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1 Introduction and motivation

1.1 Introduction

The JEDI collaboration1 aims to conduct the first direct measurement of the permanent electric
dipole moment (EDM) of deuterons at the COoler SYnchrotron (COSY) [1, 2]. To enable COSY,
as a magnetic storage ring, to perform such a measurement, a novel device called the “waveguide
RF Wien filter” was developed, installed and commissioned for this purpose.

1.2 State of the art

The waveguide RF Wien filter is a unique device of its kind in the field of accelerator and particle
physics. The design comprises a waveguide structure, designed to operate as a Wien filter i.e., it
generates coupled, orthogonal, and, matched electric andmagnetic fields. ConventionalWien filters
incorporate electrostatic and magnetostatic and are used mainly as mass and velocity seperators.
Another form of Wien filter that incorporates a pulsed electric field and a static magnetic field, is
used for beam chopping purposes [3] only.

1.3 Lorentz force method

The spin dynamics of a particle with spin ®S in an arbitrary electric ( ®E) and magnetic field ®B
including the EDM term [4] (in SI units) is governed by the T-BMT equation

d
dt
®S =

(
®ΩMDM + ®ΩEDM

)
× ®S. (1.1)

®ΩMDM and ®ΩEDM represent the angular frequencies corresponding to the magnetic dipole moment
(MDM) and the electric dipole moment (EDM) terms. For the current investigation, only ®ΩEDM is
relevant which reads

®ΩEDM = −
q

mc
ηEDM

2

[
®E −

γ

γ + 1

(
®β · ®E

)
®β + c ®β × ®B

]
(1.2)

q, m, c, γ, and β are respectively, the elementary charge, mass, the Lorentz factor and the velocity
of a particle in units of speed of light c [5].

In connection to the EDMmeasurements, in the RFWien filter, the electric field ®E is orthogonal
to the beam velocity vector ®β, which means that the term

(
®β · ®E

)
®β in eq. (1.2) vanishes. This

property is guaranteed by the transverse electromagnetic (TEM) mode propagating in the device.
Additionally, when the so called “Wien filter condition” ismet, the following expression ®E+c ®β× ®B =
®FL cancels out, leading to a vanishing ®ΩEDM component. Practically, the Lorentz force ®FL is
evaluated (and measured) integrally as

®FL =
q
`

∫ `/2

−`/2

©«
Ex − cβBy

Ey + cβBx

Ez

ª®®¬ dz =
©«

Fx

Fy

Fz

ª®®¬ . (1.3)

Disentangling the three components of the Lorentz force, Fx , Fy , and Fz reveals their connection
to the field homogeneity, defined later in eq. (5.4). Fx is minimized by impedance (mis-)matching

1Jülich Electric Dipole moment Investigations, http://collaborations.fz-juelich.de/ikp/jedi/.
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(as will be explained in detail later). Fy and Fz , on the other hand, are functions of the unwanted field
components, i.e., Ey , Bx , and, Ez . They are strongly correlated to the electromagnetic design of
the device. Extensive efforts have been invested to minimize these quantities by means of complex
and highly detailed full-wave simulations [6, 7]. For an ultimate precision experiment such as the
EDM one, it is to important to quantify and evaluate the unwanted field components (see eq. (5.4)).
In this paper, these are presented as functions of the electric circuit parameters (section 4).

For these reasons, very high requirements in terms of field homogeneity, orthogonality and
matching have been imposed. Simulation wise, [6] the results were very promising including the
effects of the mechanical tolerances and misalignments [7]. Practically, the device has been built
with the best possible mechanical and electrical accuracy within the project budget. We were
able to measure the amplitude beam oscillation up to 0.6 ± 0.5 µm,2 and it is not clear, up to-date
which effect on the EDM resolution this implies. These are open questions that are currently being
investigated [5, 8].

1.4 The waveguide RF Wien filter

Briefly stating, the waveguide RFWien filter is an electromagnetic structure that generates coupled,
orthogonal and matched electric and magnetic fields. Matching, means that the field quotient
Zq = E total/Htotal of the generated electric and magnetic fields is set to a value so that the equivalent
electric and magnetic forces acting on the circulating beam particles are equally large i.e., vanishing
Lorentz forces.

The structure incorporates the so-called parallel-plates waveguide. It is composed of a set of
parallel electrodes supporting the transverse electromagnetic (TEM) mode. This means that the
electric and magnetic fields fulfill the orthogonality condition of a Wien filter by design. In order to
match the ratio of the total electric field to the total magnetic field, a mismatch variable resistor is
placed at the load side of the device which ensures that part of the electric and magnetic fields are
reflected back into the structure. The reflected fields interfere with the incident ones, which allows
us to set the field quotient Zq to the required value.

In recent publications, the geometrical, electromagnetic and mechanical aspects of the waveg-
uide RF Wien filter have been presented [6, 7, 9]. The present article is dedicated solely to the RF
driving circuit, describing the design, simulation, tolerance analysis, and various measurements.

2 Circuit design

For the deuteron EDM experiment at COSY, the RF Wien filter can be operated at four discrete
frequencies i.e. at four different harmonics of the spin precession frequency, namely, 630 kHz,
871 kHz, 1380 kHz and 1621 kHz (see table 1 of ref. [6]). The field distributions change with
frequency and so does the field quotient Zq, consequently. Zq is a form of impedance, therefore
it constitutes a frequency-dependent quantity that is susceptible to changes depending on the
operational conditions. Fulfilling the Wien filter condition at each of these frequencies requires a
different load impedance. This poses an additional requirement on the circuit to provide an adaptive
Zq value.

2Under the matched condition.
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Figure 1. The schematic of the driving circuit of the waveguide RF Wien filter.

Ideally, a variable load resistor would be used; the value of Zq is set by simply altering the
value of this resistor. However, a commercial solution of a load resistor that is capable to support
a power of 10 kW while maintaining a precision better than 10−4 does not exist. Another possible
approach is to build an impedance mismatch network and the decision was taken to realize such a
system.

The full circuit scheme is shown in figure 1. The design of the circuit was performed using
a circuit-electromagnetic co-simulation tool. Simulating circuit elements in full-wave simulation
domains [10–12] combine field and network circuit theory. The CST Design Studio (DS)3 tool
provides the possibility to efficiently design and simulate the circuit in the same environment
where the electromagnetic simulations took place. One obvious advantage of this approach is that
the results of the computationally expensive4 full-wave simulations performed during the design
stage [7] could be usedwithout the need to re-perform them. Circuit-electromagnetic co-simulations
are typically much faster than full-wave simulations; in fact their typical run-time does not exceed
some tens of seconds. In the circuit-electromagnetic co-simulation domain, models of cables,
power splitters/combiners, transformers and RLC circuit elements can be inserted. This provides
the possibility to observe their influence on the fields simultaneously. The electromagnetic fields
are then regenerated according to the new equivalent scattering matrix of the circuit network [13].

It is important to note that the circuit was designed originally for the case where ferrite blocks
are installed inside the device [6]. Due to the delay in the delivery of the ferrites, the circuit was
adapted to cope with the absence of the ferrite blocks, and consequently, the value of the load
impedance to reach the required value of the field quotient Zq = 173 Ω was changed.

Originating from a signal generator,5 the signal passes through a 4-way signal splitter with
2 : 2, 0 : 180◦C phase shift output. This allows the amplifiers to be driven in a push-pull mode
of operation. Each of the signals is then fed into an amplifier6 with 60 dB gain. The amplifiers
connected to the same electrodes are decoupled using transformer-based isolators. Thereafter, eight

3Computer Simulation Technology, Darmstadt, Germany, http://www.cst.com.
4Each full-wave simulation required around 11 h on the Graphical Processing Units (GPU) cluster due the fine mesh

used (63 million mesh cells).
5‘SMB100A’ model from Rohde & Schwarz GmbH & Co. KG, Munich, Germany, http://www.rohde-schwarz.de.
6The amplifiers are manufactured by Barthel HF-Technik GmbH, Aachen, Germany, http://www.barthel-hf.de for the

Facility for Antiproton and Ion Research at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany,
http://www.gsi.de.
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(a) A photograph of the air coil Lf. (b) A photograph of the vacuum capacitors CL and CT .

Figure 2. Circuit implementation of the isolators to decouple the amplifiers connected to the same electrode.

voltage and current detectors ‘U/I–{1–8}’ are used at the up- and downstream branches of the RF
Wien filter (see figure 1). These detectors generate two rectified DC-signals proportional to the
magnitude of the current and voltage components at that particular branch, and also two additional
RF signals with amplitudes proportional to the current and voltage signals that are used as monitor
signals. From thesemonitor signals the phase between the electric andmagnetic fields is determined.
Signals arriving from the same electrode are then combined with two power dividers [13, 14]. A
1 : 1 transformer is placed just before the load where one of its terminals is connected to the voltage
and current detector, labeled ‘U/I–9’ (see figure 1), which yields the load impedance, while the
other terminal is connected to an LC-network, used for fine tuning of the load impedance.

2.1 High-power variable load resistor

The realized solution of a variable, stable and high-power load resistor consists of two fixed water-
cooled commercial 50 Ω resistors connected in parallel to yield a value of 25 Ω with an impedance
matching network [13], incorporating variable capacitors. Varying these capacitors provides the
mean of having a variable and stable load resistor depending on the accuracy of the capacitors.

While other network topologies are also conceivable, e.g., as described in [15], the selected
‘T’-type (C-C-L) matching network topology has been used because it allows for the magnitude
and phase of the load impedance to be relatively decoupled, a desirable property required for the
operation of the RF Wien filter. In fact, this property facilitates the implementation of a feedback
network for the automatic minimization of the Lorentz force on the stored beam.

To build the impedance network for 871 kHz, a fixed inductor in the range between 20 µH and
30 µH is required. In contrast to ferrite-core coils, an air-coil is the simplest and easiest way to
design an inductor that is able to provide the designated inductance. With ferrite-core coils, it is
easier to reach high-inductances, but they require active cooling, which is associated with additional
technical difficulties. A photograph of the constructed coil is shown in panel (a) of figure 2. For
the present setup, 34 windings are sufficient to generate an inductance of 28.8 µH.

2.1.1 Vacuum capacitors

Vacuum capacitors are commonly known as high-performance capacitors with excellent capabilities
to handle high levels of voltages and currents. Vacuum capacitors do not employ dielectricmaterials,

– 5 –
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Figure 3. The capacitance of CL as a function of the driving motor steps. From 0 to 10 000 steps, a linear
dependence of the capacitance is observed.

instead, a vacuum is encapsulated inside low-loss ceramic vessels with outstanding insulation
capabilities. In principle, the accuracy of these capacitors is determined by the accuracy of the
stepper motor driving them, in addition to their ability to maintain a constant distance between the
electrodes. As they are vacuum based, the thermal effects are negligible, which means that the
capacitors are able to preserve the distance between the electrodes very accurately. The capacitors
used in the driving circuit are produced by COMET Technologies.7 A photograph of two of such
capacitors is shown in panel (b) of figure 2. Being the only variable components, the vacuum
capacitors are the circuit elements that are responsible for tuning/de-tuning the load impedance and
consequently the RFWien filter. Their accuracy is critical to the performance of the RFWien filter.
In this article, only the performance of one capacitor is discussed, the other capacitors provide a
very similar performance.

According to the manufacturer, the capacitance range ofCL varies between 50 pF and 1 nF with
10% tolerance. Themeasured values are in very good agreement with the data sheet of the capacitor.
The measured capacitance CL varies between 49.92 pF and 983.56 pF at the four aforementioned
operating frequencies of the RF Wien filter.

The first capacitor test conducted is the linearity test. The capacitance is measured with a vector
network analyzer as a function of the driving motor steps. A fixed step size of 250 is used. The
result of the linearity test is shown in figure 3. A clear linear behavior ofCL is observed over the full
range of the stepper motor, i.e., from 0 to 10 000 steps. 250 steps correspond to 23.25 pF± 0.52 pF,
leading to 0.0933 pF ± 0.0021 pF per step.

The second test performed is a repeatability test. In fact, two kinds of repeatability tests were
conducted. In the first one, a fixed step size of 2000 steps was used. The capacitance is measured
while the stepper motor is driven back and forth. The results are shown in panels (a), (b), and (c)
of figure 4 with initial motor positions of 1000, 4000, and 7000, respectively. The error in all three
cases did not exceed 0.06 pF in absolute value. In panels (d), (e), and (f) the results of the second
repeatability test are shown, where also random step sizes were carried out, and the capacitance
was measured when the motor returned back to its original position. The reported errors did not
exceed 0.06 pF in this case as well.

7COMET Technologies U.S.A., Inc. Plasma Control Technologies, San Jose, California, U.S.A., http://www.comet-
pct.com.
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Figure 4. Variability analysis of the vacuum capacitor CL .

2.2 1 : 1 transformer

A photograph of the transformer is shown in figure 5. It has a simple structure, consisting of
wire windings around ferrite cores. Detailed information on transformer circuitry can be found in
refs. [16, 17]. The full structure is placed inside an aluminum housing equipped with a fan. Holes
are drilled on the left and right sides of the housing for cooling purposes. A similar transformer
architecture is used as the basic building block for the power combiners and isolators with slight
variations. The transformer is used to combine the signals that are 180◦C out of phase coming from
the upper and lower electrodes of the RF Wien filter.

To quantify the performance of the transformer, three tests were conducted. One to evaluate
the insertion loss, another one to evaluate the return loss or simply the power reflections, and lastly
a temperature test in case that an unknown impedance is connected to the transformer.

To evaluate the insertion loss, it is sufficient to measure, for instance, the S42 scattering
parameter. It denotes the power transfer from port (2) to port (4), given no input power at the
other ports, i.e., ports (1) and (3) are grounded. A vector network analyzer is connected to port (2)
and (4). The measured S42 values at 630 kHz, 871 kHz, 1329 kHz and 1621 kHz are, respectively,
−0.03 dB, −0.04 dB, −0.07 dB, and −0.08 dB. Ideally, these values should be 0 dB; non-vanishing
values, however, indicate the insertion losses at the corresponding frequencies.

The power reflection is measured by plugging a 50 Ω resistor between ports (3) and (4),
while grounding port (2). The scattering parameter S11 signifies the reflection at port (1). The
measured values of S11 at 630 kHz, 871 kHz, 1329 kHz, and 1621 kHz are, respectively, −27.25 dB,
−28.19 dB, −25.4 dB, and −25.7 dB indicating that the input impedance of port (1) is very close
to 50 Ω at all the four frequencies.8 The measured return and insertion losses are summarized in
table 1.

The third test is used to monitor the temperature increase inside the transformer. Two 500 W
amplifiers with 180◦C phase shift are connected to terminal ports (1) and (2) of the transformer.

8The same is true for the other ports.
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Figure 5. A photograph of the high-power 4-ports transformer. A fan is used to continuously cool down the
ferrite rings and it is located on the lid of the aluminum box. The ferrite cores and the winding can be clearly
distinguished. 1: port (1); 2: port (2); 3: port (3); 4: port (4). Coaxial cables (i.e., with inner and outer
conductors) are used as winding wires. A closer look at port-1 shows the mounting of the coaxial winding
to a ‘7/16’ connector. The ports of the transformer are marked in figure 1.

Table 1. Scattering parameters characteristics of the transformer showing the measured return loss S11 and
the insertion loss S42 in [dB].

Frequency [kHz] S11[dB] S42[dB]
630 −27.25 −0.03
871 −28.19 −0.04
1329 −25.4 −0.07
1621 −25.7 −0.08

Port (3) is connected to a grounded 100 Ω resistor, while port (4) is grounded. As verified
with an infrared thermometer, the maximum registered temperature did not exceed 40◦C. The
specifications state that if the temperature of any component of the driving circuit exceeds 60◦C,
the system interlock switches the amplifiers off.

Table 2. Scattering parameters characteristics of one of the power combiners. The second one is very similar.

Frequency [kHz] S21[dB] S31[dB] S23[dB] S32[dB]
630 −3.07 −3.06 −32.71 −32.71
871 −3.07 −3.06 −32.13 −32.13
1329 −3.08 −3.07 −32.22 −30.23
1621 −3.09 −3.08 −29.02 −29.02

2.3 Power combiner

It has been decided at the design stage to split the RF signal feeding the electrodes so that a more
homogeneous current distribution can be achieved in the plates (see figure 1). Thus, two power
combiners are required. The circuit implementation of one of the power combiners is shown in

– 8 –
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figure 6. (Many other implementations are discussed in the literature [14, 16, 17].) The chosen
implementation is a transformer-based architecture leading to a broadband response. The very same
power combiners will also be used for the other harmonics of the spin precession frequency. Table 2
shows the results of scattering parameter characteristics of one of the power combiners measured
at all the frequencies of interest. As can be noticed from the values of S21 and S31, the imbalance
does not exceed 0.01 dB for all four frequencies. The output port is also well isolated as verified by
the values of S23 and S32.

1 2 3 4

567

Figure 6. Photography of the circuitry inside the high-power combiner. 1: first transformer; 2: RF-out port;
3: air coil; 4: second transformer; 5: third transformer; 6: first RF-in port; 7: second RF-in port.

Temperature tests at different frequencies are necessary, in particular when high-power levels
are involved. The temperature is expected to increase inside the power combiner if a mismatch
occurs between the two input branches. The following setup is used. Two 500 W amplifiers feed
the combiner which is then connected to an attenuator and a 50 Ω load where a thermistor is placed.
The results of the test are summarized in table 3. These measurements were performed without any
cooling, although the combiner is equipped with a usually continuously running cooling fan. The
measurements revealed a temperature rise of 2 K for operation of the power combiner for 15 min at
1 MHz. 15 min is the typical time-interval the device is required to operate continuously during the
precursor EDM measurement experiment.

2.4 Amplifier isolators

A photograph of the isolator is shown in figure 7. One can clearly see the transformer building
blocks (windings of coaxial cables around ferrite toroidal cores). A two-sided design has been
adopted due to space restriction. Each isolator is cooled from each side by a dedicated fan. The
isolators are used to prevent a power flow between the amplifiers that are connected to the same
electrode. Therefore, it is expected that the isolator will warm up if any cross-talk should occur.
The measurement setup of the isolator uses two 500 W amplifiers connected to the isolator, and then
each of the outputs is linked to an attenuator and then to a 50 Ω load. Using an NTC thermistor, the

– 9 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
3
0
2
1

Table 3. Temperature analysis of one of the power combiners covering the lowest and highest frequencies.
The results of the other combiner are very similar.

Frequency [kHz] time [min] R [kΩ] T [◦C]
600 0 10.7 23.5
— 1 10.6 23.5
— 2 10.5 24.0
— 5 10.4 24.0

1000 0 11.3 22.5
— 1 11.2 22.5
— 2 11.1 22.5
— 5 10.9 23.0
— 10 10.6 23.5
— 15 10.3 24.5

1700 0 10.4 24.0
— 1 10.3 24.5
— 2 10.3 24.5
— 5 10.1 25.0

measured temperature is recorded for a time interval varying from 0 to 15 min, as summarized in
table 4.

Two test cases have been conducted, one without any power difference at the input terminal of
the isolator, i.e., ∆P = 0 W and a second case with ∆P = 245 W with the power levels from the first
and second amplifiers being 435 W and 190 W, respectively. In this case, running the measurement
setup for 15 min induced a temperature increase of ∆T = 4.5 K. During the off-line test, and within
the normal mode of operation, i.e., the proper settings of the load capacitors, the device ran for
around 2 h continuously. The maximum temperature registered was 28.8◦C. One can conclude that
no problems are to be expected by the temperature increase of the isolators.

(a) Top section. (b) Bottom section.

Figure 7. Circuit implementation of the isolators to decouple the amplifiers connected to the same electrode.

– 10 –
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Table 4. Temperature analysis of one of the amplifier isolators at 871 kHz. The measurement results of the
other isolator are very similar.

∆P [W] 0
time [min] 0 1 2 5 10 15
R [kΩ] 10.9 10.8 10.6 10.1 9.9 9.9
T [◦C] 23.0 23.0 23.5 25.0 25.0 25.0
∆P [W] 245
R [kΩ] 10.3 9.2 9.1 8.9 8.7 8.5
T [◦C] 24.5 27.0 27.0 27.5 28.0 29.0

3 Off-line measurements (without beam)

All the measurements described in the following were performed without the ferrite blocks and
prior to the installation of the RF Wien filter into the COSY ring.

3.1 S11 measurement

Figure 8 shows the simulated and measured reflection coefficient S11. The port where the mea-
surement took place is located just in front of the 1 : 4 splitter without the amplifiers (see the
yellow port (1) in figure 14). At 871 kHz, a good agreement between the simulated S11 parameter
(−13.1 dB) and the measured value (−12.7 dB) could be verified. One can see that the measured S11

curve is slightly wider than the simulated one, indicating that some resistance (probably in the form
of losses) is not properly taken into consideration in the simulations. It is important to note that the
measured and simulated S11 values are obtained when the correct settings of the load impedance
are implemented, i.e., the so-called matched case.

0.2 0.4 0.6 0.8 1 1.2 1.4

-15

-10

-5

0

Figure 8. Measured and simulated S11 parameter of the driving circuit, evidencing the good theoretical
understanding of the RF system and the low level of reflected power.
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Figure 9. Measurement results of the load impedance magnitude for matching the RF Wien filter. The
projection of the measured data into a normal distribution yields an estimated mean value µZ9 = (82.9029 ±
9.78 × 10−5)Ω and a standard deviation σZ9 = 0.0048 Ω.

3.2 Impedance measurement

The matched case means setting up the RF Wien filter to a state where the proper magnitude and
phase of the field quotient Zq is maintained. The correct magnitude of the field quotient corresponds
to a defined value of the load impedance denoted by Z9, and is measured by the detector called
U/I-9 (see figure 1). The simulations show that without the ferrite blocks, the value of Z9 has to
be 82.9 Ω.

The load impedance Z9 has been recorded over a period of more than one hour while operating
the RF Wien filter at 1.5 kW. 35 427 data samples have been collected and the corresponding
statistical distribution is shown in figure 9. Projecting the measured data into a normal distribution
yields an estimated mean value of µZ9 = (82.9029 ± 9.78 × 10−5)Ω, and standard deviation of
σZ9 = 0.0048 Ω. One concludes that the intended value of the load impedance can be reached
indeed with very good accuracy.

3.3 Phase measurement

As there is no possibility to measure the electric and magnetic fields inside the device directly when
the RF Wien filter is operated, a concept for measuring the phase using the current and voltage
waves is established. At the operating frequencies of the RF Wien filter (i.e., between 600 kHz and
1700 kHz), the corresponding wavelength is much larger than then length of the RF Wien filter.
This allows one to use the quasi-static approximation similar to the one used in [18]. It can be
anticipated that the phase between the electric and magnetic field can be approximated by the phase
between the current and voltage waves, a quantity that can be measured in real-time.

To further investigate this approximation, transient circuit electromagnetic co-simulations have
been conducted with different load impedance values. Now, sinusoidal signals at 871 kHz are used
to excite the simulations, in contrast to the full wave time-domain simulations which use pulses
signals [10].9 The RF currents and voltages are recorded at the feeding points. Actually, only one

9Obviously, different excitation signals can also be used depending on the applications, as studied extensively in
literature.

– 12 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
3
0
2
1

0 2 4 6 8 10

-1

-0.5

0

0.5

1

(a)An instance of a transient simulation showing
the time-dependent voltage u(t) and the current
i(t) for ∠(u(t), i(t)) = −0.8 deg.
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(b)An instance of a transient simulation showing
the time-dependent voltage u(t) and the current
i(t) for ∠(u(t), i(t)) = 35.1 deg.
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(c) Polar plot for ∠( ®E, ®H) =
0.4 deg, computed using the full-
wave simulation.
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(d) Polar plot for ∠( ®E, ®H) =
35.2 deg, computed using the full-
wave simulation.

Figure 10. Instances of the phase computed using the transients (involving current and voltage) and the
full-wave simulations (involving the electric and magnetic fields). Very good agreement is observed.

feeding point is sufficient to compute the phase. Simultaneously, the phase between the electric
and magnetic field is calculated accordingly. Panels (a) and (b) of figure 10 show the results of the
transient simulations, while panels (c) and (d) correspond to the full-wave simulations. Obviously,
the circuit simulations permit to predict the phase between the electric and magnetic fields using
the voltage and current signals. Up to a time t = 3 µs, the transient results are ignored and are not
considered in the phase calculations. This is the time required by the ‘RLC’-system to reach its
steady-state.

It is important and required to accurately measure the phase between current and voltage
in real-time. The effort to perform such measurements using a dedicated circuit has failed; the
power dependency was intolerably large, and thus a well-defined calibration function could not be
obtained. Alternatively, two monitor signals have been decoupled from the main RF signal using
voltage dividers and current transformers. The signals were then fed into a Lock-in amplifier10

10The Lock-in amplifier used in this measurement is the ‘HF2LI’ from Zürich Instruments (ZI), AG, Zurich, Switzer-
land, https://www.zhinst.com.
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Figure 11. Comparison of the simulated phase between the electric field ®E and the magnetic field ®B and the
measured phase between the voltage u(t) and current i(t), for the same combination of CL and CT using a
lock-in amplifier.

(see ref. [19] for more information). Lock-in amplifiers are sensitive devices that extract and detect
signals in extremely noisy environment. Desired signals can be actively tracked in real-time which
allows a continuous monitoring of the phase. Figure 11 shows a comparison between the measured
phase between the current and voltage and the simulated phase between the electric and magnetic
fields. The values are measured/calculated for different combinations of CL and CT . A clear linear
relation can be observed and the phase values are in very good agreement. In fact, the fitting error
is less than 0.83% with a horizontal offset being not larger than 1.4 deg.

4 Performance and sensitivity analysis: theoretical foundation of the PCE method

This section presents the theoretical foundations of the Polynomial Chaos Expansion (PCE) that
will be applied in section 5 for performance and sensitivity analysis of the driving circuit to the
possible electrical uncertainties.

4.1 Polynomial chaos expansion (PCE)

In previous publications, we have applied the Polynomial Chaos Expansion (PCE) in order to study
the effects of the mechanical tolerances on the performance of the RF Wien filter. Additionally,
we also applied the so-called stochastic Galerkin method, which is another intrusive form of PCE
to carry out fast beam and spin dynamics simulations with very large number of particles [20].
PCE is a spectral method where random variables can be expressed in terms of infinite series using
orthogonal polynomials as the basis functions. The type of the orthogonal polynomial depends on
the statistical distribution of the random variables as shown in table 5.
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Table 5. Correlation between the type of random variables and their corresponding orthogonal polynomials.

Random variable distribution Orthogonal polynomials
Gaussian Hermite
Uniform Legendre
Gamma Laguerre
Beta Jacobi

4.1.1 Building the basis polynomials

In this study all the uncertainties of the circuit are assumed to be Gaussian distributed, therefore,
Hermite polynomials are used as basis functions. The 1D Hermite polynomial ψn (ξ) is defined as

ψn (ξ) = (−1)n exp
(
ξ2

2

)
dn

dξn

[
exp

(
−
ξ2

2

)]
. (4.1)

The Hermite polynomials are orthogonal w.r.t. a normal probability density function fξ , since〈
ψn (ξ)ψm (ξ)

〉
=

1
√

2π

∫ ∞

−∞

ψn (ξ)ψm (ξ) fξ dξ (4.2)

= δmn

〈
ψ2
n (ξ)

〉
. (4.3)

The multidimensional Hermite polynomials are constructed using the tensor product of the 1D
Hermite polynomials, via

Ψ =
∏
i

ψi . (4.4)

The i term is a multi-index set, constituting a multi-dimensional indexing scheme related to
the multivariate orthogonal polynomials. It denotes the degree of the polynomial in each of the
input variables. This is an important variable, as it provides a mechanism to alter and select a term
from the set of the basis functions so that a computationally much less expensive PCE can be built,
as will be shown later.

4.1.2 Computing the expansion coefficients

The multi-index set i for an m-dimensional input set and an expansion order of p is defined as

Im,p =
{
i = [i1, · · · , im]; ‖ i ‖1≤ p

}
. (4.5)

Here, the expression ‖ · ‖1 denotes the L1-norm.
Let ξ represent the set of the m-dimensional input variables, Ψ (ξ) be the set of constructed

basis functions given ξ , and Ψi (ξ) be the ith basis function. Any output quantity Y can then be
expanded according to

Y =
∑

i∈Im,p

αiΨi (ξ) , (4.6)

where αi denotes the ith expansion coefficient, corresponding to Ψi (ξ).
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To compute the expansion coefficients, a non-intrusive approach is used in this study. As a
matter of fact, eq. (4.6) is nothing else than a large system of linear equations (LSLE) which can
be solved using regression methods. The conversion of the regression method restricts the lower
bound on the number of simulations N . N as a rule of thumb must be at least 1.5 times the number
of polynomials basis P calculated as the following permutations

P =

(
m + p

p

)
=
(m + p)!

m!p!
. (4.7)

Rewriting eq. (4.6) in matrix form yields



Y1

Y2

...

YN


=



Ψ0 (ξ1) . . . Ψ0 (ξN )

Ψ1 (ξ1) . . . Ψ1 (ξN )

...
. . .

...

ΨP−1 (ξ1) . . . ΨP−1 (ξN )



T

·



α1

α2

...

αN


. (4.8)

Solving eq. (4.8) by regression yields

α =
(
Ψ · ΨT

)−1
· Ψ · Y. (4.9)

4.2 Sparse PCE

In high-dimensional problems, where the number of random input variables m (typically m ≥ 10),
the full-PCE becomes computationally unfeasible. For instance, a 15-dimensional problem, as in
the case of this study, and with an expansion order e.g., of 5, generates P = 15 504 (see eq. (4.7))
basis functions and consequently requires at least 1.5 × P = 23 256 simulations to converge.
Alternatively, one can build a sparse version of PCE [21, 22] by either truncating the basis terms
whose influence on the output is minimal using the following mechanism.

First, the basis functions with the highest order of interaction (see figure 3.1 of ref. [23]) are
eliminated according to the so-called sparsity-of-effects principle. This principle declares that the
low-order interactions dominate the system response over the high-order ones. To do so, a new term
is introduced into the multi-index set, the ‘q-norm’, which is now denoted by Im,p,q. The ‘q-norm’
is a quasi-norm in the probability space11 and depending on its value (0 < q ≤ 1), it controls the
hyperbolicity of the truncation scheme. It is defined as

‖ · ‖q =

(
m∑
(·)q

)1/q

. (4.10)

To build the new hyperbolic multi-index set, Im,p,q, higher-order interactions are eliminated
by ignoring all the elements in the full-rank multi-index set Im,p, whose q-norm ‖ · ‖q, is larger

11The probability space is a metric space.
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(d) q = 0.25.

Figure 12. Hyperbolic basis truncationwith different q-norms. As the q-norm decreases, the basis cardinality
decreases. The red dots represent the full basis elements and the blue disks indicate the selected (remaining)
basis elements.

than p, i.e., the expansion order is

Im,p,q =
{
i ∈ Nm : ‖ i‖q ≤ p

}
(4.11)

=

 i ∈ Nm :

(
m∑
i=1

i
q
i

)1/q

≤ p
 . (4.12)

A graphical representation of the hyperbolic truncation scheme set is depicted in figure 12
with a q-norm varying from 1 to 0.25. The higher-order interactions are taken out gradually. The
polynomial terms selected for the first random variable are located on the horizontal axis, while on
the vertical axis the corresponding terms of the second variables are shown. If the blue dots on the
outer layer are connected, the shape resembles a hyperbola, hence the name hyperbolic truncation.

Next, the least-angle regression (LAR) algorithm is applied [21, 22, 24, 25]. TheLARalgorithm
was originally proposed by Efron [26] as a modification of the well-known statistical method, called
Least Absolute Shrinkage and Selection Operator (LASSO). The LAR algorithm applies a further
selection scheme on the remaining basis functions. The selection procedure accounts only for the
basis functions according to their highest contribution to the system response regardless of their
order of interaction. The LAR algorithm does not compute the expansion coefficients, it only selects
the basis functions. Then, the regression method is used to compute the coefficients.

Figure 13 shows an example when the LAR algorithm is applied to quantify the unwanted
electric field components. In this case, m = 15, p = 10, and q = 0.4. Only a 2-dimensional graph
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Figure 13. Graphical representation of the remaining basis functions when applying the LAR algorithm.
The red crosses correspond to the full-PCE, the blue disks are associated with the hyperbolically truncated
set and the green circles are the selected points by the LAR algorithm.

is shown, and the red crosses correspond to the full-PCE, the blue disks are associated with the
hyperbolically truncated set and the green circles are the selected points by the LAR algorithm.
Obviously, the number of selected basis functions has substantially decreased after applying the
LAR algorithm.

4.2.1 Cross-validation

The expansion order p, the q-norm and the dimension of the input samples are basically unknown
quantities. One starts with an initial guess and the required parameters are updated to the quality
of the PCE model. This means that the PCE model has to be cross-validated. A very well-known
cross-validation technique is the leave-one-out-error [27]. Its working principle is to split the
input/output data into N sets.12 N − 1 sets are used to build a fit model referred to asM to predict
the leave-one-out (LOO) model. The error is then simply the residual according to

errLOO =
1
N

N∑
k=1

(
Y −Yk

)2
,

where Yk = M
(
ξ − {ξk }

)
. A reliable PCE model requires a leave-one-out error errLOO of the

order of 10−2 [28].

4.2.2 PC-based sensitivity analysis

The global sensitivity is performed by decomposing the variance of the output Y as a function of
the contribution of each variable and possibly their combination (interaction). The independence
of the random input variables and the orthonormality of the PCE permits the direct computation of
one known sensitivity scheme, called the Sobol sensitivity via the Sobol decomposition [29]. Let
Yξi denote the output associated with the random variable ξi. Rewriting eq. (4.6) as a function of

12N is the number of simulations carried out.
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terms of the variable ξi gives
Yξi =

∑
i∈Iξi

αiΨi (ξ) . (4.13)

Here Iξi is the multi-index set of the variable ξi, i.e., the ith term in the multi-index row is
non-zero. Therefore, to characterize the output related to the ξi or any of its combinations, all that
is required are the PC coefficients.

If D̂ denotes the variance of the estimated output Ŷ, the partial variances corresponding to
the random input variables are denoted as D̂ξ1,...,ξ10 . In this case, the total and partial variances are
calculated, respectively, as

D̂ =
∑

i∈I−{0}
α2
i , and

D̂ξi =
∑
i∈Iξi

α2
i .

Finally, the Sobol indices corresponding to the parameters ξi are calculated according to

Ŝξi =
∑
i∈Iξi

α2
i

D̂
;

{
Iξi = i ∈ I : iξi > 0, iξi,ξj = 0

}
. (4.14)

5 Performance and sensitivity analysis: applying the PCE method

This section applies the aforementioned steps to construct a probabilistic performance and sensitivity
analysis of the driving circuit of the RF Wien filter. Circuit elements are subject to uncertainties
either in the form of tolerances or noise. These uncertainties are in most cases unavoidable or too
cumbersome to be minimized. Therefore, it is important to consider them as part of the design and
consequently to quantify the overall system performance in their presence.

5.1 Defining the system response

Based on the same principle used in refs. [6, 7], the unwanted electric andmagnetic field components
®E⊥ and ®H⊥ are defined as

®E⊥ =
©«

0
Ey

Ez

ª®®¬ , and (5.1)

®H⊥ =
©«

Hx

0
Hz

ª®®¬ . (5.2)

The performance of the driving circuit is expressed in terms of the unwanted electric and
magnetic field [7], and as a function of the Lorentz force FL. The unwanted fields, specified via f intE⊥
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and f intH⊥
, are calculated by taking into account the total fields (see [6]), and are defined as

f intE⊥
=

∫ `/2
−`/2 |

®E⊥ |d`∫ `/2
−`/2 |

®E |d`
, and (5.3)

f intH⊥
=

∫ `/2
−`/2 |

®H⊥ |d`∫ `/2
−`/2 |

®H |d`
. (5.4)

` = 1152 mm is the effective length of the RFWien filter along the longitudinal axis. The field
contributions outside the considered length are very small (of the order of 10−4) and are not taken
into account.

Table 6. Statistical distributions of the random variables representing the stochastic electrical variations of
the driving circuit of the waveguide RF Wien filter. G (µ, σ) indicates a Gaussian distribution with a mean
value of µ and a standard deviation of σ.

variable standardized description distribution Unit

x1 ξ1 Capacitance CL G (725, 1) pF
x2 ξ2 Capacitance CT G (503, 1) pF
x3 ξ3 Capacitance CP1 G (148, 1) pF
x4 ξ4 Capacitance CP2 G (334, 1) pF
x5 ξ5 fixed inductance Lf G (27.5, 0.5) µH
x6 ξ6 fixed inductance Lp G (5.07, 0.1) µH
x7 ξ7 fixed resistance Rf G (25, 2) Ω
x8 ξ8 phase variation on electrode 1 (port 1) G (0, 0.05) deg
x9 ξ9 phase variation on electrode 1 (port 2) G (1.7, 0.05) deg
x10 ξ10 phase variation on electrode 2 (port 3) G (178.4, 0.05) deg
x11 ξ11 phase variation on electrode 2 (port 4) G (179.2, 0.05) deg
x12 ξ12 attenuation on the electrode 1 (port 1) G (0, 0.12) dB
x13 ξ13 attenuation on the electrode 1 (port 2) G (0.1, 0.12) dB
x14 ξ14 attenuation on the electrode 2 (port 3) G (0.3, 0.12) dB
x15 ξ15 attenuation on the electrode 2 (port 4) G (0.2, 0.12) dB

5.2 Modeling the input parameters

The uncertainties of the circuit elements studied hereCL ,CT ,Cp1,Cp2, Lf, Lp and Rf (see figure 14)
are represented by the variables x1 to x7, respectively, and are listed in table 6. These parameters
are modeled as Gaussian distributed random variables G(µ, σ). The matched point for the variable
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Figure 14. Schematic of the electromagnetic-circuit co-simulations of the driving circuit of the waveguide
RFWien filter. 1: excitation port; 2: power splitter; 3: coaxial cable; 4: fixed high-power resistor Rf; 5: fixed
coil Lf; 6: variable capacitor CT ; 7: variable capacitor CL; 8: variable capacitor Cp1; 9: variable capacitor
Cp2; 10: fixed coil Lp; 11: phase shifter; 12: 1:1 transformer; 13: semi-rigid coaxial cable; 14: power
splitter/combiner; 15: full-wave model of the RF Wien filter; 16: power amplifier; 17 to 20: attenuators and
phase shifters.

capacitors reads

©«
CL

CT

Cp1

Cp2

ª®®®®¬
=

©«
725
503
148
334

ª®®®®¬
pF ,

and for the fixed values read

©«
Lf

Lp

Rf

ª®®¬ =
©«

27.5 µH
5.07 µH

25 Ω

ª®®¬ .

These desired values are set as the mean of the corresponding distribution. The standard
deviations of the capacitors were set to 1 pF. The fixed inductance Lf was built to provide initially
30 µH. However, when connected to the other elements in the network, the measured value
eventually obtained was Lf = 27.5 µH, i.e., smaller than the design value. The liquid-cooled
resistor13 is able to maintain a purely resistive response Rf = 25 Ω up to 800 MHz. Under active
cooling, Rf does not deviate from its nominal resistance value. According to ref. [30], for a copper-
based resistor, an increase in the resistance from a 25 Ω to 26 Ω requires a temperature difference

13It is produced by Altronic Research, Inc., Yellville, Arizona, U.S.A., http://altronic.com.
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of ∆T = 10.25 K, which is highly improbable especially if a highly-efficient water-cooling process
is employed. Nevertheless, the tolerance calculations assume σRf = 2 Ω (see ref. [30] for the
calculation formula). The parameters and their statistical characteristics are summarized in table 6.

The imperfections in the circuit elements may lead to non-homogeneous excitation signals.
This means that at each electrode, the RF signals are not necessarily identical; these uneven signals
might differ in phase and/or amplitude. To model such imperfections, additional functional blocks
have been added to the circuit model where the phase shifts and the attenuation levels can be altered.
The variables x8 to x11 and x12 to x15 in table 6 represent these phase and attenuations variations
induced at the functional blocks labeled (17), (18), (19) and (20) in figure 14, respectively. The
measurement results of the 1:4 signal splitter showed that it introduces a deterministic phase shift of
0.1 deg. As four separate amplifiers are used, they possess slightly different phase (and amplitude)
response. The measured phase distortions induced by the amplifiers are summarized in table 7.
These deterministic phase shifts were set as the mean values for the variables x8, · · · , x11. A large
set of measurements14 (more than 104 samples) leading to a phase standard deviation of 10−3 deg.
The signal amplitudes were characterized at each excitation port by setting an attenuation in dB.
The measured mean values of the variables x12, · · · , x15 were set respectively to 0 dB, meaning no
attenuation, 0.1 dB, 0.3 dB, and 0.2 dB attenuation. The standard deviation was set to 0.12 dB, as
can be seen in table 6.

Table 7. Measured phase differences at the signal feeding the electrodes. As there are 4 input ports labeled
(1) to (4). Port (1) is taken as the reference.

ports (i, j) ∠(i, j) [deg] σ∠(i, j) [deg]

1, 2 1.7 ≈ 10−3

1, 3 −1.6 ≈ 10−3

3, 4 0.8 ≈ 10−3

5.3 Performance analysis

First, a set of 1000 samples15 of all the input parameters is generated using the (nested) latin-
hypercube scheme. Using this set, 1000 circuit-electromagnetic co-simulations have been con-
ducted. Of course, if this is found later to be not sufficient, the original set can be enlarged
(enriched) and more simulations could be carried-out so that convergence is ensured. The total
computation time of the 1000 simulations was around 13 h.

Figure 15 shows the probabilistic performance of the RF Wien filter under the given uncer-
tainties of circuit elements. 106 samples have been reconstructed using the PCE coefficients to
formulate the probability density functions of f intE⊥

, f intH⊥
and FL, shown in panels (a), (b), and (c) of

figure 15, respectively. Each of the aforementioned quantities has been fitted to a normal distribution
with the fitting parameters and errors summarized in table 8.

In terms of the unwanted electric field f intE⊥
, the RF Wien filter performs well. The estimated

mean value of f intE⊥
is of the order of 10−6, with very narrow spread (10−7) from this mean value,

14They were measured using a Lock-in amplifier from Zurich instruments.
15This number was an educated-guess fromworking with the PCEmethod for relatively long time inmany applications.
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Figure 15. Probabilistic performance of the RF Wien filter expressed in terms of f intE⊥
, f intH⊥

, and FL in the
presence of uncertainties in the driving circuit.

as can be seen in table 8. The predicted mean value of the unwanted magnetic field f intH⊥
implies

that the RF Wien filter also performs well, but with a substantially wider spread (10−4). The reason
for this difference is that the structure has been optimized for better f intE⊥

, as this led to a better
cancellation of the Lorentz force by about a factor 5, as discussed in ref. [6].

Table 8. Fitted parameters obtained from figure 15 for the mean and width of f intE⊥
, f intH⊥

, and FL . The
Lorentz force FL , is still mostly accumulated around the vanishing point, but nevertheless, a width of
10.4 × 10−2 eV/m in absolute value can be observed.

Quantity Mean µ Width σ

f intE⊥
2.29 × 10−6 ± 4.33 × 10−9 4.33 × 10−7

f intH⊥
5.54 × 10−6 ± 1.35 × 10−5 1.36 × 10−4

FL [eV/m] −5.21 × 10−2 ± 3.30 × 10−4 10.4 × 10−2

The estimated performance of the RF Wien filter in terms of the Lorentz force cancellation
FL also predicts a very good performance. Values of |FL | = (5.2 × 10−2 ± 3.3 × 10−4) eV/m with
a width of σFL = 10.4 × 10−2 eV/m are definitely not measurable, as has been found during the
commissioning measurement of the RFWien filter. The associated induced oscillations of the beam
would be on the nanometer level.

5.4 Sensitivity analysis

A variance-based sensitivity analysis [29, 31] is conducted as a function of the parameters of the
circuit elements. The results of the sensitivity analysis are summarized in figure 16. The blue,
green and yellow bars correspond to the unwanted electric and magnetic fields f intE⊥

, f intH⊥
, and to

the Lorentz force FL, respectively. The impact of each of the uncertain parameters is denoted by a
Sobol index Ŝξi . Figure 16 expresses the variances of f intE⊥

, f intE⊥
, and FL as a function of the variances

of each uncertain input variable. It is important to note that only the first-order Sobol indices are
shown here, while the indices belonging to higher-order interactions are omitted because of their
negligible contribution to the total variance. The values of all the outputs as a function of all the
uncertain parameters are summarized in table 9.
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Figure 16. Sobol sensitivity analysis of the driving circuit of the RF Wien filter (see table 6 for the
corresponding parameters and variables).

5.4.1 Unwanted electric fields E⊥

Unwanted electric fields f intE⊥
are mainly influenced by the fixed inductor Lf (30%) denoted by Sξ5

and by the fixed resistor Rf (50%), represented by Sξ7 . Apparently, the influence of the capacitors
on f intE⊥

is not visible as indicated by the small values of Sξ1 , Sξ2 , Sξ3 and Sξ4 . This does not mean
that the capacitors do not influence the electric field. It means that the variation margins of the
capacitors are not large enough to introduce noticeable effects on the unwanted electric field f intE⊥

.
The standard deviation of σξ5 = σLf = 0.5 µH is sufficient to widen the response of f intE⊥

by
30% (Sξ5). This is not very critical as the effect of the coil can be compensated by the capacitors
CL and CT . The most important parameter is the fixed resistor which contributes up to 52% (Sξ7) to
the spread of f intE⊥

from the mean value. In the calculations, σξ7 = σRf = 2 Ω has been considered as
a standard deviation of Rf. According to the temperature measurements, however, such a variation
should never occur in practice. The phase variation contributes by ≈ 3.5% at each feeding port (see
labels (17), (18), (19) and (20) of figure 14).

5.4.2 Unwanted magnetic fields H⊥

The magnetic field approximation in the magneto-static regime is mainly influenced by the current
distributions on the electrodes. It can be further elaborated that the unwanted magnetic field f intH⊥

is related to the inhomogeneity of the current distribution. This assumption is emphasized by the
sensitivity results of f intH⊥

. Only the magnitude and the phase of the feeding signals appear to affect
f intH⊥

. Similarly to f intE⊥
, the phase turns out to contribute almost equally to the variance of f intH⊥

, up to
14%. The signal magnitude on the other hand is the main influencing factor responsible for more
than 80% of the total variance (ξ12, . . . , ξ15).

5.4.3 Lorentz force FL

The performance analysis in terms of the Lorentz force FL involves the electric and magnetic fields
instead of the unwanted components. Therefore, it is straightforward for the Lorentz force to depend
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Table 9. Values of the Sobol sensitivity analysis shown in figure 16.
Ŝξ1 Ŝξ2 Ŝξ3 Ŝξ4 Ŝξ5 Ŝξ6 Ŝξ7 Ŝξ8 Ŝξ9 Ŝξ10 Ŝξ11 Ŝξ12 Ŝξ13 Ŝξ14 Ŝξ15

f intE⊥
0.002 0.0001 0.0 0.0 0.309 0.008 0.52 0.039 0.037 0.037 0.038 0.0 0.0 0.0 0.0

f intH⊥
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.036 0.036 0.036 0.036 0.213 0.213 0.212 0.213

FL 0.001 0.002 0.0 0.0 0.106 0.004 0.88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

on the parameters affecting the load impedance, a response similar to f intE⊥
with different contributing

importance values. The variance of the inductor and the resistor Lf and Rf share together 97% of
the variance of the Lorentz force. Therefore, the performance of these two elements is crucial for
the overall performance of the RF Wien filter.

6 Summary

This paper summarizes the efforts to realize the driving circuit of the waveguide RFWien filter. The
circuit has been designed and simulated with CST design studio (DS).3 The circuit elements were
fabricated by Barthel HF-Technik,6 and the elements were tested and validated with measurements,
conforming well with the simulation results.

A PCE-based performance analysis of the full system response under uncertainties has been
conducted. The unwanted electric and magnetic field components were not increased under circuit
uncertainties. Also, the Lorentz force values corresponding to beam oscillations are reasonably
small.

A sensitivity analysis has been performed with the help of the PCE. There unwanted electric
field components were found to be mainly influenced by the fixed coil and the fixed resistor in the
matching network. Unwanted magnetic field components were mainly affected by the uniformity
of the feeding signals. The Lorentz force showed to be mostly sensitive to the main parameters that
were affecting the unwanted electric field contributions.

The JEDI collaboration has conducted dedicated beamtimes to commission the RF Wien filter
including the driving circuit. Within the limits of our measurement tool, we were able to match the
electric and magnetic fields to a degree that the amplitude of the induced beam oscillations did not
exceed (0.6 ± 0.5) µm which will be discussed in detail in a forthcoming publication.

The lower-limit of the non-vanishing Lorentz force required for the EDM experiment is still
unknown. It is currently under investigation. We developed a new spin tracking code to compute
the hierarchy of uncertainties, including the residual Lorentz force, in order to understand their
individual impact on the EDM signal.
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