ver-

sion of the proposed ring but using a combination of elec-

tric and magnetic fields for confinement. 

 

Figure 1: The software generated floor plan of the proto-

type EDM ring. Dipoles are labelled with ‘EM’, quadru-

poles corresponding to their family with ‘QF’, ‘QD’ or 

‘QSS’ and the cavity with ‘RF’. 

The proposed design [5], shown in Figure 1 consists of 

four unit-cells, each with two bending dipoles, 4 quadru-

poles and 4 sextupoles to provide sufficient flexibility in 

beam optics.  

The quadrupoles present on the ring are categorized into 

three families: QF (2 per unit cell, focussing), QD (1 per 

unit cell, defocussing) and QSS (1 per unit cell, in the 

straight section). The sextupoles are placed on the same lo-

cations as the quadrupoles and are categorized into similar 

families: SXF, SXD and SXSS. Each family of magnets 

have a common power supply for centralized control. Dur-

ing this study however, the QSS magnets were turned off. 

An RF-cavity is also placed at one of the straight sections 

for bunching (longitudinal focussing) of particles. The 

quadrupole and sextupole fields determine the first and 

second order optical properties of the lattice. Together, 

these optical properties form the parameter space within 

which the Spin Coherence Time must be optimized (see 

Figure 2). 

SPIN COHERENCE TIME AND SPIN-

TUNE ERROR 

Assuming a bunch of 𝑛 particles are maintained in the 

storage ring, let �̂�𝑖(𝑡) be the unit vector in the direction of 

the 𝑖𝑡ℎ particle’s spin vector. The polarisation vector �⃗� (𝑡) 

is [6]: 

�⃗� (𝑡) =
1

𝑛
∑�̂�𝑖(𝑡)

𝑛

𝑖=1

 ( 1 ) 



In a ring functioning in frozen-spin mode, if initially all 

particles distributed in phase space have their spins are 

aligned with their momenta (|�⃗� (0)| = 1), the time 𝜏 taken 

for |�⃗� (𝜏)| =
1

𝑒
 is defined as Spin Coherence Time (SCT). 

 

Figure 2: The organization of the parameter space explored 

in this study. The space formed by the betatron tunes 𝑄𝑥, 

𝑄𝑦  and the first-order momentum compaction factor 𝛼0 is 

the first-order (1°) space, and the one formed by the chro-

maticities 𝜉𝑥, 𝜉𝑦 and the second-order momentum compac-

tion factor 𝛼1 is the second-order (2°) space. A point in the 

first-order space is termed a working point, and one in the 

second-order space is termed a data point. 

This quantity is ideal for evaluation of a storage ring for 

EDM measurements since very gradual polarization 

buildups would be noticeable only if the bunch remains 

spin-coherent for a long time. Therefore, longer SCT in a 

storage ring indicates a higher accuracy in potential EDM 

measurement. The spin tune spread Δ𝜃𝑥 measures the 

change in the direction of the polarisation vector from the 

reference particle in the plane of precession (here, assumed 

to be the ring plane): 

Δ𝜈𝑠(𝑡) =
𝑑

𝑑𝑡
(Δ𝜃𝑥(𝑡)) ≈

𝑑

𝑑𝑡
(𝑡𝑎𝑛−1 (

𝑃𝑥(𝑡)

⟦𝒔𝑧(𝑡)⟧
)) ( 2 ) 

Here, 𝑃𝑥 is the radial component of the polarization vec-

tor, and the hollow square brackets ⟦ ⟧ indicate properties 

of the reference particle. Also interesting is the spin tune 

error Δ𝜈𝑥(𝑡), which is the rate of change of spin tune 

spread. 

 RESULTS 

  demonstrates an instance of the time-development of 

the polarization as the particle bunch travels around the 

ring. 

 

Figure 3: (left) A plot showing the decoherence of 1000 

particles as a function of number of turns; (right) a plot 

showing the spin tune spread of the polarisation vector 

measured simultaneously. 

From a detailed implementation of the Thomas-BMT 

equation on the prototype ring, it can be deduced that the 

change in the spin tune of an off-momentum particle stored 

in the ring would take the form (keeping terms up to the 

second order): 

Δ𝜈𝑠 = 𝐴𝛿 + 𝐵𝛿2 ( 3 ) 

, where 𝛿 =
Δ𝑝

𝑝⁄  is the momentum offset of the particle, 

and 𝐴 and 𝐵 are constants which depend on the Lorentz 

factor 𝛾, and the 𝐺-factor of the proton. Further, from the 

analyses in [7] and [8], which was observed to be valid also 

for storage rings using electrostatic confinement (see Fig-

ure 4), the change in path length of the particle due to the 

contributions of both transverse and longitudinal motions 

is given by… 
Δ𝐿

𝐿
= −

𝜋

𝐿
(𝜖𝑥𝜉𝑥 + 𝜖𝑦𝜉𝑦) + 𝛼0𝛿 + 𝛼1𝛿

2

= 𝛼1𝛿
2 −

𝜋

𝐿
𝜖𝑥𝜉𝑥 −

𝜋

𝐿
𝜖𝑦𝜉𝑦 

( 4 ) 

…where the first-order longitudinal path-lengthening 

term is cancelled out in the long run by synchrotron oscil-

lations. In general, path-lengthening effects manifest as an 

apparent speeding up of all particles with a non-zero emit-

tance, which changes the effective Lorentz factor and thus 

the spin tune. This mechanism complements that of the mo-

mentum offset 𝛿 and can be observed in   (right) showing 

the time development of the spin tune spread, where the 

local oscillations are due to the path-lengthening effect and 

the overall linear trend is due to the effective spin tune. 

Simulations at the origin (𝜉𝑥 = 0, 𝜉𝑦 = 0, 𝛼1 = 0) show a 

downward trend without local oscillations due to the effect 

of the 𝛿2 term in eq. ( 3 ). Measurements of the error in the 

spin tune measured at different points in the vector-space 

𝜉 = (𝜉𝑥 , 𝜉𝑦 , 𝛼1) have shown that Δ𝜈𝑠 can be modelled as a 

scalar potential with a constant gradient, and that the set of 

all points with Δ𝜈𝑠 = 0 forms a plane in this space. The 

plane thus represents the second order optical configura-

tions where the path-lengthening effect cancels out the 

original spin tune error. 

 

Figure 4: Plots of the rates of change of path length in-

crease (∆𝐿
𝐿⁄ ) with horizontal (left) and vertical (right) 

chromaticity, with their respective emittances, measured 

for the prototype lattice. The slopes of their linear fits ex-

actly equal −𝜋
𝐿⁄ , confirming the validity of the formula 

for transverse path length variation with chromaticities as 

derived by [8] for the prototype ring. 

The Spin Coherence Time (𝜏) was estimated by fitting 

the data in   (left) with the decoherence model derived in 

[9]: 

      

          

    



|�⃗� (𝑡)|

= |�⃗� (0)| ([1 − √𝜋𝛾𝑠(𝑡)𝑒
−𝛾𝑠

2(𝑡) erfi(𝛾𝑠(𝑡))]
2

+ 𝜋𝛾𝑠
2(𝑡)𝑒−2𝛾𝑠

2(𝑡))

1
2
 

( 5 ) 

Here, 𝑛 is the turn number and 𝛾𝑠(𝑡) = √2𝜋𝜎𝑡 is termed 

the “damping parameter” where 𝜎 can be obtained from the 

fit. From this model, 𝜏 is obtained by solving |�⃗� (𝜏)| = 1
𝑒⁄ . 

It was observed that the variation of  1 𝜏2⁄  across the 2° 

space follows the distribution of a three-dimensional pa-

raboloid, specifically a family of ellipsoids… 
1

𝜏2
=

1

𝜏0
2
+ 𝐿(𝜉𝑥 − 𝜉𝑥

𝑜)2 + 𝑀(𝜉𝑦 − 𝜉𝑦
𝑜)

2

+ 𝑁(𝛼1 − 𝛼1
𝑜)2

+ 𝑂(𝜉𝑥 − 𝜉𝑥
𝑜)(𝜉𝑦 − 𝜉𝑦

𝑜)

+ 𝑃(𝜉𝑦 − 𝜉𝑦
𝑜)(𝛼1 − 𝛼1

𝑜)

+ 𝑄(𝛼1 − 𝛼1
𝑜)(𝜉𝑥 − 𝜉𝑥

𝑜) 

( 6 ) 

…where 𝐿, 𝑀, 𝑁, 𝑂, 𝑃, 𝑄 are constants representing the 

geometric properties of the paraboloid, and 𝜉𝑥
𝑜, 𝜉𝑦

𝑜, 𝛼1
𝑜 are 

the coordinates of the optimized point where the spin co-

herence time reaches its maximum value (𝜏0) in a given 

quadrupole setting. This was also confirmed using 2D pa-

raboloid fits at different slices of the space as shown in Fig-

ure 5 (a). It was expected that the maximum spin coherence 

time would occur in a setting where the effective spin tune 

is zero, given that this is a frozen-spin lattice. The simula-

tion results demonstrate that this is always true and can re-

liably be used as shown in Figure 5 (b), to narrow down the 

search during optimization. 

Results of the optimization also show that the optimized 

settings always lie at negative chromaticities (like the ex-

ample in Figure 5 (c)), which is contrary to the results at 

COSY [10], suggesting this may be an exclusive effect of 

the electric bending field. 

Finally, optimization using these principles was per-

formed at several quadrupole settings which exhibit optical 

properties within the recommended range in terms of beam 

lifetime [11] for this lattice, and spin coherence times of 

above 1000 𝑠, which represents the target EDM sensitivity 

for the final lattice [3], was obtained at more than 10 points. 

CONCLUSIONS 

This paper presents the results of proton simulations at a 

storage ring in frozen-spin mode achieved using a combi-

nation of electric and magnetic bending fields. Investiga-

tions into the decoherence revealed the influence of path 

lengthening on the spin-tune error and subsequently the 

spin coherence time. The relevance of the transverse path-

lengthening relation [8]… 
Δ𝐿

𝐿
= −

𝜋

𝐿
𝜖𝑥𝜉𝑥 −

𝜋

𝐿
𝜖𝑦𝜉𝑦 ( 7 ) 

 …for electrostatic and combined-field rings was also 

verified. 

The study has also demonstrated the optimisation of spin 

coherence times of above 1000 seconds at several working 

points in the prototype lattice.  

Also established is a robust method of optimisation 

which has demonstrated universality of working point, 

with successful optimisations at more than 90% of working 

points examined. 

On the other hand, the study also highlights the limita-

tions of this lattice in terms of optical flexibility, due to the 

placement of different sextupoles within the same straight 

section. Further studies shall explore new lattice configu-

rations which could avoid these kinds of limitations. 
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