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Abstract

The fulfilled derivation of equation of spin precession of a particle possessing magnetic and elec-

tric dipole moments uses a fully covariant approach and explicitly separates contributions from

classical electrodynamics and from the Thomas effect. The expression of the final equation in

terms of the fields in the instantly accompanying frame presents it in a very simple form. The

Lorentz transformations of the magnetic and electric dipole moments and the spin are derived from

basic equations of classical electrodynamics, namely, from the equation connecting the angular mo-

mentum and the magnetic moment and from the Maxwell equations in matter. An antisymmetric

four-tensor is constructed from the electric and magnetic dipole moments.
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I. INTRODUCTION

A spin motion of a particle with the anomalous magnetic moment (AMM) and the electric

dipole moment (EDM) in electric and magnetic fields is an important problem of classical

spin physics. A search for the EDM [1] is a part of exploration of new physics beyond

the Standard Model. For charged particles in storage rings, this search is based on the

relativistic equation of spin motion. The corresponding equation for a particle without the

EDM has been derived by Thomas [2] (also by Frenkel [3]) and, in a more general form, by

Bargmann, Michel and Telegdi [4]. This is so-called Thomas-Bargmann-Michel-Telegdi (T-

BMT) equation. There are two main methods of derivation of this equation. The Thomas

method [2] (clearly explained in Ref. [5]) is based on separated calculations of the spin

precession in the instantly accompanying frame and of the contribution from the Thomas

effect. Addition of this contribution to the angular velocity of the spin precession obtained

with a Lorentz transformation from the instantly accompanying frame leads to the needed

equation. The Bargmann-Michel-Telegdi method [2] (transparently clarified in Ref. [6])

consists in the use of covariant equations of motions for four-vectors of spin and velocity, aµ

and uµ, and the orthogonality condition aµu
µ = 0. The transition to the rest frame spin, ζ,

allows one to derive the T-BMT equation. This method does not explicitly use the equation

for the angular velocity of the Thomas precession.

An extension of the T-BMT equation due to the EDM has already been discussed in the

original paper of Bargmann, Michel and Telegdi [4]. Then, the equation of spin motion of

the particle with the AMM, µ′, and the EDM, d, has been obtained in Refs. [7, 8] by the

dual transformation µ′ → d, B → E, E → −B. The rigorous derivation of this equation

has been presented in Ref. [9]. The resulting equation of spin motion coincides with that

presented in Refs. [7, 8]. However, the derivation fulfilled in Ref. [9] has not used the

supplementary assumption of dual symmetry.

We demonstrate in the present work that including the EDM into a consideration opens

new possibilities to relate the particle spin motion with basic equations of classical electrody-

namics, namely, the equation connecting the angular momentum and the magnetic moment

and the Maxwell equations in matter. We also extract a contribution from the Thomas

effect to the resulting spin motion with the use of a fully covariant approach.
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II. ELECTROMAGNETIC INTERACTIONS OF A MOVING PARTICLE

We consider an extended charged particle in electric and magnetic fields. In fact, the fields

may be nonuniform and nonstationary if we neglect terms proportional to their derivatives.

In the framework of classical electrodynamics, we can divide the particle into point-like

charges q and currents J . Let R be the radius-vector of the center of mass of the particle:

R =

∑

Er
∑

E
, (1)

where E and r are the total energy and the radius-vector of a constituent part of the particle.

One defines an interaction of the electric and magnetic dipole moments, d and µ, with

the external fields by the Hamiltonian

H = −d ·E − µ ·B, (2)

d =
∑

qr =

∫

ρ(r)rdV , (3)

µ =
1

c

∑

[r × J ] =
1

c

∫

[r × j]dV . (4)

Here ρ(r) and j(r) are the charge and current densities. The sums are replaced with the

integrals. This conventional definition becomes inexact for the moving particle. The rigorous

definition should take into account a motion of the center of mass R. When its velocity is

V , the EDM takes the form

d =
∑

e(r − V t). (5)

Similar correction should be made for the magnetic moment. The center-of-mass velocity is

given by

V =
c2
∑

π
∑

E
=

c
∑

π
∑

√
M2c2 + π2

, (6)

where M is the mass and π is the kinetic momentum of a constituent part of the particle.

Electric and magnetic dipole moments of the particle depend on a reference frame. In

this section, we find a connection between the dipole moments in the lab frame and in the

instantly accompanying one. The connection between the latter frame and the rest frame

(which is noninertial) has been found by Thomas [2].

To express the electromagnetic interactions of the moving particle in terms of the in-

trinsic dipole moments, we can use the covariant form of the well-known expression for the
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relativistic transformation of lengths:

xi = x
(0)
i − γ

γ + 1
βiβkx

(0)
k , βi =

Vi

c
=

1

c
· dXi

dt
, (7)

where x
(0)
i are the rest frame coordinates and Xi are components of R.

A motion of the magnetic moment leads to the appearance of the EDM and other way

round. Since the charge and current densities form a four-vector, the charge density is

influenced by the motion of currents constituting a magnetic dipole: ρ = γβ · j(0)/c. The

current EDM [10] appearing due to a motion of the magnetic dipole is given by d = β×µ(0),

where µ(0) is the intrinsic magnetic moment.

To derive general equations for the dipole moments and for the Hamiltonian of the moving

particle, it is convenient to compare the definitions of the dipole moments and the antisym-

metric four-(pseudo)tensor of angular momentum. In the definition of the latter, the four-

momentum, pµ, should be replaced with the kinetic four-momentum πµ =
(
√
m2c2 + π2,π

)

:

Lµν =
∑

(xµπν − xνπµ), πµ = pµ − e

c
Aµ, (8)

where Aµ is the four-potential. Classical mechanics presents this antisymmetric tensor in

the form (see Ref. [11], § 14)

Lµν = (−K,−L), K = (−L01,−L02,−L03) =
∑

(√
m2c2 + π2 r − ctπ

)

=
∑√

m2c2 + π2 (r − V t), L =
∑

r × π.
(9)

Let us consider single electric and magnetic dipoles. A comparison of Eq. (9) with the

definitions (5) and (4) of the electric and magnetic dipole moments shows that

d =
e

mcγ
K, µ =

e

mcγ
L. (10)

Therefore, the electric and magnetic dipole moments do not form a four-tensor and the

related four-tensor is given by

Dµν = (γd, γµ). (11)

The use of the well-known transformation law for four-tensors leads to the following

equations (γ0 = 1):

d = d(0) − γ

γ + 1
β(β · d(0)) + β × µ(0), (12)

µ = µ(0) − γ

γ + 1
β(β · µ(0))− β × d(0). (13)
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It is possible to determine physical quantities which are based on the electric and magnetic

dipole moments and form an antisymmetric four-tensor. The electric and magnetic dipole

moment densities

P =
dd

dV
, M =

dµ

dV

form the antisymmetric four-tensor Pµν = (P ,M) because the Lorentz contraction results

in dV = dV0/γ. This is quite natural since P and M enter into the Maxwell equations in

matter:

∇×E = −1

c
· ∂B
∂t

, ∇×H =
4π

c
j(ext) +

1

c
· ∂D
∂t

,

∇ ·D = 4πρ(ext), ∇ ·B = 0, D = E + 4πP , B = H + 4πM ,
(14)

where ρ(ext) and j(ext) are the densities of external charges and currents. As a result, P

and M transform like the electric and magnetic fields, E and B. It is important that the

Lorentz transformation of the dipole moments can be connected with the Maxwell equations.

Equations (12) and (13) can be obtained when P and M are small as compared with E

and B, respectively.

A possibility to construct a four-tensor from the electric and magnetic dipole moments

was first mentioned by Frenkel [12]. However, his assumption that this four-tensor has

the form Dµν = (d,µ) [cf. Eq. (11)] had resulted in incorrect transformation laws of the

quantities d and µ. Similar error has been made by Nyborg [13]. Thus, a correct analysis

has not be done in Refs. [12, 13].

To describe spin effects, we need to express the intrinsic dipole moments in terms of the

rest frame spin (pseudo)vector. In this case, d(0) = dζ/s, µ(0) = µζ/s, where s = |ζ|.
The quantities ζ and s have the dimensionality of the angular momentum. The quantity

s in classical physics corresponds to ~s (s is here the spin quantum number) in quantum

mechanics. As a result, the Hamiltonian (2) takes the form

H = −µ

s

[

B · ζ − γ

γ + 1
(β ·B)(β · ζ)− (β ×E) · ζ

]

−d

s

[

E · ζ − γ

γ + 1
(β ·E)(β · ζ) + (β ×B) · ζ

]

.
(15)

It is important that this expression for the Hamiltonian can be reduced with the use of

the fields in the instantly accompanying frame, E(0) and B(0), satisfying the relations (see
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Ref. [14])

E(0) = γ

[

E − γ

γ + 1
β(β ·E) + β ×B

]

,

B(0) = γ

[

B − γ

γ + 1
β(β ·B)− β ×E

]

.
(16)

Therefore, the Hamiltonian can be presented as follows:

H = −dE(0) · ζ
sγ

− µB(0) · ζ
sγ

. (17)

The use of the Poisson brackets allows one to obtain the corresponding angular velocity of

spin precession:

ω = −dE(0)

sγ
− µB(0)

sγ
. (18)

Equations (15) and (17) for the Hamiltonian and Eq. (18) for the angular velocity of

spin precession in the lab frame are general. The angular velocity of spin precession in the

instantly accompanying frame can be obtained from Eq. (18) with γ → 1.

However, we have started from the instantly accompanying frame while the spin

(pseudo)vector ζ is defined in the noninertial particle rest frame. Angular velocities of

spin precession in the two frames differ due to the famous Thomas effect which should also

be taken into consideration.

III. GENERAL DERIVATION WITH ALLOWANCE FOR THE THOMAS EF-

FECT

The Thomas effect [2] consists in a change of the angular velocity of spin precession due

to a rotation of the particle rest frame. Thomas has shown [2] that the difference between

the spin precession in the nonrotating instantly accompanying frame and in the rest frame

is defined by
(

∂ζ

∂t

)

nonrot

=

(

∂ζ

∂t

)

rest frame

+ ωT × ζ, (19)

where ωT is the angular velocity of the Thomas precession:

ωT = − γ2

γ + 1

(

β × dβ

dt

)

. (20)

A very short and clear derivation of Eq. (20) has been recently given in Ref. [15].

We can immediately find the total angular velocity of spin precession of the particle with

the AMM and EDM with Eqs. (19) and (20). However, it is more consistent to keep the

fully covariant approach.
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An inclusion of the EDM brings the covariant equation of spin motion to the general

form [9]
daµ

dτ
= A1F

µνaν + A2βu
µF νλuνaλ + A3G

µνaν + A4u
µGνλuνaλ, (21)

where the four-vectors of spin and velocity are defined by

aµ = (a0, a), a = ζ +
γ2β(β · ζ)

γ + 1
, a0 = β · a = γβ · ζ, uµ = (γ, γβ) (22)

and Gµν = ǫµναβFαβ/2 is the antisymmetric four-tensor dual to the electromagnetic field

tensor Fαβ . The translational motion of the particle is given by

duµ

dτ
=

e

mc
F µνuν. (23)

The transition to the instantly accompanying frame and the use of the orthogonality

condition aµu
µ = 0 result in (see Ref. [9])

A1 =
µ

s
, A2 = −1

s

(

µ− es

mc

)

= −µ′

s
, A3 = −d

s
, A4 =

d

s
. (24)

With the use of Eq. (23), the obtained equation can be presented in the form

daµ

dτ
=

µ

s

(

F µνaν − uµF νλuνaλ
)

− d

s

(

Gµνaν − uµGνλuνaλ
)

− uµdu
λ

dτ
aλ. (25)

Next derivations can be made similarly to Ref. [14]. It is convenient to denote

Φµ =
µ

s

(

F µνaν − uµF νλuνaλ
)

− d

s

(

Gµνaν − uµGνλuνaλ
)

. (26)

Evidently, Φµ = (Φ0,Φ) is a four-vector. Since uµΦ
µ = γ(Φ0 − β · Φ) = 0, it satisfies the

relation Φ0 = β ·Φ. The last term in Eq. (25) can be transformed as follows [14]:

uµdu
λ

dτ
aλ = −uµγa · dβ

dτ
. (27)

Thus, Eq. (25) leads to

da0

dτ
= Φ0 + γ2a · dβ

dτ
,

da

dτ
= Φ + γ2β

(

a · dβ
dτ

)

. (28)

Now we can calculate the equation of motion for the rest frame spin ζ with the use of

the relations

ζ = a− γ

γ + 1
β(β · a), d

dτ

(

γ

γ + 1
β

)

=
γ

γ + 1

dβ

dτ
+

γ3

(γ + 1)2
β

(

β · dβ
dτ

)

.
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The needed equation has the form (cf. Ref. [14])

dζ

dτ
= Φ− γβ

γ + 1
Φ0 +

γ2

γ + 1
ζ ×

(

β × dβ

dτ

)

. (29)

The transformation of the given four-vector Φµ to the instantly accompanying frame

results in
(

Φ(0)
)µ

=
(

0,Φ(0)
)

, where

Φ(0) = Φ− γ

γ + 1
β(β ·Φ) = Φ− γβ

γ + 1
Φ0.

Since dt = γ dτ , the derivation of Φ(0) from Eq. (26) brings the equation of spin motion

to the form
dζ

dt
= −

(

dE(0)

sγ
+

µB(0)

sγ

)

× ζ − γ2

γ + 1

(

β × dβ

dt

)

× ζ. (30)

The angular velocity of spin precession is given by

Ω = −
(

dE(0)

sγ
+

µB(0)

sγ

)

− γ2

γ + 1

(

β × dβ

dt

)

= ω + ωT , (31)

where ω and ωT are given by Eqs. (18) and (20), respectively.

Equations (30) and (31) show that the total angular velocity of spin precession is the sum

of two parts. The first part is given by the Lorentz transformation between the instantly

accompanying frame and the lab frame. The second one is the contribution from the Thomas

precession. This part defines the additional spin precession caused by a purely kinematical

effect of a rotation of the particle rest frame (see, e.g., Ref. [14]). The presented derivation

of Eqs. (30) and (31) is fully covariant but it does not specify the two contributions to the

total effect. The origins of these contributions are considered in detail in Sec. II and in the

theory of the Thomas effect [2, 14–16].

The particle acceleration is expressed in terms of the lab frame fields as follows:

dβ

dt
=

e

mcγ
[E + β ×B − β(β ·E)] . (32)

With the use of Eqs. (16), (32), one can bring Eq. (31) to the form

Ω = − e

mc

[(

G +
1

γ

)

B − γG

γ + 1
(β ·B)β −

(

G +
1

γ + 1

)

β ×E

+
η

2

(

E − γ

γ + 1
(β ·E)β + β ×B

)]

,
(33)

where G = (g−2)/2, g = 2mcµ/(es), and η = 2mcd/(es). This equation has been previously

derived in Ref. [9].
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The equation of spin motion takes a pretty simple form after an expression of the Thomas

precession in terms of the fields in the the instantly accompanying frame. While

E + β ×B − β(β ·E) 6= E(0),

the angular velocity of the Thomas precession is equal to

ωT = − e

mc(γ + 1)

(

β ×E(0)
)

. (34)

Therefore,
dζ

dt
= − e

mc

(

gB(0)

2γ
+

ηE(0)

2γ
+

β ×E(0)

γ + 1

)

× ζ. (35)

This final equation explicitly shows the contributions from the magnetic and electric

dipole moments and from the Thomas precession.

IV. DISCUSSION AND SUMMARY

The earlier derivations of the equation of spin motion of a particle with the AMM and

EDM [7, 8] used the dual transformation of terms proportional to the AMM in the T-BMT

equation describing a particle without the EDM. The rigorous derivation of the equation for

a particle with the AMM and EDM has been first performed in Ref. [9]. In the present work,

we have made a next step and have deduced this equation with the explicit separation of

contributions from the Lorentz transformation between the instantly accompanying frame

and the lab frame and from the Thomas effect. This deduction is fully covariant. The

transition to the fields in the instantly accompanying frame has allowed us to present the

final equation in the very simple form. Amazingly, one need not to divide the magnetic

moment into the normal and anomalous parts. This division is a result of expression of the

equation of spin motion in terms of the lab frame fields.

In fact, the obtained equation of motion (35) cannot exhaustively specify origins of the

two contributions. However, a needed specification of the Thomas term is presented by the

theory of the Thomas effect [2, 14–16]. This theory shows that the Thomas effect has a

purely kinematical origin and is caused by a rotation of the particle rest frame. The origin

of the contribution of the magnetic and electric dipole moments to Eq. (35) has been cleared

in Sec. II. It has been demonstrated that the form of this contribution is conditioned by the

Lorentz transformation from the instantly accompanying frame to the lab frame.
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The key moment of the analysis fulfilled in Sec. II is the Lorentz transformation of the

magnetic and electric dipole moments. We have determined the connection between the

dipole moments in the lab frame and in the instantly accompanying one and have corrected

errors made in previous investigations [12, 13]. We have derived this connection from basic

equations of classical electrodynamics, namely, from the equation connecting the angular

momentum and the magnetic moment and from the Maxwell equations in matter. We have

also constructed a four-tensor from the electric and magnetic dipole moments. These new

results have been obtained thank to the inclusion of the EDM into the consideration. The

existence of the direct relation between the particle spin motion and the above mentioned

basic equations is an important fact.

The results obtained show a deep self-consistency of classical electrodynamics.
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