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An implementation of the polynomial chaos expansion is introduced as a fast solver of the equations of beam and
spin motion of charged particles in electromagnetic fields. We show that, based on the stochastic Galerkin method,
our computational framework substantially reduces the required number of tracking calculations compared to
the widely used Monte Carlo method.
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I. INTRODUCTION AND MOTIVATION

The aim of the JEDI1 collaboration is to measure the electric
dipole moment (EDM) of charged hadronic particles, such as
deuterons and protons. In the near future, a first direct EDM
measurement of the deuteron [1,2] will be carried out at the
COoler SYnchrotron COSY [3,4]. Toward that end, an RF
Wien filter [5] has recently been installed, which is operated
at some harmonic of the spin precession frequency, whereby
the sensitivity to the deuteron EDM is substantially enhanced.

To eliminate false EDM signals, it is of crucial importance
to understand the sources of imperfections in the accelerator
ring that is used to perform the measurements [6]. Particle
and spin tracking simulations constitute powerful tools to
accomplish this [7,8]. The realistic simulation of a precision
physics experiment in a storage ring [9] that includes also
mechanical and electromagnetic uncertainties in all of its
elements, however, represents a very challenging task.

Monte Carlo (MC) simulations as a tool to evaluate the
systematics of a precision experiment are computationally
very expensive, and the dimension (the number of random
parameters) in such simulations is particularly large. These
simulations usually have to be repeated many times in order to
obtain small uncertainties of the parameters under study. The
use of the stochastic Galerkin method (SGM) is motivated
by the requirement to replace the computer-expensive MC
method by a more efficient computational technique, which
transforms a system of differential equations that describe the
quantities of interest into an augmented system of equations
that contains only the coefficients [10]. It should be noted that
the SGM does not alter the intrinsic properties of the solver;
in fact, the SGM considers the solver as a black box.

To provide a more efficient simulation framework that
avoids the computationally expensive MC simulations, and
as a first step toward a fully systematic analysis of the
future EDM experiments at COSY, we recently conducted
a study to quantify the electromagnetic performance of the
above-mentioned RF Wien filter, taking into account various
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mechanical uncertainties [11]. This investigation made use of
the so-called polynomial chaos expansion (PCE) [12] as an
efficient and yet accurate alternative to the MC method.

In this paper, we describe a computational framework
based on the stochastic Galerkin method to determine the
solutions of the equations of beam and spin motion. This
approach substantially reduces the required number of tracking
simulations, but we still arrive at the same result as that of a
standard MC simulation. The methodology used is similar to
the one described in Ref. [11], but since we have access to
the equations of motion and spin governing the system, an
intrusive version of the PCE is employed.

The paper is organized as follows. The basic theoretical
foundations of the PCE are briefly reviewed in Sec. II, and
in Sec. III the SGM is introduced and applied to the beam
and spin equations. The main steps to perform the SGM are
described in Sec. IV. In Sec. V, the results obtained for a
uniform electromagnetic field and the RF field of an RF Wien
filter are compared quantitatively to the equivalent MC results.
The conclusions are presented in Sec. VI.

II. POLYNOMIAL CHAOS EXPANSION

The polynomial chaos expansion (PCE) is a stochastic
spectral method that allows for stochastically varying physical
entities Y , as a response of some random input ξ to be repre-
sented in terms of orthogonal polynomials. The PCE permits
Y to be expanded into a series of orthogonal polynomials
of degree p (the expansion order) as a function of the input
variables ξ . Thus it follows that

Y =
N∑
i

ai�i(ξ ). (1)

Here �i are the multivariate orthogonal polynomials (the
basis functions) of degree p, and ai are the expansion
coefficients to be computed. The orthogonal polynomials
can be the Hermite, Legendre, Laguerre, or any other set
of orthogonal polynomials, depending on the probabilistic
distribution of the random input variables ξ . The physical
entities Y include electromagnetic fields (with uncertainties),
particle positions, velocities, and spin vectors.

The first step in building a polynomial chaos series is to
determine the probabilistic distribution of the input random
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variables and their number (the dimensionality of the problem).
Once known, the multivariate orthogonal polynomials can be
constructed using the three-term recurrence properties that can
be found, e.g., in [13].

In multidimensional problems, multivariate polynomials
are used to build the chaos basis. Obviously, the expansion
order must be known, and, as explained in [14,15], it can be
changed adaptively during processing.

The expansion coefficients can be calculated using intrusive
and nonintrusive methods. Nonintrusive methods consider the
deterministic code as a black box, i.e., they do not alter
the code or the equations. The expansion coefficients are
calculated using multiple calls to the deterministic code either
via projection or regression. Both require a number of N

realization pairs (ξ,Y) [see Eq. (1)], and they are further
elucidated below.

Projection requires the evaluation of expectation values and
relies on the orthogonality of the polynomials to compute the
coefficients in the form of

a = E{Y�}
E{�2} . (2)

The computation of the expectation values (E{·}) necessitates
the evaluation of integrals. Quadrature methods are one way
to do so, and they are commonly used in PCE analyses.
Depending on the type of input distribution, the corresponding
quadrature rule can be used. The Gauss-Laguerre quadrature,
for instance [16], is used in the case of uniformly distributed
random variables. It is widely known as nonintrusive spectral
projection (NISP) [17].

Regression, on the other hand, estimates the coefficients
that minimize the functional difference between the estimated
response Ŷ and the actual response Y , given by

a = arg min(E{Ŷ − Y}2). (3)

The solution of Eq. (3), obtained by linear regression, yields

ai = (�T · �) · � · Y . (4)

In the context of the work presented in this paper, the
regression method [18] provides more accurate results than the
projection method, and it is therefore used here to calculate
the expansion coefficients ai , which are subsequently used as
an input for the stochastic Galerkin solver.

III. STOCHASTIC GALERKIN METHOD APPLIED
TO BEAM AND SPIN DYNAMICS

A. Beam dynamics

One of the most common methods to solve differen-
tial equations is the Galerkin finite-element method (FEM)
[19,20]. In 1921, the Russian mathematician Boris Galerkin
proposed a method to solve differential equations based on
functional analysis. In contrast to other methods, such as finite-
difference (FD) schemes, the Galerkin method does not solve
the differential equations directly, rather it transforms them
into a variational form (a functional) that is then minimized.
The functions minimizing this functional are the solutions to

the required differential equations. The variational form is
constructed via the Galerkin projection techniques [17].

In this section, the construction of the variational form of the
beam and spin dynamic equations using the stochastic Galerkin
projection is described in detail. Neglecting forces other than
the electromagnetic ones acting on the charged particles, the
beam equations read [7,21]

d

dt
�v = q

mγ

[
�E + �v × �B − 1

c2
�v(�v · �E)

]
,

(5)
d

dt
�r = �v.

Here, �E and �B represent the electric and magnetic fields, �v
denotes the velocity vector of the particles, q is the particle
charge, m is the mass, γ is the Lorentz factor, �r is the position
vector, and �v is the velocity vector of the particles.

The expansion of Eq. (5) in Cartesian coordinates yields a
linear system of six coupled ordinary differential equations,

d

dt
vx = q

m

[
1

γ
Ex + 1

γ
vyBz − 1

γ
vzBy − 1

c2γ
vx(�v · �E)

]
,

(6a)

d

dt
vy = q

m

[
1

γ
Ey + 1

γ
vzBx − 1

γ
vxBz − 1

c2γ
vy(�v · �E)

]
,

(6b)

d

dt
vz = q

m

[
1

γ
Ez + 1

γ
vxBy − 1

γ
vyBx − 1

c2γ
vz(�v · �E)

]
, and

(6c)

d

dt
x = vx, (6d)

d

dt
y = vy, (6e)

d

dt
z = vz. (6f)

When intrabeam scattering and other collective effects are
neglected, the simulation of a beam of particles is equivalent
to individual simulations with different initial conditions. It
is furthermore assumed that the number of single-particle
simulations is sufficiently large to describe the beam. These
assumptions permit us to use stochastic methods to solve
the differential equations with random coefficients, or with
uncertain input variables, or even with random boundary val-
ues. According to a probabilistic distribution, each individual
particle of the population has a different initial position �r and
velocity vector �v. Therefore, the treatment of these parameters
as random vectors in Eq. (5) justifies the application of the
SGM.

Equation (5) describes an initial value problem, where the
initial values vary randomly. The initial values are expanded
using nonintrusive PC, particularly with linear regressions, and
then the SGM [22] is applied to solve Eq. (5). As an example,
the technique of solving for the variable vx is discussed in
detail below.
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vx is expanded as

vx =
N∑
i

vx
(k)
i �i, (7)

where the vx
(k)
i are the chaos expansion coefficients. The

superscript (k) is used to identify the expansion coefficients,
and also to emphasize that the variables are discretized. The
coefficients are calculated according to

vx
(k)
i = (�T · �) · � · vx 0

, (8)

where vx 0
are the initial x-components of the particle velocities.

Inserting Eq. (7) into the left-hand side of Eq. (6a), we find

d

dt
vx = d

dt

N∑
i

vx
(k)
i �i =

N∑
i

d

dt
vx

(k)
i �i. (9)

Now, the stochastic Galerkin projection is applied by
multiplying Eq. (9) with �l and taking the expectation value
E{·}, which gives

E

{
N∑
i

d

dt
vx

(k)
i �i�l

}
=

N∑
i

d

dt
vx

(k)
i E{�i�l}

=
N∑
i

d

dt
vx

(k)
i 〈�i�l〉

=
N∑
i

d

dt
vx

(k)
i

〈
�2

i

〉
δil . (10)

Here δil is the Kronecker delta, which results from the
orthogonality of the polynomials.

The electric field is also represented stochastically2 by the
finite series

Ex =
N∑
i

ex
(k)
i �i. (11)

The Lorentz factor γ constitutes also a stochastic variable.
Unfortunately, it appears in the denominator of all terms in
Eq. (5). To solve this problem, 1/γ is expanded instead of γ .
Let α be defined as

α = 1

γ
. (12)

Then α is expanded as

α =
N∑
i

α
(k)
i �i. (13)

The stochastic Galerkin projection is applied by multiplying
the product of Eqs. (11) and (13) by �k , and subsequently

2The Cartesian components of the electric and magnetic fields ( �E
and �B) are functions of the position vector �r , e.g., �E(�r ), �B(�r ), etc.
The dependence of the field components on position, e.g., Ex(�r ) =
Ex(x,y,z), does not pose a problem for the PCE method as long as
the input variables (e.g., r and v) are independent.

calculating the expectation value E{·}. It thus follows that

E

⎧⎨
⎩

N∑
i

ex
(k)
i �i

N∑
j

α
(k)
j �j�l

⎫⎬
⎭ =

N∑
i

N∑
j

ex
(k)
i α

(k)
j 〈�i�j�l〉

=
N∑
i

N∑
j

α
(k)
i ex

(k)
j Cijl . (14)

The Cijl = 〈�i�j�l〉 tensor constitutes a sparse rank-3
tensor. It is constructed offline by computing the tensor
product, which constitutes a CPU-intensive operation. The
formula to compute Cijl is provided in [22], and it works
only for low-order and low-dimensional cases. In addition,
it is limited to Gaussian-distributed random variables, and
consequently it applies only to Hermite polynomials. For the
actual version implemented here, Cijl is computed numerically
and is distribution-independent. The implementation has been
validated with a one-dimensional quadrature-based one and
yielded the same results.

Fortunately, Cijl needs to be computed only once. It can be
stored and reused when required. Although the multiplications
of the PCE coefficients involve the Cijl term, this arithmetic
operation does not introduce any computational overhead as
Cijl is sparse. This is illustrated in Fig. 1 for several typical
examples of the Cijl tensor.

The next term of Eq. (6a), namely the product of α,
velocity vy , and magnetic field Bz, presents a more complicated
situation because it involves multiple polynomials. This triple
product requires us to expand the two latter quantities as

vy =
N∑
i

vy
(k)
i �i,

Bz =
N∑
i

bz
(k)
i �i,

(15)

where vy
(k)
i and bz

(k)
i are the expansion coefficients of vy and

Bz, respectively. The multiplication of the three sums yields

αvyBz =
N∑
i

N∑
j

N∑
k

α
(k)
i vy

(k)
j bz

(k)
k �i�j�k. (16)

By applying the stochastic Galerkin projection to Eq. (16),
it follows that

E{αvyBz�l} =
N∑
i

N∑
j

N∑
k

α
(k)
i vy

(k)
j bz

(k)
k 〈�i�j�k�l〉

=
N∑
i

N∑
j

N∑
k

α
(k)
i vy

(k)
i bz

(k)
j Dijkl . (17)

Dijkl is similar to Cijl , but it constitutes a rank-4 tensor.
The case for the third term of Eq. (6a) yields

E{αvzBy�k} =
N∑
i

N∑
j

N∑
k

α
(k)
i vz

(k)
j by

(k)
k 〈�i�j�k�l〉

=
N∑
i

N∑
j

N∑
k

α
(k)
i vz

(k)
j by

(k)
k Dijkl . (18)
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FIG. 1. With the (m = 5)-dimensional problem and an expansion order of p = 4, the number of basis functions is P = 126 [see Eq. (7)
of [11]], which results in a (126 × 126 × 126) Cijl tensor. The sparsity of the rank-3 tensor Cijl is illustrated by fixing, e.g., the first index
to values of i = 14 [panel (a)], i = 26 (b), i = 37 (c), i = 45 (d), i = 69 (e), i = 77 (f), i = 86 (g), i = 93 (h), i = 105 (i), and i = 116 (j),
which yields the 10 sparse matrices shown. The multiplication of the PCE coefficients involving this tensor is very fast, as most of the tensor
elements are zero, while computing, storing, and loading of this tensor constitutes a CPU and memory-intensive operation.

The last term of the right-hand side of Eq. (6a), i.e.,

1

c2
αvx(�v · �E), (19)

is even more complicated because it involves a scalar product.
The scalar product operator multiplies the operands compo-
nentwise before summing them up. These operands, however,
are PC coefficients. The corresponding multiplication is in fact
a Galerkin one, which involves a series of double products [23],
given by

�v · �E =
3∑
i

N∑
j

N∑
k

vi
(k)
j ei

(k)
k �j�k. (20)

This means that Eq. (20) requires the stochastic Galerkin
projection to compute a rank-5 tensor, which makes the method
highly inefficient [23]. To solve this problem, a pseudospectral
method [17,24] is used. The Galerkin projection is applied first
to the auxiliary variable gl (the one representing the scalar
product) and then second to the full product in Eq. (19). This
way, the rank-4 tensor product, introduced above in Eq. (17),
can be used. In particular, gl reads

gl = E{(�v · �E)�l} =
3∑
i

N∑
j

N∑
k

vi
(k)
j ei

(k)
k Cijl, (21)

where the subscript l here constitutes a free variable. And then,
by applying the stochastic Galerkin projection, it follows that

E{αvx(�v · �E)�l} =
N∑
i

N∑
j

N∑
k

α
(k)
i vx

(k)
j g

(k)
k Dijkl . (22)

The other five equations, Eqs. (6b)–(6f), are treated in
a similar fashion, and the system of ordinary differential
equations (ODEs) is considered solved.

B. Spin dynamics

The spin dynamics in an electromagnetic storage ring with
nonvanishing EDM is described by the generalized T-BMT
equation [25,26], which reads

d

dt
�S = ( ��MDM + ��EDM) × �S. (23)

Here, �S denotes the particle spin, and ��EDM and ��MDM are
the angular velocities associated with the magnetic (MDMs)
and electric dipole moments (EDMs). ��MDM and ��EDM are
defined as

��MDM = − q

mγ

[
(1 + Gγ ) �B +

(
Gγ + γ

1 + γ

) �E × �β
c

− Gγ 2

γ + 1
�β( �β · �B)

]
,

��EDM = − q

m

η

2

[ �E
c

+ �β × �B − γ

γ + 1
�β
(

�β ·
�E
c

)]
.

(24)

The particle velocity is given by �β = �v/c, G denotes
the anomalous magnetic moment, and η is a dimensionless
parameter, proportional to the particles’ EDM.
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Expanding Eq. (23) in Cartesian coordinates reads

d

dt
Sx = �MDM

y Sz − �MDM
z Sy + �EDM

y Sz − �EDM
z Sy,

d

dt
Sy = �MDM

z Sx − �MDM
x Sz + �EDM

z Sx − �EDM
x Sz, (25)

d

dt
Sz = �MDM

x Sy − �MDM
y Sx + �EDM

x Sy − �EDM
y Sx.

Before proceeding to the stochastic discretization of the
spin equation (23), some variables are introduced to simplify
the discretization process. Let

f1 = 1

γ
+ G, (26a)

f2 = 1

c

(
G + 1

γ

)
, (26b)

f3 = Gγ

1 + γ
, (26c)

f4 = γ

γ + 1
. (26d)

All the terms that interact with field and velocity compo-
nents are grouped together. It should be noted that here only γ

constitutes a stochastic variable. The PCE coefficients are also
calculated using the nonintrusive projection method, yielding

f1 =
N∑
i

f1i�i, (27a)

f2 =
N∑
i

f2i�i, (27b)

f3 =
N∑
i

f3i�i, (27c)

f4 =
N∑
i

f4i�i. (27d)

��MDM and ��EDM are rewritten as

��MDM = − q

m
[f1 �B + f2( �E × �β) − f3 �β( �β · �B)],

��EDM = − q

m

η

2

[ �E
c

+ �β × �B − f4 �β
(

�β ·
�E
c

)]
. (28)

In the following, the same methodology as described in
Sec. III A is applied to the spin equation. By induction from the
derivation described above, beginning with the x component
of the spin vector in Eq. (24), it follows that

N∑
i

d

dt
Sx

(k) =
N∑
i

N∑
j

�MDM
y

(k)

i
Sz

(k)
j Cijl

−
N∑
i

N∑
j

�MDM
z

(k)
i

Sy
(k)
j Cijl

+
N∑
i

N∑
j

�EDM
y

(k)

i
Sz

(k)
j Cijl

−
N∑
i

N∑
j

�EDM
z

(k)
j

Sy
(k)
j Cijl . (29)

Rewriting, e.g., �MDM
y

(k)

i
in terms of the individual compo-

nents is equivalent to the following expression:

N∑
i

�MDM
y

(k)

i

= − q

m

⎡
⎣ N∑

i

∑
j

f1
(k)
i by

(k)
j Cijl

+
N∑
i

∑
j

∑
k

(
f2

(k)
i ez

(k)
i βx

(k)
j Dijkl−f2

(k)
i ex

(k)
i βz

(k)
j Dijkl

)

−
N∑
i

N∑
j

N∑
k

f3
(k)
i βy

(k)
j h

(k)
k Dijkl

⎤
⎦, (30)

where

hl = E{( �β · �B)�l} =
3∑
i

N∑
j

N∑
k

βi
(k)
j bi

(k)
k Cijl . (31)

Here, l constitutes a free subscript [later on replaced by k in
Eq. (30)]. Similarly, the other components of the spin dynamics
equation (23) can be constructed, but this derivation is omitted
here for brevity.

IV. SIMULATIONS

The stochastic Galerkin method (SGM) transforms a system
of differential equations that describe the quantities of interest
into an augmented system of equations that contains only
the coefficients [10]. Depending on the dimension and the
expansion order p, the dimension of the new system of
equations is determined. The solutions of the system are
called stochastic modes, which are merely the time- and
position-dependent expansion coefficients that will later be
used to reconstruct the response for an arbitrary number of
particles.

To perform the simulations, the random variables have to be
identified first. These include the particle positions, velocities,
and spins. Next, the expansion order p is selected with the
smallest possible value in order for the augmented system of
equations to be as small as possible as well. The expansion
order can later be increased if the achieved accuracy appears
to be unsatisfactory. In this work, the expansion order was set
to p = 4, which, as shown later, yields very small parameter
errors.

Since Gaussian distributions were selected here, the basis
functions are Hermite polynomials. The distributions of the
random variables must be normalized in order for the SGM
to converge. The total number of polynomials (cardinality of
polynomials) is P = 126 [11].
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FIG. 2. Results of tracking 105 particles in a uniform electric and magnetic field [ �E = (1,0,0) V/m, �H = (0,1/173,0) A/m]. On the
horizontal axis, the time in seconds is shown over which the tracking simulation evolved, and on the vertical axis the resulting solutions for
x(t) in (a), y(t) (b), vx(t) (c), and vy(t) (d). The dotted blue lines represent the solution computed using the Monte Carlo simulations (MC),
while the dashed red lines visualize the solutions of the stochastic Galerkin method (SGM). In all four cases, positions and velocities are nearly
indistinguishable, indicating a very good agreement between MC and SGM (see also Fig. 4).

The particles are generated according to well-defined
phase-space distributions. An example is shown in Fig. 9
of [5]. Such populations might violate the independency
requirement that the parameters be random. In this case, the
Nataf transformation [27–29]3 can be used to circumvent the
problem. With all these parameters, the expansion coefficients
of the initial particle population are constructed using the linear
regression method, as described in Eq. (8).

With P = 126, Cijl is a 126 × 26 × 126 tensor. Unless a
new random quantity is added to the analysis, or the order of
the expansion is changed, the stored Cijl can be used when
required. When the expansion order p or the dimension of the
problem becomes large, pseudospectral methods may become
more favorable (see, e.g., [30]).

The SGM-based system of equations has been solved using
MATLAB.4,5 The deterministic ordinary differential equations

3Nataf transformations are isoprobabilistic transformations that
transform correlated Gaussian variables with arbitrary mean and vari-
ance into normally distributed ones. Without such a transformation,
the orthogonality of the basis functions would be violated.

4Mathworks, Inc. Natick, Massachusetts, United States
http://www.mathworks.com

5The simulations were performed on a HP Z840 workstation with
a single Xeon E5v4 CPU and a RAM capacity of 80 GB.

solver “ode45”6 was employed with a fixed time step of 1 ms,
and relative and absolute error tolerances of 10−13 and 10−20,
respectively. It is important to note that the same ODE solver
has been applied to both MC simulation and SGM calculation.

At the final stage, the performance of the SGM must be
evaluated quantitatively, with the help of an adequate error
analysis. Due to time and position dependencies, the error
calculation involves either the mean value (μ) or the standard
deviation (σ ) of the quantity under investigation, denoted in
the following by ζ . The corresponding errors are called εμ and
εσ , respectively, and they are defined as

εμ(t) =
∣∣∣∣μ[ζ (t)] − μ[ζ̂ (t)]

μ[ζ (t)]

∣∣∣∣, and (32a)

εσ (t) =
∣∣∣∣σ [ζ (t)] − σ [ζ̂ (t)]

σ [ζ (t)]

∣∣∣∣ . (32b)

Here, ζ may refer to either the position, velocity, or spin
vector, while ζ̂ denotes the value estimated using the SGM.
To conduct an analysis similar to the one described in [12,31],
the exact initial conditions are inserted into both the MC and
the SGM solver, so that the solutions can be directly compared
on a particle-by-particle basis. In this way, the difference of

6The “ode45” solver is based on the fourth-order Runge-Kutta
integration technique.
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TABLE I. Parameters of a deuteron beam stored at COSY at a
momentum of 970 MeV/c, which are used in the particle and spin
tracking simulations for the two scenarios, described in Secs. V A
and V B.

Parameter Description Value

N number of particles 105

q deuteron charge 1.602 × 10−19 C
m deuteron mass 3.344 × 10−27 kg
G deuteron G-factor −0.143
c speed of light 2.998 × 108 m/s
β = v/c Lorentz β 0.459
ε beam emittance 10−6μm
p/p momentum spread 10−4

the two solutions reflects the true performance of the method
proposed in this paper.

When the dynamics includes electromagnetic fields that
are functions of position, time, or frequency, the stochastic
expansion coefficients may evolve as a function of time,
position, etc. This adds another level of complexity that the
SGM must be able to cope with. As a consequence, the
performance criterion in Eq. (32) must be modified to account
for position (or other) dependencies as well,

εμ(z) =
∣∣∣∣μ[ζ (z)] − μ[ζ̂ (z)]

μ[ζ (z)]

∣∣∣∣, and (33a)

εσ (z) =
∣∣∣∣σ [ζ (z)] − σ [ζ̂ (z)]

σ [ζ (z)]

∣∣∣∣. (33b)

Here, ζ may refer either to the position, velocity, or spin
dependence, and ζ̂ constitutes the corresponding estimated
value using the SGM, similar to Eq. (32).

V. NUMERICAL RESULTS

Two different simulation scenarios are considered here. In
the first scenario, described in Sec. V A, uniform fields are used
with realistic particle properties, while in the second scenario
(Sec. V B) a realistic beam passing through the numerically
computed fields7 of an RF Wien filter [5] is evaluated.

A. Uniform fields

This generic simulation scenario serves as a proof-of-
concept demonstrator for the SGM. 105 particles are consid-
ered,8 with phase-space-distributed initial positions and veloc-
ities (as described in [5]) traveling in a uniform electromagnetic

7Electromagnetic package of CST MWS, Computer Simulation
Technology, Microwave Studio, CST AG., Darmstadt, Germany,
http://www.cst.com

8Due to the limited computational resources to carry out the
equivalent MC simulations, only 105 particles have been considered
here. It should be noted that the SGM with the same resources can
support the simulation of a much larger number of particles.

FIG. 3. Result of spin tracking simulations in uniform fields using
the MC and the SGM. The horizontal axis shows the time t in seconds,
and the vertical axis shows the vertical component Sy(t) of the spin
vector �S(t).

field with �E = (1,0,0) V/m and �H = (0,1/173,0) A/m,9

during a time interval from 0 to 20 s.
The positions and transverse angles, x, x ′, y, and y ′, are

generated using a 2σ beam emittance of εx,y = 1 μm. The
transverse velocities vx and vy are calculated by multiplying
the transverse angles x ′ and y ′ by vz. vz itself is also modeled as
a Gaussian random variable with a mean value of β × c m/s
and a standard deviation that corresponds to a variation of
the beam momentum of p/p = 10−4. The beam parameters
used in the simulations are summarized in Table I.

Figure 2 shows the tracking results of the MC and the
SGM-based simulation for x, vx , y, and vy . Due to the extended
phase-space distribution of the beam, the transverse velocities
vx and vy do not vanish. The particles propagate with roughly
half the speed of light for a period of 20 s in a weak guiding
field. Therefore, large position deviations occur, as indicated in
panels (a) and (b). In the x direction, this leads to a transverse
Lorentz force and an oscillation of the particles around the
beam direction, while in the y direction the particles are simply
drifting. It was verified by simulations that a beam of vanishing
emittance ε and momentum variation p/p performs a perfect
drift motion in both the x and y directions.

Very good agreement between the MC method and the
SGM-based simulations can clearly be observed in Fig. 2. In
particular, no difference between the oscillation periods and
the positions x and velocities vx as a function of time are
observed. In terms of position y and velocity vy , as depicted
in Fig. 2(d), SGM and MC both indicate a pure drift motion.

The stochastic discretization of the T-BMT equation has
been implemented as well, and the numerical results are
shown in Fig. 3. The fields, despite the fact that they are
uniform, can be expanded to include the effects of undesired
physical phenomena, such as displacements or rotations. The
simulation scenario assumes a horizontally polarized deuteron
beam with initial spin vectors in the horizontal (ring) plane,
such that �S = (1,0,0). While the system of ODEs is solved
for Sx , Sy , and Sz, only the vertical spin component Sy is
displayed in Fig. 3. Figure 3 clearly shows that both the

9In vacuum, �B = μ0 �H = 4 × π × 10−7 �H .
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FIG. 4. (a) The error analysis of the uniform field scenario (Sec. V A) of the mean value εμ(t) using Eq. (32a), and (b) the standard deviation
εσ (t) using Eq. (32b) for the quantities x, y, vx , vy , and Sy in the time interval from t = 0 to 20 s.

oscillation magnitude and the frequency of MC and SGM
evolve synchronously.

By applying Eq. (32), the performance of the SGM is
demonstrated in Figs. 4(a) and 4(b). As we are dealing with
stochastic quantities, the mean and standard deviations are
used as performance indicators. All estimated SGM solutions
(x̂, v̂x , ŷ, v̂y , and Ŝy) do not deviate by more than 10−5 from
the MC solutions (x, vx , y, vy , and Sy).

B. Tracking with realistic RF Wien filter fields

In this section, we present simulation results using the MC
and the SGM, where both methods were applied to a deuteron
beam (see Table I) traveling along the z axis of an RF Wien
filter, whose electromagnetic fields were calculated using a
full-wave simulation based on CST7. A detailed description of
the calculations and the field distributions can be found in [5].

The waveguide RF Wien filter constitutes a novel device
that is presently installed at COSY-Jülich. The aim is to
perform a first direct measurement of the deuteron EDM [1].
The device is characterized by high-quality electromagnetic
fields that, when properly matched, provide a vanishing
Lorentz force. This is achieved by adjusting the field quotient
Zq ,10 and this makes the device transparent to the passage of
particles [see Eq. (3) of [5]].

At the location where the device is installed at COSY, the
beam size is adjustable by modifying the β function to values

10The field quotient is defined as the ratio of total electric field to
total magnetic field.

between about β = 0.4 and 4 m [4]. In this paper, we consider
only the case when β = 0.4. A typical initial phase-space
ellipse for a well-cooled beam at the entrance of the RF Wien
filter at z = 1 mm is shown in panel (a) of Fig. 5 (for other beam
properties, see also Table I). In panels (b)–(d), the phase-space
ellipses are displayed at other positions inside the RF Wien
filter at z = 210, 610, and 810 mm. In all cases, SGM and MC
results are in very good agreement.

The simulation results from the MC and SGM of the
trajectories in the xz plane of the drift region inside the RF
Wien filter are shown in Fig. 6. The MC results are represented
by the dashed red lines, and the SGM simulations by the
dotted red lines. Evidently, also here, the SGM results perfectly
coincide with their MC counterparts.

Using Eqs. (33a) and (33b), the deviation of the simulation
results of the SGM and the corresponding MC are quantified
and depicted in Fig. 7. The horizontal axis represents the beam
axis in the RF Wien filter. The solid lines denote the errors
calculated by considering the mean values εμ(z) with respect to
the horizontal position x and the velocity vx in the x direction,
while the dashed lines correspond to the errors related to the
standard deviation εσ (z) for the same quantities. The relative
deviation of xεμ

and vxεμ
does not exceed 10−7, while that of xεσ

and vxεσ
remains below 10−10. The smallness of the calculated

errors indicates the excellent performance of the SGM.

C. Comparison of simulation times

One additional performance criterion besides the error
analysis is the comparison of the required simulation times. In
the following, the generic scenario of Sec. V A is discussed,
with particles properties as listed in Table I.

FIG. 5. Comparison between the phase-space ellipses of the MC tracking results (blue crosses) and the SGM (red dots) along the beam
direction in the waveguide RF Wien filter at z = 1 (a), 210 (b), 610 (c), and 810 mm (d) [5] (Sec. V B).
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FIG. 6. Trajectory simulation of the xz plane in the drift region
along the RF Wien filter (Sec. V B) using the MC and the SGM.

The MC simulations require the evaluation of the system
of beam and spin ODEs [Eqs. (5) and (6)]. The MATLAB

simulation environment provides a powerful vectorization
option that has been used here to parallelize the execution of
the code. As shown in Fig. 8, for fewer than N ≈ 105 particles,
MC and SGM are about equally fast, but when N increases
further, the required time for the MC increases exponentially,11

while the corresponding time required for the SGM stays about
constant.

Regardless of the number of particles, the system of
ODEs involved in the SGM is evaluated exactly P times,12

corresponding to the number of basis functions. This is the
main reason why the SGM is so much faster than the MC,
without reduction in accuracy, as evidenced in Figs. 4(a), 4(b),
and 7. When the expansion order p is kept constant, the number
of basis functions remains constant as well, and hence also the
simulation time Ts = 4.14 ± 0.39 s, as shown in Fig. 8.

11The time required for the simulation of 2 × 106 particles on the
available machine6 amounted to 925.42 ± 0.82 s. Turning off the
vectorization option, tracking up to 109 particles becomes possible,
but the simulation time becomes prohibitively large.

12Even this number can be further reduced using a sparse version
of PCE [11].

0 200 400 600 800 1000
10-15

10-10

10-5

FIG. 7. Error analysis involving the mean value εμ(z) and the
standard deviation εσ (z) of the quantities x and vx along the beam
direction inside the waveguide RF Wien filter (Sec. V B).
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FIG. 8. Comparison of the simulation time required for the
parallelized MC and the SGM. For particle numbers below about
105, the methods are comparable. For larger particle numbers with
a constant expansion order of p = 4, the time required for the SGM
stays constant, while the demand for the MC increases exponentially.

VI. CONCLUSION

This paper reports on the application of the stochastic
Galerkin method (SGM) to beam- and spin-tracking simula-
tions. The method has been shown to work well with uniform
fields. We have also applied it to a realistic scenario, involving
the electromagnetic fields of a waveguide RF Wien filter, and
also in this case the results indicate very good agreement with
the Monte Carlo (MC) simulations, which were carried out
concurrently.

The error calculations carried out show that the
performance of the SGM is statistically equivalent to
the MC method, but with much lower computational demand.
While the computational effort of MC-based simulations
increases exponentially as a function of particle number, the
computational effort involved in the SGM stays constant,
independent of the number of tracked particles. The SGM
transforms the original system of beam and spin ODEs
into an augmented system of chaos coefficients, which are
determined and then used to reconstruct the response for an
arbitrary number of particles. The SGM is therefore capable
of tracking large particle numbers in a short time without
compromising on the accuracy, and in this way it provides a
very efficient yet accurate alternative to MC-based methods.

A potential future application of the SGM might be
spin-tracking calculations for storage rings, which are
necessary in particular for precision experiments, such as the
search for electric dipole moments. In such cases, an ultimate
precision is required in the presence of uncertainties of the
optical elements that constitute the machine. The SGM allows
one to conveniently take into account systematic errors from
different sources and to build a hierarchy of error sources. In
view of the computational effort required for the MC-based
error evaluation, the SGM may thus become an indispensable
tool for future precision experiments.
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