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Abstract: In contrast to a “single particle table-top trap”, an essential feature of a storage ring7

“trap” is that 1010 or more particles can have their spins aligned in a polarized beam. This is a8

nunber of polarized particles large enough for the beam polarization to be detected externally, and9

fed back to permit external control of the beam polarization. Though the table large enough for10

any such “storage ring trap” is quite large, the level of achievable spin control, though classical,11

not quantum mechanical, can be comparable to the control of one or a small number of polarized12

particles in a low energy trap.13

Motivated to investigate time reversal invariance, especially the detection of non-zero electric14

dipole moments (EDMs) this paper describes the design of a low energy storage ring having the15

superimposed electric and magnetic bending needed to “freeze” the spins of polarized beams. For16

electrons (of either sign) and protons the spins can be frozen with all-electric bending but, in gen-17

eral, superimposed electric/magnetic bending is required. Since constructive bending superposition18

in one direction implies destructive superposition in the other direction, counter-circulating beams19

must differ, either in particle type or momentum, in order for their orbits to be identical.20

For globally frozen spin operation the bunch polarizations remain constant relative to the mo-21

menta, for example remaining parallel to the circuating beam momentum vectors. With superim-22

posed electric and magnetic bending, the globally frozen spin condition can be met over a continua23

(specific to particle type) of E/B ratios. When this condition is met, the out-of-plane, EDM-induced24

precession accumulates monitonically, which is obligatory for producing a measurably large EDM25

signal. As Koop has explained, the EDM signal will still accumulate if the polarization is allowed26

to “roll like a wheel” around a radial axis.27
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1 Introduction51

This paper discusses the design of a storage ring whose purpose is to detect (T-) time-reversal52

violation in the form of non-vanishing electric dipole moments (EDMs).53

As written, the paper is organized much like a review article surveying an established field54

in a broad but shallow way. What makes this ironic is that the paper can only provide a preview55

of a field that, at the moment, scarcely exists. With a single exception (a 10 MeV AGS Analogue56

Electron Accelerator, conceived of, designed, built, commissioned, and successfully accomplishing57

all of its goals, before being de-commissioned, all within four or five years in Brookhaven in the58

mid-1950’s[1][2][3] no relativistic accelerator employing electric bending has ever been built.59
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Conventional storage rings have used noticeably large transverse electric fields to separate60

counter-circulating beams. Contrarily, we are concerned with simultaneously counter-circulating61

beams following “identical” spatial orbits orbits in rings with superimposed electric and magnetic62

bending. With the bending being constructive in one direction, and destructive in the other, such63

a configuration may, superficially, seem to violate T-conservation. Not true however; the main64

motivation for such a perverse pursuit is to search for T-violation. Perhaps surprisingly, another65

goal of the paper is to show how the application of T-invariance can simplify the task of designing66

the storage ring lattice. This includes contemplation of similarities between classical and quantum67

mechanics.68

The leading observable effect of a static particle EDM would be an “out-of-plane” spin pre-69

cession (orthogonal to “in-plane” horizontal spin precession caused by whatever magnetic and/or70

electric fields cause the particle orbit to consist of a sequence of horizontal circular arcs). With stan-71

dard model EDM predictions being much smaller than current experimental sensitivities, detection72

of any particle’s non-zero EDM would signal discovery of New Physics.73

Currently the proton EDM upper limit (as inferred indirectly by measuring the Hg atom EDM)74

is roughly 10−24e· cm[4]. A “nominal experimental proton EDM detectability target” has, by con-75

vention, been defined to be 10−29e · cm. An EDM of this magnitude could help to account for the76

observed matter/antimatter asymmetry of our universe while, at the same time, being plausibly (one77

or two orders of magnitude) larger than existing standard model predictions. This nominal EDM78

value can also be compared to a general relativistic (GR) out-of-plane precession effect, mimick-79

ing an EDM of approximately 10−28e · cm, associated with the downward gravitational pull of the80

earth’s magnetic field. Depending on storage ring details, this reliably calculable “background81

precession” will provide a “standard candle of convenient magnitude” calibration of any EDM82

measurement[4].83

2 Co-magnetometry84

For particles at rest “co-magnetometry” in low energy “table-top particle traps” has been essen-85

tial. For example, Gabrielse[5] has (with excellent justification) described the measurement of the86

electron magnetic moment (with 13 decimal point accuracy) as “the standard model’s greatest tri-87

umph”, based on the combination of its measurement to such high accuracy and on its agreement88

with theory to almost the same accuracy.89

Especially for the direct measurement of EDMs, storage ring technology with beam pairs90

that can conter-circulate simultaneously in a storage ring with superimposed electric and magnetic91

bending is required. In this context the term “mutual co-magnetometry” can be used to apply to92

“beam type pairings” for which both beams have frozen spins.93

In the idealized storage ring to be discussed, the electromagnetic fields are “cylindrical” elec-94

tric E = −E0x̂r0/r and, superimposed, uniform magnetic B = B0ŷ. The bend radius is r0 > 0.95

Terminology is useful to specify the relative polarities of electric and magnetic bending: Cases96

in which both forces cause bending in the same sense will be called “constructive” or “frugal”;97

Cases in which the electric and magnetic forces subtract will be referred to as “destructive” or98

“extravagant”.99

– 2 –



There is justification for the “frugal/extravagant” terminology. Electric bending is notoriously100

weak (compared to magnetic bending) and iron-free (required to avoid hysteretic effects) magnetic101

bending is also notoriously weak. As a result, an otherwise-satisfactory configuration can be too102

“extravagant” to be experimentally feasible.103

For a particle with spin circulating in a (horizontal) planar magnetic storage ring, its spin axis104

precesses around a vertical axis at a rate proportional to the particle’s anomalous magnetic dipole105

moment, G. For an “ideal Dirac particle” (meaning G = 0) in a purely magnetic field the spin106

precesses at the same rate as the momentum—pointing always forward for example. Convention-107

ally the spin vector’s orientation is specified by the in-plane angle α between the spin vector S and108

the particle’s momentum vector p (which is tangential, by definition). For such a “not-anomalous”109

particle the spin-tune QM (defined to be the number of 2π spin revolutions per particle revolution)110

therefore vanishes, in spite of the fact that, in the laboratory, the spin axis has actually precessed111

by close to 2π each turn.112

In general, particles are not ideal; the directions of their spin vectors deviate at a rate propor-113

tional to their anomalous magnetic moments, G, and their spin tunes differ from zero even in a114

uniform magnetic field. Note also, that a laboratory electric field produces a magnetic field in the115

particle rest frame, so a particle in an all-electric storage ring also has, in general, a non-vanishing116

spin tune QE . Along with G and Q, sll of these comments apply equally to the polarization vector117

of an entire bunch of polarized circulating particles.118

By convention, in the BMT-formalism[6][7], the orientation of the spin vector S′ is defined119

and tracked in the rest frame of the circulating particle, while the electric and magnetic field vectors120

are expressed in the lab. The spin equation of motion with angular velocityΩΩΩ is121

dS′

dt
= ΩΩΩ × S′, (2.1)

with orbit in the horizontal (x , z) plane assumed, where

ΩΩΩ = −
q

γmc

((
Gγ

)
cB0 +

((
G −

1
γ2 − 1

)
γ β2

) E0

β

)
ŷ

≡ −
q

γmc

(
(QM )cB0 + (QE ) E0/β

)
ŷ, (2.2)

This equation serves to determine the “spin tune”, which is defined to be the variation rate per turn122

of α, as a fraction of 2π. Spin tunes in purely electric and purely magnetic rings are given by123

QE = Gγ −
G + 1
γ

, QM = Gγ, (2.3)

where γ is the usual relativistc factor. Note that the sign of QM is the same as the sign of G,124

which is positive for protons—proton spins precess more rapidly than their momenta in magnetic125

fields. Deuteron spins, with G negative, lag their momenta in magnetic fields. With G positive,126

QE increases from -1 at zero velocity, eventually switching sign at the “magic” velocity where the127

spins in an all-electric ring are “globally frozen” relative to the beam direction. When a particle128

spin has precessed through 2π in the rest frame it has also completed one full revolution cycle from129

a laboratory point of view; so the spin-tune is a frame invariant quantity.130
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3 Superimposed electric and magnetic bending131

3.1 Circular orbits132

For brevity one can discuss just electrons (including positrons) protons(p), deuterons(d), tritons(t),133

and helions(h), or even just p and d, based on the consideration that most of the apparatus, and all134

of the technology, needed for their EDM measurement is presently available at COSY laboratory135

in Juelich, Germany.136

The circulation direction of a so-called “master beam” (of whatever charge q1) is assumed to137

be CW or, equivalently, p1 > 0. A secondary beam charge q2 is allowed to have either sign, and138

either CW or CCW circulation direction.139

Ideally both beam polarizations would be frozen “globally” (meaning spin tune QS is zero and140

the angle α between polarization vector and momentum is constant everywhere around the ring).141

(Somewhat weaker) “doubly-frozen” can (and will) be taken to mean that a “primary beam” locked142

to QS = 0, circulates concurrently with a “secondary” beam that is “pseudo-frozen”, meaning the143

spin tune is locked to an unambiguous, exact, rational fraction. Only if this rational fraction is zero,144

would the terminology “doubly-magic” be legitimate.145

These pairings are expected to make direct EDM difference measurements of unprecedented146

precision possible. For any arbitrary pairing of particle types ((p, d), (p, e−), (µ, e+), (d , h), (p, t),147

etc.) continua of such doubly-frozen pairings are guaranteed.148

A design particle has mass m > 0 and charge qe, with electron charge e > 0 and q = ±1 (or149

some other integer). These values produce circular motion with radius r0 > 0, and velocity v = vẑ,150

where the motion is CW (clockwise) for v > 0 or CCW for v < 0. With 0 < θ < 2π being the151

cylindrical particle position coordinate around the ring, the angular velocity is dθ/dt = v/r0.152

(In MKS units) qeE0 and qeβcB0 are commensurate forces, with the magnetic force relatively153

weakened by a factor β = v/c because the magnetic Lorentz force is qev × B. By convention e154

is the absolute value of the electron charge; where it appears explicitly, usually as a denominator155

factor, its purpose in MKS formulas is to allow energy factors to be evaluated as electron volts156

(eV) in formulas for which the MKS unit of energy is the joule. Newton’s formula for radius r0157

circular motion, expressed in terms of momentum and velocity (rather than just velocity, in order158

to be relativistically valid) can be expressed using the total force per unit charge in the form159

β
pc
e

=
(
E0 + cβB0

)
qr0 , (3.1)

Coming from the cross-product Lorentz magnetic force, the factor qβcB0 is negative for backward-160

traveling orbits because the β factor is negative.161

A “master” or primary beam travels in the “forward”, CW direction. For the secondary beam,162

the β factor can have either sign. For q = 1 and E0 = 0, formula (3.1) reduces to a standard163

accelerator physics “cB-rho=pc/e” formula. For E0 , 0 the formula incorporates the relative164

“bending effectiveness” of E0/β compared to cB0. As well as fixing the bend radius r0, this fixes165

the magnitudes of the electric and magnetic bend field values E0 and B0. To begin, we assume166

the parameters of a frozen spin “master”, charge qe, particle beam have already been established,167

including the signs of the electric and magnetic fields consistent with β1 > 0 and p1 > 0. In168

general, beams can be traveling either CW or CCW. For a CCW beam both p and β have reversed169
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signs, with the effect that the electric force is unchanged, but the magnetic force is reversed. The β170

velocity factor can be expressed as171

β =
pc/e√

(pc/e)2 + (mc2/e)2
. (3.2)

Eq. (3.1) becomes172

pc
e

=
( E0

√
(pc/e)2 + (mc2/e)2

pc/e
+ cB0

)
qr0. (3.3)

Cross-multiplying the denominator factor produces173 ( pc
e

)2
= qE0r0

√
(pc/e)2 + (mc2/e)2 + qcB0r0

pc
e
. (3.4)

To simplify the formulas we make some replacements and alterations, starting with174

pc/e → p, and mc2/e → m, (3.5)

The mass parameter m will be replaced later by, mp , md , mtritium, me , etc., as approppriate for the175

particular particle types, proton, deuteron, triton, electron, helion, etc.. These changes amount to176

setting c = 1 and switching the energy units from joules to electron volts. The number of ring and177

beam parameters can be reduced by forming the combinations178

E = qE0r0 , and B = qcB0r0. (3.6)

After these changes, the closed orbit equation has become179

p4
m − 2Bp3

m + (B2 − E2)p2
m − E

2m2 = 0, (3.7)

an equation to be solved for either CW and CCW orbits. The absence of a term linear in pm180

suggests the restoration, using Eq. (3.6), of the explicit form of B in the coefficient of the p3
m term181

to produce;182

p4
m − 2cB0(qr0)p3

m + (B2 − E2)p2
m − E

2m2 = 0, (3.8)

The product factor (qr0) can be altered arbitrarily without influencing any conclusions. This and183

other properties can be confirmed by pure reasoning, based on the structure of the equation, or by184

explicit partially-numerical factorization of the left hand side.185

These considerations have removed some, but not all of the sign ambiguities introduced by the186

quadratic substitutions used in the derivation of Eq. (3.8). The electric field can still be reversed187

without altering the set of solutions of the equation. Note that this change cannot be compensated188

by switching the sign of q, which also reverses the magnetic bending. The most significant exper-189

imental implication is that it is not only positrons, but also electrons, that can have orbits identical190

to (necessarily positive in practice) baryons.191

We can contemplate allowing the signs of E0 or B0 to be reversed for experimental purposes,192

such as interchanging CW and CCW beams, or replacing positrons by electrons, but only if this193

can be done with sufficiently high reproducabilty. Demonstrating this capability (by promising spin194

tune measurability with frequency domain precision) is an important ingredient of this paper.195
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Fractional bending coefficients ηE and ηm can be defined by196

ηE =
qr0

pc/e
E0

β
, ηM =

qr0

pc/e
cB0 , (3.9)

neither of which is necessarily positive. These fractional bending fractions satisfy197

ηE + ηM = 1 and
ηE
ηM

=
E0/β

cB0
. (3.10)

The “potencies” of magnetic and electric bending are in the ratio cB0/(E0/β) because the electric198

field is stronger than the magnetic by the factor 1/β as regards bending charge q onto an orbit with199

the given radius of curvature r0. The curious parenthetic arrangement of Eq. (2.2) is intended to aid200

in the demonstration that, when expressed in term of spin tunes, the “potencies” of magnetic and201

electrically induced MDM precessions are in the same ratio as the bending potencies.202

3.2 Frozen spins203

The combined field spin tune can be expressed in terms of the fractional precession coefficients;204

QS = ηEQE + ηMQM . (3.11)

Superimposed electric and magnetic bending permits beam spins to be frozen “frugally”; i.e. with205

a ring smaller than would be required for all-electric bending; for spin tune QS to vanish requires206

QS = ηEQE + (1 − ηE )QM = 0. (3.12)

Solving for ηE and ηM ,207

ηE =
Gγ2

G + 1
, ηM =

1 + G(1 − γ2)
G + 1

=
1 − Gβ2γ2

G + 1
. (3.13)

For example, with proton anomalous magnetic moment Gp = 1.7928474, trying γ = 1.25, we208

obtain ηE = 1.000 which agrees with the known proton 233 Mev kinetic energy value in an all-209

electric ring. For protons in the non-relativistic limit, γ ≈ 1 and ηNR
E ≈ 2/3.210

The electric/magnetic field ratio for the primary beam to be frozen is211

ηE
ηM

=
E0/β

cB0
=

G1γ
2
1

1 − G1 β
2
1γ

2
1

. (3.14)

For given β1, along with this equation and the required bend radius r0, this fixes the electric and212

magnetic fields to the unique values that globally freeze the primary beam spins. With 1 → 2213

subscript replacement, the same frozen beam formulas apply to the secondary beam; note, though,214

that the β factor has opposite sign. To be “doubly-magic” both beams must satisfy this relation.215

4 Symplecticity-assisted lattice design216

4.1 Superimposed electric/magnetic lattice complications217

The fundamental complication of an electric ring, as contrasted with a magnetic ring, is the non-218

constancy of particle speed[8]. A fast/slow separation into betatron and synchrotron amplitudes219

– 6 –



has become fundamental to the conventional Courant-Snyder (CS) magnetic ring formalism. For220

CS, since the mechanical energy varies only in RF cavities, the γ factor is invariant in the rest of the221

ring, and one is accustomed to treating γ as constant for times short compared to the synchrotron222

period. Only to the extent the betatron parameters are independent of total particle energy, can the223

betatron and synchrotron motions be directly superimposed.224

By contrast, in an electric lattice the mechanical energy (as quantified by γ) varies on the same225

time scale as the transverse x and y amplitudes. On the other hand, the slow change, only in RF226

cavities, of the total energy E = γmc2 + eV (r), which includes also the potential energy eV (r),227

makes a similar fast/slow separation possible.228

To most closely mimic the fast/slow superposition of betatron and synchrotron oscillations in229

an electric ring, and to continue to regard γ as the fundamental “energy-like” parameter, requires230

us to evaluate γ only in regions of zero electric potential, which is to say, not in RF cavities, and231

not in electric bending elements—in other words, only in field free drift regions. This leads to a232

curious, but entirely manageable, representation in which the particle orbits are modeled exactly233

only in drift regions, though most of their time is spent inside bend elements where γ is variable,234

and little time in short drift regions (where γ is constant).235

The reason this approach is fully satisfactory is that the drift regions are fairly closely spaced,236

and more or less uniformly distributed around the ring. Knowing the lattice functions exactly237

in these regions is operationally almost as satisfactory as knowing them everywhere. With these238

qualifications, one can still rely on the approximate representation of individual particle motions as239

a superposition of fast betatron and slow synchrotron motions.240

4.2 Transfer matrix evolution241

It is important to notice, in subsequent sections, that there is no mention of the source of bending242

and focusing. Irrespective of the electric/magnetic character of the elements in an accelerator, par-243

ticle orbits (which, for simplicity, we take to be executing only small amplitude vertical betatron244

oscillation, are focused by ring lattice elements of focusing strength K (s), where s is a tangen-245

tial coordinate along the design (or central) orbit such that the trajectory satisfies the “focusing246

differential equation”247

d2y

ds2 = K (s)y. (4.1)

The sign of K , like that of a Hooke’s law force, is negative for “restoring”. (In practice, one way248

or another, the focusing is always “alternating gradient” (AG), so, locally, the sign is as likely to be249

positive as negative—and of opposite sign for horizontal betatron oscillations.)250

The dependence of K (s) on s permits the description of systems in which the focusing strength251

varies along the orbit. In particular, K (s) = 0 describes “drift spaces” in which case Eq. (4.1) is252

trivially solvable, and yields the obvious result that particles in free space travel in straight lines.253

4.3 Design methodology254

(Deferred until the methodology used in its design has been described) a layout of the full ring, (to255

be referred to here as “BSM) is shown in FIG 2. The ring has super-periodicity nc = 4. Optical256

elements for one super-period are shown on the left. Since each quadrant is forward/backward257

symmetric, it is sufficient to design, and display, just one eighth of the ring. βx and βy are plotted258
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against element indices (ordinal numbers, starting at 1) in FIG 1. (Barely visible) grid lines mark259

the boundaries between adjacent elements.260

The lattice design has been performed using a program, MAPLE-BSM, that exploits the alge-261

braic (as contrasted with numerical) capabilities of typical lattice analysis programs. This design262

code is based on Wollnik transfer matrix elements[9], which implicitly describe orbit evolution263

between points of zero electric potential energy.264

One sees that the ring is very simple since the element index increases by 1 from element to265

element, and the figure is mirror symmetric about map index 10. All element names, including266

drift lengths, are shown, drifts above, powered elements below.267

For brevity, we describe only vertical motion, and describe the evolution of vertical phase268

space coordinates y = (y, y′)T , a two component column vector, by transfer matrix multiplication;269

y1 = M10y0. (4.2)

To obtain the once-around transfer matrix at location 1, one starts by calculating M10, the transfer270

matrix from map index 0 to 1; note that the matrix indices are attached “backwards”, not in in-271

creasing index order. Exploiting symplecticity, from M10 one can obtain M−1
10 algebraically; (i.e.272

analytically, not numerically.)1 The algebraic relation is273

M−1 = −SMTS, where S =

0 −1
1 0

 (4.3)

for 2 × 2 matrices and S is replicated along the diagonal for higher dimensions. One can proceed274

to find M21 and M−1
21 and so on, in the same way. Propagation from 0 to 2 is given by275

M20 = M21M10 , (4.4)

and so on. Iterating these calculations, one next describes motion through just one of the nC super-276

periods. Then, by just nC more matrix multiplications one can find M00, the “once-around transfer277

matrix” at the origin. The once-around transfer matrix at location 1, M11, is then given by278

M11 = M10M00M−1
10 , (4.5)

One notes that, whereas the orbit coordinates (y, y′) evolve by direct transformation, the lattice279

parameters evolve by similarity transformation. This duality resembles the Schrodinger/Heisenberg280

complementary “pictures” in quantum mechanics.281

The Twiss parameters, α, β and µ can be solved for at every location using the four equations282

implied, element by element, by the equation283

M(s, s + C) =

 cos µ + α(s) sin µ β(s) sin µ
−(1+α2 (s)) sin µ+α cos µ

β (s) cos µ − α(s) sin µ

 (4.6)

1“Algebraic” design implies that, in principle, an entire lattice design can be performed in closed form. In practice
this would be impossible, since there are far too many independent parameters. The combinatorics of handling a lrge
number of independent arguments could overwhelm even the most powerful computer program in the most powerful
computer. But, with care in introducing free parameters, all design procedures, such as inverting matrices and solving
constraint equations, can be handled in closed form—with numerical values produced only for output convenience.
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where α = −β′/2; µ ≡ 2πQ is the “ring phase advance”; and Q is the “ring tune”. Equally284

important, in a ring with super-periodicity nC , the same formula is valid, with µ → µ/nC and285

C → C/nC286

Proceeding inductively, one obtains once-around transfer matrices and Twiss parameters at287

every element interface. They are plotted in FIG 1. The points are joined by straight lines. This is288

mildly misleading since, with α(s) = −β′(s)/2 being continuous, the “kinks” visible in β(s) are289

artifical, and need to be “rounded off” mentally. Also, plotted against element index, the beta func-290

tion shape is distorted from what one is accustomed to seeing. This is rectified, in the subsequent291

plots, by plotting β(s)—but the kinks, caused by straight line interpolation, remain.292

4.4 Lattice design and lattice analysis contrasted293

There are many lattice simulation programs, SYNCH, MAD, MADX, TEAPOT, PTR, B-MAD,294

ELEGANT, to name just a few. All of these are primarily “lattice analysis programs”—a term to295

be defined (unconventionally) below. Starting from a sequential list of design elements: bending296

elements, quadrupoles, sextupoles, RF cavities, beam position monitors, along with their lengths,297

strengths, and all other relevant parameters, these programs support lattice analysis. As well as298

providing long term particle position tracking (and spin orientations if necessary) such programs299

provide for setting the strengths of all the powered elements to flatten the orbit, set the tunes, adjust300

the focusing properties, and so on.301

Commonly the lattice description inputs to such programs can be idealized, in the sense that302

many elements have identical parameters and identical powering; this feature is supported by303

allowing the parameters to be algebraic, rather than numeric. Eventually though, to allow for304

their not quite identical properties, some or, in general, all, of their parameters have to be “fully-305

instantiated”, meaning numerical rather than algebraic. Typically the fitting algorithms mentioned306

in the previous paragraph are entirely numerical, though with methods for grouping elements into307

“families of elements” whose strengths are constrained to scale proportionally.308

All these features can be provided by computer languages such as Fortran, C, and C++,309

Python, etc. In the terminology I have been employing all these programs are analysis programs310

employing numerical algorithms. What they are not, is “design programs” capable of taking ad-311

vantage of powerful symbolic (i.e. algebraic) formula manipulation, and equation solvers, such as312

MAPLE and MATHEMATICA. Familiar, myself, only with MAPLE, I assume that the capabili-313

ties of these two computational languages (and perhaps others) are more or less equivalent. The314

single most essential “solving mechanism” requirement for a design code is the abilty to invert or315

diagonalize matrices.316

4.5 Resemblance of lattice design to quantum mechanics317

With y → ψ, and K (s) → 2m(E − U (s)/~2, one notes that Eq. (4.1) becomes the Schrödinger318

equation satisfied by a stationary plane wave as the wave function for a particle of energy E in319

a potential U (s). With all storage ring beam particles being paraxial and all traveling at nearly320

the same constant speed v, their longitudinal components advance in time as s = vt. The further321

replacement ψ → s − vt produces a travelng wave not unlike a betatron oscillation This suggests322

some kind of duality between waves and particles. Acually Newton was aware of this duality 400323
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years ago, both experimentally and theoretically. And wave/particle duality has been around ever324

since.325

Returning to our Eqs. (4.1) and (4.5) we have another kind of duality. In a “Schrödinger-326

like picture”, from initial conditions (y0 , y
′
0) it is natural to visualize the evolution of phase space327

coordinates
(
y(t), y′(t)

)
with increasing t (or s) as solving Eq. (4.1) directly. (As an aside, it should328

be noted that the function K (s) is assumed to be known, which means the ring lattice has already329

been designed.) But, in a Heisenberg-like picture, one can visualize initial conditions (y0 , y
′
0)330

as parameterizing a fixed state in which β(s) is a particle or beam dynamic variable evolving331

according to Eq. (4.5) or by equivalent matrix operator. Accelerator physicists are ambivalent as332

to whether beta functions are properties of a beam or of a lattice.333

This duality may seem to be of only academic interest. Eq. (4.1) is linear and simple, and334

Eq. (4.5) is nonlinear and complicated. On the other hand, for linearized amplitude a motion,335

Eq. (4.5) does provide a solution in conveniently parameterized form;336

y(s) = a
√
β(s) cos(µ − µ0). (4.7)

Following sections provide less superficial distinctions between the approaches.337

The case being made is that it is sensible to design a new lattice in a Heisenberg-like picture338

even if one is intending to analyse its performance primarily using a Schrödinger-like picture.339

Justification for this will be expanded below but, briefly, the design process is inherently nonlinear,340

with a vast number of initial parameters needing to be fixed, while the analsis process is, in lowest341

approximation, linear, with nonlinearity entering only perturbatively.342

Continuing to dwell on classical (CM) and quantum (QM) duality, one notes that both disci-343

plines require all physically measureable quantities to be real, not complex, numbers. In QM, even344

though wave functions are allowed to be complex, physically measureable quantities need to be345

represented by the (real) eigenvalues of Hermitean operators, even though Hermitean matrices or346

their infinite dimensional generalizations, typically have complex components.347

In accelerator CM the wave functions are physically measureable particle positions and mo-348

menta, all of which need to be real. CM transfer matrices are by no means Hermitean, as can be349

confirmed from any transfer matrix introduced so far. Furthermore the elements of CM transfer350

matrices must also be measureable quantities that are necessarily real. In general, therefore, the351

eigenvalues of CM transfer matrices are complex. Clearly, then, even when related QM opera-352

tor matrices and CM transfer matrices have identical dimensionality, they cannot, in any sense,353

play analogous roles. There is no “Hermitean-like” trick in CM guaranteing that a derived β(s)354

fuction meets the necessary condition of being real and positive. This has to be handled in the355

“old-fashioned way”—when solving a quadratic equation, of selecting only real roots. Any lattice356

designer knows that, in practice, at first cut, the value of cos µ, appearing in Eq. (4.6), rarely lies357

in the rage −1 < cos µ < 1—as it must for ring stability—without careful fiddling of ring lattice358

parameters.359

A feature shared by CM and QM is that they are both Hamiltonian. Though this is an exact360

requirement in QM, it is only an approximate requirement in CM. The reason it is only approximate361

is that classical mechanical systems (the only kind of mechanisms we have at our disposal) are362

invariably “lossy”—the Q-value (quality factor) of the highest quality resonators, though very large363
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compared to 1, are small compared to infiniity. So there is always time reversal violation at some364

level in practical classical mechanics.365

The nearest exception to this general statement about classical mechanics is the sort of low366

energy hadron accelerator under discussion in the present paper. With synchrotron radiation vir-367

tually absent, protons or deuterons can circulate losslessly for days. What guarantees this in the368

Courant-Snyder accelerator formalism is that the CM transfer matrices are “symplectic”, a term369

synonymous, in general, with “Hamiltonian”.370

It is well known to accelerator physicists that transfer matrices have to be symplectic. Such371

physicists, occasionally, and disreputably, counter (erroneously-) calculated damping of the Courant-372

Snyder invariant—the quantiy that symplecticity guarantees conserved—artificially “re-symplectify”373

the formalism in use, even at the possible cost of violating energy conservation. This issue is too374

esoteric to be pursued at the level of the present paper.375

In passing, it can also be mentioned that, in classical mechanics, symplectic transformations376

preserve Poisson brackets[10]. It is also well known that the bridge between CM and QM consists,377

primarily, of the replacement of Poisson brackets of classical quantities by the commutators of their378

QM replacements.379

Less well known is that it is trivially easy to invert a symplectic matrix algebraically—it need380

not be done numerically. It is this feature which, I hope, is sufficiently important to justify such a381

lengthy and abstract build-up as has been given to this point. It is the exploitation of this feature that382

enables flexible lattice design features to be coded easily into brief MAPLE or MATHEMATICA383

programs.384

My lattice design program MAPLE-BSM exploits capabilities these high level computer lan-385

guages have, that lower level languages do not have, to design a storage ring lattice that can store386

simultaneously counter-circulating frozen spin beams in a ring with superimposed electric and387

magnetic bending. BSM is an acronym for “Belt and Suspenders, Mutable”, with the implied388

meaning that the ring focusing is redundantly provided by (very weak) alternating gradient fo-389

cusing provided by electrode shaping, indicated by m < 0, m > 0 labels in FIG 2, along with390

separated function quadrupoles labelled Qf, Qd, Qir1, and Qir2. Features of the program have391

been mentioned but details of the program are documented separately.392

5 BSM: a Belt and Suspenders, Mutable, symmetry-violation sensitive lattice393

5.1 Lattice properties394

A scale-independent, BSM ring beta function plot obtained with the MAPLE-BSM program is395

shown in FIG 1, for the BSM ring layout shown in FIG 2. Corresponding, scale-specific results396

are shown in figures 3, and 4. The ring has super-periodicity nc = 4. Optics for one super-period397

is shown on the left in FIG 2. Since each quadrant has element reversal symmetry, it is sufficient398

to design, and display, just one eightth of the ring. βx and βy are plotted against element indices399

(ordinal integers, starting at 1) in FIG 1. (Barely visible) grid lines mark the boundaries between400

adjacent elements. One sees that the ring is very simple since the element index increases by 1 from401

element to element, and the figure is mirror symmetric about 10. All element names, including drift402

lengths, are shown.403
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(To preserve site neutrality) the design is length scale invariant. But the length scale for the404

similar plot is fixed in FIG 3 and the horizontal axis is correspondingly changed to longitudinal405

position s in this and subsequent figures. (Obviously) the curve shape is distorted, but the vertcal406

coordinates at the plotted points are unchanged. Horizontal and vertical tune advances are plotted407

on the right. (Note that the left figure shows one quadrant, while the right one shows only an408

octant.) The length scale has been selected such that the ring circumference is about 160 m; as409

already mentioned, this can be changed with no essential effect to the design..410

In a so-called “NOMINAL” operational mode shown in FIG 3 , the full-ring tunes Qx and Qy411

are roughly equal, about 3.5. Most of the planned tests using the ring as an EDM prototype will412

be done in this configuration. This mode of operation is as robust as possible, as regards storage413

ring operational performance. Furthermore, in this configuration any influence of electrode shape414

focusing on the ring optics will be negligible and the electrode shapes can be treated as purely415

cylindrical, m = 0, enen though they alternate between ±min , where min has a value, not yet fixed,416

but small compred to 0.1. With both tunes large compared to 1, the optical behaviour of the lattice417

will be essentially the same as if the bending were magnetic. Only in an EDM-EXPERIMENT418

mode discussed below, will the lumped quadrupole strengths be weak enough for the electrode419

focusing to be more nearly dominant. In this limit the ring optics deviates markedly from magnetic420

ring optics, because of the extra focusing provided by position dependent electric potential.421

Lattice optics for an “EDM-EXPERIMENT” mode of operation is shown in FIG. 4. The fun-422

damental phenomenon limiting the precision with which the proton (or any other) particle EDM423

can be measured is “out of plane” spin precession induced by unknown radial magnetic field acting424

on particle MDMs. Here “out of plane” means out of the horizontal plane containing the de-425

sign, central particle, closed orbit. (Not counting subsequent averaging over symmetrically varied426

configurations) the most effective method for suppressing this EDM-mimicking precession, is to427

suppress the average vertical separation of counter-circulating beams—like the spurious MDM in-428

duced precession, this vertical beam separation is proportional to the 〈Br 〉 average. Suppression of429

this “background” EDM error can be described as the storage ring providing “self-magnetometry”.430

For the self-magnetometry to be most precise requires the vertical focusing to be weakest possible.431

As stated in the figure caption, with βy so nearly constant, the vertical tune is accurately given by432

Qy = (2π)−1C/ < βx >, where C is the ring circumference. For ultimate EDM accuracy Qy is433

expected to be close to zero as possible—for example Qy = 0.01.434

One sees that ultimate EDM precision will likely require 〈βy〉 values an order of magnitude435

larger than the, already large, value shown in FIG. 4. Tuning the ring lattice to achieve this by436

adjusting the BSM lumped quadrupole strengths will be easy; but preserving counter-circulating437

beams if possible at all, will not be easy. Short of subsequent averaging over equivaent configura-438

tions, this consideration is expected to set the ultimate achievable EDM precision achievable with439

this strategy for minimizing 〈Br 〉.440

The doubly-magic proton-helion measurement, labelled (q1) and (q2) in Table 1, by measur-441

ing the difference of proton or helion EDM’s indirectly cancels this source of systematic error,442

obviating the need for such extreme rejection of 〈Br 〉. So, for the doubly-magic measurement, the443

very robust NOMINAL mode of BSM operation may be sufficient.444
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Figure 1. βx and βy are shown plotted against element indices, for one quadrant of the full ring. With
super-periodiciy of 4, the other three quadrants are identical. In this plot (only) the length scale is arbitrary
(within reason). In all subsequent lattice function plots the horizontal axis is s.

5.2 Beam bunching preservation by a single RF accelerating cavity445

With the two beams having different momenta, their velocities also differ. For both beams to be446

captured by the same RF cavity, their harmonic numbers have to differ. The column in Table 1447

labelled “best RF harmonic ratio” gives the harmonic number ratio best matching the velocity448

ratio of the two beams, consistent with being small enough for the RF frequency to be not too449

large. Typical radial discrepancies range from very small, ten’s of microns values, almost up to one450

millimeter. This is taken to be acceptably good matching.451

5.3 Wien filter spin-tune adjustment452

Superimposed electric and magnetic bending fields allow small correlated changes of E and B to453

alter the spin tune without affecting the orbit. Being uniformly-distributed, appropriately matched454

electric and magnetic field components added to pre-existing bend fields can act as a (mono-455

directional) “global Wien filter” that adjusts the spin tune without changing the closed orbit. Re-456

placing the requirement that ηE and ηM sum to 1, we require ∆ηM = −∆ηE , and obtain, using the457

same fractional bend formalism, for a Wien filter of length LW the spin tune shift caused by a Wien458

filter of length-strength product ELW is given by459

∆QW
S = −

1
2π

1 + G
β2γ2

ELW

mc2/e
. (5.1)

For “global” Wien filter action by the bends of the entire ring, LW is to be replaced by 2πr0. Note460

though that, even in this case, the Wien filter produces the pure tune shift given by Eq. (5.1) only461

for one of two counter-circulating beams; presumeably the primary beam. The secondary beam462

closed orbit will vary as the primary beam tune is adjusted, or stabilized.463
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Figure 2. Lattice layouts for a proposed “EDM prototype” storage ring: single quadrant (left) and full
ring geometry (right). (For pictorial convenience quadrupole symbols represent neither actual quadrupole
lengths nor fine-grained locations, and may also subsume sextupoles not shown.) A doublet-pair present in
every straight secion is broken out only in the lower (south) straight section. Increased quadrupole doublet
strengths in all four long straights converts the lattice to "strong-focusing" (though not very strong by modern
standards.) In any case, the total accumulated drift length is not enough for the ring to operate “below transi-
tion”. When scaling up to the eventual, full energy, all-electric ring, from four-fold to sixteen-fold symmetry,
with drift lengths and bend lengths preserved (but bend angles four times less) the total circumference is to
be 500 m or greater and operation will be well below transition.

5.4 “MDM comparator trap” operation464

This section digresses temporarily to describe the functioning of dual beams in the same ring as465

a “spin tune comparator trap”. A “trap” is usually visualized as a “table-top apparatus”. For this466
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Figure 3. The data for the figure on the left is the same as in the previous FIG 1 but, with horizontal axis
registering accumulating tangential coordinate s. Tune advances for one quadrant are plotted against s on
the right. Since each quadrant is mirror-symmetric it is sufficient to display just one octant (and confusing
to display the accumulating tune advances). The full-ring tunes are roughly 3.5 in both planes.

Figure 4. This plot provides the same information as the previous two, except in a configuration optimized
for EDM measurement precision. In this case the horizontal focusing is very “tame” but, for optimal EDM
tune measurement, the vertical tune Qy has to be tuned toward zero. With βx so nearly constant, the vertical
tune is accurately given by Qy = (2π)−1C/ < βx >, where C is the ring circumference.

paper “table-top radii” of 10, 20, or 50, meters (or rather curved sectors of these radii, expanded by467

straight sections of comparable length) are considered.468

As mentioned previously, the electron MDM has been determined with 13 decimal point accu-469

racy. Though other magnetic moments are also known to high accuracy, compared to the electron470

their accuracies are inferior by three orders of magnitude or more. One purpose for a spin-tune-471

comparator trap would be to “transfer” some of the electron’s precision to the measurement of other472
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magnetic dipole moments (MDM’s). For example, the proton’s MDM could perhaps be determined473

to almost the current accuracy of the electron’s.474

Different (but not necessarily disjoint) co- or counter-circulating beam categories include dif-475

ferent particle type, opposite sign, dual speed, and nearly pure-electric or pure-magnetic bending.476

Cases in which the bending is nearly pure-electric are easily visualized. The magnetic bending477

ingredient can be treated perturbatively. This is especially practical for the 14.5 MeV electron-478

electron and the 233 Mev proton-proton counter-circulating combinations.479

Eversmann et al.[11] have demonstrated the capability of measuring spin tunes with high ac-480

curacy. By measuring the spin tunes of beams circulating in the same ring (preferably, but not481

necessarily simultaneously) the MDM’s of the two beams can be accurately compared.482

6 Doubly-frozen spin EDM measurement examples and methods483

6.1 Major EDM developments from the past484

Important EDM advances that have been made in past can be listed: The storage ring “frozen spin485

concept” according to which, for a given particle type, there can be a kinetic energy for which the486

beam spins are “frozen” in a storage ring—for example always pointing along the line of flight,487

Farley et al.[12]; The recognition of all-electric rings with “magic” frozen spin kinetic energies488

(14.5 MeV for electrons, 233 MeV for protons) as especially appropriate for EDM measurement,489

Semertzidis et al.[13]. The “Koop spin wheel” mechanism in which a small radial magnetic field Br490

applied to an otherwise frozen spin beam causes the beam polarization to “roll” around a locally-491

radial axis[14], (systematic precession around any axis other than this would cancel any accumulat-492

ing EDM effect). Koop[16] has also suggested simultaneous circulation of different particle types,493

though not with the detailed lattice design nor the doubly-frozen spin frequency-domain comagne-494

tometry averaging analysed in the present paper. Spin coherence times long enough for accumulted495

EDM-induced precession to be measureably large has been demonstrated by Eversmann et al.[11];496

“Phase-locking” the beam polarization, which allows the beam polarization to be precisely manip-497

ulated externally, has been demonstrated by Hempelmann et al.[17].498

6.2 Cancelation of unknown radial magnetic field 〈∆Br 〉499

By design, the only intentionally non-zero field components in the proposed ring would be the500

radial electric component Ex , and ideally-superimposed magnetic bending would be provided by a501

vertical magnetic field component By . Routine initial cancelation of 〈∆Br 〉 can be performed using502

unpolarized counter-circulating beams by measuring the differential vertical separation of the two503

beams, which is similarly proportional to 〈Bx〉.504

Since the dominant systematic EDM measurement error is proportional to 〈∆Br 〉, in principle505

this cancelation is all that is needed to eliminate the dominant systematic error. But the effectiveness506

of this cancelation depends on vertical position sensitivity of the beam position monitors (BPMs)507

and on the restoring force of the lattice focusing. As illustrated in FIG 4, this “self-magnetometer508

sensitivity” can be increased only until beam lifetime reduction due to the vertical particle loss509

becomes unacceptably large.510
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6.3 Koop spin wheel EDM determination511

By design, the only field components in the proposed ring would be the radial electric component512

Ex , and ideally-superimposed magnetic bending would be provided by a vertical magnetic field513

component By . There also needs to be a tuneable radial magnetic field Br ≡ Bx , to compensate514

any uninentional and unknown radial magnetic field and to control the roll-rate of the Koop spin515

wheel.516

For a “Koop spin wheel” rolling around the radial x-axis, notes by I. Koop[14] provide formu-517

las for the roll frequencies (expressed here in SI units, with Bρ in T.m),518

Ω
Bx
x = −

1
Bρ

1 + G
γ

cBx , and Ω
EDM
x = −η

1
Bρ

( Ex

c
+ βBy

)
. (6.1)

ΩEDM
x is the foreground, EDM-induced, out-of-plane precession frequency. ΩBx

x is a roll frequency519

around the same radial axis, induced by a radially magnetic field Bx acting on the MDM. cBρ =520

pc/(qe) ≡ pc/(Ze) is the standard accelerator physics specification of storage ring momentum.521

The factor η expresses the electric dipole moment d = ηµ in terms of the magnetic moment µ of522

the beam particles.523

FIG 7.28 in CERN EDM Feasability Report[4] illustrates a “calibration mode” in which the524

linear dependence of ΩBx
x on Bx is determined with high precision using the first of Eqs. (6.1) and525

a “measurement mode” by which η is determined using the second of Eqs. (6.1).526

Meanwhile, the secondary beam is locked to an unambiguous frequency, depending only on527

the cB0 and E0 values. Like Bx , these bending fields can therefore be set, reversed, and reset to528

high accuracy, based purely on RF and precession frequencies measurements. This resettabilty529

is expected to permit the calibration mode determinations to be performed with high “frequency530

domain” precision. These procedures are expected to reduce the systematic EDM error by 2 or531

3 orders of magnitude beyond that established by the self-magnetometry described in Section 6.2532

along with the self-magnetometry implied by FIG 4.533

6.4 Some practical configurations534

Kinematic parameters for some practical doubly-frozen configurations are listed in Table 1. Bend535

radius r0 could be increased beneficially, except for cost, in all cases, but not necessarily decreased.536

The nominal all-electric, frozen spin proton case, shown in the top row, assumes r0 = 50 m. This537

futuristic, large and expensive, 232.8 MeV frozen spin proton ring has been referred to as the “Holy538

Grail” facility. The remaining entries assume radius R0 = 12 m, consistent with inexpensive, almost539

immediate application, in the COSY, Juelich beam hall. Proton and deuteron examples are given540

in a companion paper, presently in preparation.541

Master beam (columns on the left) spin tunes are always exactly zero. Spin tunes of secondary542

beams are given in the final column. In all cases they have been calculated closely enough to543

guarantee they can be tuned exactly to zero. “Harmonic ratio” entries indicate optimal RF harmonic544

number ratios for matching the circumferences of the CW and CCW orbits. The fact that these545

circumferences are not quite equal, wil require the EDM measurements to be corrected accordingly.546
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label r0 CW best RF QS1 KE E0 B0 ηE CCW best RF KE2 pc2 QS2
beam harmonic MeV MV/m T beam harmonic MeV GeV

ratio ratio
PERTURBED FROZEN SPIN PROTON-PROTON (nominal all-electric, optional magnetic scanning)

(b) 50 p 1/1 0/1 ˜232.8 8.386 1.6e-08 1.0 p 1/1 ˜232.8 -0.7007 0/1
FROZEN SPIN PROTON-POSITRON (best ultimate proton EDM precision)

(c1) 12 p 33/115 0/1 ˜86.63 10.592 0.0268 0.766 e+ 82/115 ˜30.09 -0.0306 0/1
FROZEN SPIN POSITRON-PROTON (inverse of (c1))

(c2) 12 e+ 82/115 0/1 ˜30.09 10.592 -0.0268 4.155 p 33/115 ˜86.64 -0.4124 0/1
FROZEN SPIN HELION-PROTON (determines proton-helion EDM difference)

(q1) 12 h 85/228 0/1 ˜39.24 4.387 -0.0230 1.351 p 143/228 ˜38.59 -0.2719 0/1
FROZEN SPIN PROTON-HELION (inverse of (q1))

(q2) 12 p 143/228 0/1 ˜38.59 4.387 0.0230 0.6958 h 85/228 ˜39.24 -0.4711 0/1

Table 1. Sample beam-pair combinations for the EDM experiments discussed in this paper; master beam
entries on the left, secondary beam on the right. “(b)”, “(c1)”, etc. are case labels, copied from a previous
report[15]. Dual rows allow either particle type to be designated “primary beam”. Overhead tildes ,̃ indicate
values known to much greater accuracy, but truncated for display in this table. Candidate beam particle types
are ”e+”,“p”, “d”, “t”, “h” that could label label positron, proton, deuteron, triton, or helion rows. Proton
and deuteron examples are given in a companion paper. Bend radii, particle type, and kinetic energies are
given in the first three columns. There is no fundamental dependence of spin tune Qs on r0, but r0 values
have been chosen to limit |E0 | to realistic values. All but the top entry assume bend radius r0 = 12 m, but
the required electric field E0 may be unrealistically large in some cases.

6.5 Estimation of MDM and EDM measurement precisions547

The “dipole moment comparator” name proposed for the class of storge rings described in this548

paper intentionally applies to both magnetic and electric dipole moments. Strictly speaking, since549

the dimensionalities of these quantities are different, for them to be comensurate requires a qual-550

ification defining comparably strong electric and magnetic field values, such as E=cB in MKS551

units. Even with this qualification, because parity and time reversal symmetries suppress EDMs so552

strongly, it is not appropriate to compare the fractional accuracies of MDMs and EDMs. It is more553

nearly appropriate to compare the absolute precisions of MDM and EDM measurement.554

Once this limitation is accepted, it becomes sensible to concentrate on the precision with555

which EDMs can be measured—any measurably non-zero EDM value would imply a measurement556

error which—applied to any MDM (except the electron’s[5])—would represent a fractional MDM557

determination smaller than current limits. For brevity then, it is sufficient to discuss only the558

precision with which elementary particle EDMs can be measured.559

The top entry in Table 1 applies to any propoosed proton EDM measurement in which 232.8 MeV560

frozen spin proton beams counter-circulate simultaneously in a ring with all-electric bending, as561

proposed, for example, in references[13],[18], or [20]. The achievable proton EDM systematic562

error in these papers is said to not exceed 10−29 e-cm. It is the unknown maximum average radial563

magnetic fieild that establishes this limit in the first two cases. An independent re-analysis of this564

class by Valeri Lebedev[19] stated that “it is not feasible for the average radial magnetic field to be565

suppressed below 1 nG—below the assumed value by about 4 orders of magnitude.” The PTR ring566

displayed in Figure 2 has been proposed[4] as a prototype for the all-electric 232.8 MeV proton567

ring[18] as well “hybrid” rings with magnetic focusing[20].568
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An all-electric ring of our EDM comparator design applied to the proto/proton case measures569

the difference of the proton EDM with itself—which is, of course, zero; this will provide a useful570

consistency test. When applied to the proton/helion case, it is the difference of proton and helion571

EDM’s that is measured. What is special about this case is that the dominant systematic error572

cancels, leaving a statistical error limit of about 10−30 e-cm as dominant error. Since the difference573

of vanishingly small quantities is vanishingly small, any measurably large result would provide574

evidence of physics beyond the standard model.575

To achieve such a small statistical error will require averaging runs with proton and helion576

beams interchanged. The precision with which magnetic field reversal can be achieved with the577

required precision is controlled digitally by simultaneously phase locking the spin tunes of both578

simultaneously counter-circulating beams. This strategem exploits the particle magnetic dipoles579

as perfect stabilizing gyroscopes for the establishment, stabilization, reproducibility and field re-580

versability of in-plane precession to enable the measurement of out-of-plane precession induced by581

any non-vanishing EDMs. Under the near-certain assumption that the positron EDM is negligibly582

small, the proton/positron entry in Table 1 will provide a direct measurement of the proton EDM at583

the same 10−30 e-cm accuracy level.584
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