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The study of the approach to the quantum ground state and the possibility to detect displacements of
macroscopic bodies close to the quantum limit represent pressing challenges in modern physics. In the
recent experiment of the JEDI Collaboration at the COSY storage ring, the coherent oscillations of a
deuteron beam were detected with an amplitude of only one order of magnitude above the limit of the
Heisenberg uncertainty principle of about 40 nm for the one-particle betatron motion. On the other hand,
the much discussed search for the permanent electric dipole moment of the proton with an ultimate
sensitivity of 10−29 e cm requires control of the position of the beam center of gravity with an accuracy of
≈5 pm. In this paper, we develop the full quantum mechanical treatment of the coherent beam oscillations
with ultrasmall amplitudes. In agreement with the Ehrenfest theorem, we find a continuity of the
description of the coherent betatron motion from the large classical amplitudes down to the deep quantum
region below the one-particle Heisenberg limit. We argue that quantum mechanics does not preclude
control of the beam center with subpicometer accuracy.
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I. INTRODUCTION

One of the grand challenges in particle physics is the
search for physics beyond the Standard Model (BSM). At
the forefront of the high precision frontier is the proposed
search for the electric dipole moment (EDM) of protons
stored in an all-electric frozen-spin storage rings with a
sensitivity of dp ∼ 10−29 e cm that is some 15 orders of
magnitude smaller than the magnetic dipole moment of the
proton [1–4]. The primary motivation is that the exper-
imental observation of a permanent EDM of any subatomic
particle implies the explicit violation of time reflection (T)
and parity (P) symmetries, and therefore, according to
the CPT theorem, also involves the violation of CP in the
flavor-preserving channel. The presence of the latter could
shed light on the mystery of the anomalously large baryon
asymmetry in the Universe, which vastly exceeds the
expectations within the standard models of particle physics
and cosmology [5,6].

Proper control of systematic effects encountered in the
search for such a minuscule EDM requires concurrent
measurements of the spin rotations of beams propagating
in opposite directions in an all-electric ring. To achieve
such an ambitious goal, one of the crucial tasks is to control
the difference of the vertical positions of centroids of two
beams along the orbit in the machine with an accuracy of
about 5 pm [2]. One may wonder whether such a demand-
ing accuracy is not prohibited by the Heisenberg uncer-
tainty principle. Moreover, this accuracy is also in the range
of the vertical displacement of the beams due to Earth’s
gravitational force. It should be noted that up till now such
tiny gravitational effects were never considered in the
design and construction of accelerators, but gravity causes
an observable background in the searches for the proton
EDM [7–10]. This issue is common to all proposals for
EDM storage rings [1–4].
Recently, the first direct measurement of the amplitude

of coherent oscillations in the micrometer range of an
intense beam of deuterons in a storage ring, excited
by an intentionally mismatched radio frequency (rf)
Wien filter (WF) [11] at the Cooler Synchrotron COSY
of Forschungszentrum Jülich has been reported [12].
A crucial point in the interpretation of this experiment
is that, on timescales of duration of individual beam fills,
the beam can be treated as a rarefied gas with weak
intrabeam scattering. Moreover, within the framework of
classical mechanics, the WF-driven oscillations of beam
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particles do have identical amplitudes and phases, regard-
less of the amplitude and phase of their idle betatron
motion in the confining potential in the ring orbit. For this
reason, with reference to the superposition principle, a
solution of the one-particle problem provides an adequate
description of the coherent WF-driven oscillations of the
centroid of the beam. The achieved accuracy is about a
factor of 10 larger than the amplitude of the zero-point
betatron oscillation of single particles. The latter is
≈41 nm [see [12], Eq. (9)]. This should be compared
with the actual size of the beam which is in the order of
millimeter [12]. As we shall show, in the quantum
mechanical analysis the same universality of the rf-driven
oscillations results from the independence of the quan-
tum-mechanical expectation value of the position oper-
ator, perturbed by interaction with the WF potential, from
the quantum state of the individual particle in the con-
fining potential in the ring.
The approach to the quantum ground state and the

possibility of detecting displacements of macroscopic
bodies near the quantum limit are the subject of intense
theoretical and experimental efforts [13–17]. A notable
example is the detection of gravitational waves with
interferometric detectors using kilogram-scale mirrors,
where the experimentally observed strains correspond
to subattometer-scale displacements [14,18]. The case of
ultrasmall coherent oscillations of particle bunches of
rarefied gas confined in the focusing fields of storage rings
complements and differs from the above examples. The
very possibility of detecting small amplitudes arises from
the fact that the signal of coherent oscillations is generated
by ≈109 particles contained in the bunch.
The subject of the present paper is the transition from

the description within classical mechanics suitable for μm
amplitudes in the COSY experiment [12] to the deep
quantum regime of picometer amplitudes in the proposed
ultimate proton EDM experiment. We start by illustrating
the origin of the picometer domain in storage ring EDM
experiments using the example of the derivation of the
vertical beam displacement due to Earth’s gravity in terms
of the vertical betatron frequency. The possibility of
subquantum amplitudes common to all particles in a
bunch regardless of their quantum state in the potential
which confines particles in the orbit was far from being
obvious from the outset.
Our main conclusion is that the functional form of the

amplitude of the coherent beam oscillation does not change
during the transition from the classical to the quantum
regime. We consider this point to be nontrivial, since
amplitudes far below the Heisenberg uncertainty limit
could have received large quantum corrections. We argue
that it is not the case. As for the proposed dedicated proton
EDM storage rings, it implies that coherent beam oscil-
lations with amplitudes much smaller than the Heisenberg
uncertainty limit for single particles are under good

theoretical control. On the experimental side, the challenge
lies in the sensitivity of the beam position monitors (BPM).
Technical developments to achieve this goal are still in the
early stages, but encouraging results have been reported
in [19]. We also address the effects of intrabeam scattering
and interactions with the residual gas on the coherent
excitations of the beam.

II. VERTICAL SPLITTING OF
COUNTERPROPAGATING BEAMS DUE TO

EARTH’S GRAVITY

As an introduction into the subject, we explain how
picometer-scale beam displacements emerge in the EDM
experiment in storage rings. The attraction of Earth on the
beam particles can not be switched off and must be
compensated for by the focusing electromagnetic fields:
either radial magnetic fields in the case of focusing by
magnetic quadrupoles [3,4,7] or vertical electric fields in
the case of electric focusing [1,2,8,9]. In usual storage
rings, the ring plane and therefore the velocities of the
circulating particles are orthogonal to the acceleration of
free fall at Earth’s surface, g⊕. Under this condition,
the force of the gravitational attraction on every stored
particle of energy E, velocity v, and rest mass m is given
by [7–10,20–23]

Fg ¼
�
1þ v2

c2

�
E
c2

g⊕ ¼ 2γ2 − 1

γ
mg⊕; ð1Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p
is the pertinent Lorentz factor. A

derivation of Eq. (1), based on the weak limit of the
Schwarzschild metric in isotropic coordinates, was
explained by Okun in Ref. [22]; see also Ref. [23] and
extended discussion in Ref. [9].
The spring constant hki of a confining oscillator potential

can be related to the angular velocity ωy of the vertical
betatron oscillation as follows:

hki ≈ γmω2
y: ð2Þ

Then gravity causes a downward displacement of the beam,
which is given by

Δy ≈
ð2γ2 − 1Þjg⊕j

γ2ν2yω
2
rev

; ð3Þ

where νy ¼ ωy=ωrev is the vertical betatron tune and ωrev is
the orbital angular velocity of the beam.
Of particular interest is the all-electric frozen-spin ring

for counterrotating beams of protons with kinetic energy
Tp ¼ 233 MeV. The lattice for such a ring with focusing by
electric quadrupoles, proposed in [1,2], anticipates a circum-
ference of 500 m with ωrev ¼ 2.26 × 106 s−1 and vertical
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betatron tune νy ¼ 0.45. The coherent vertical displacement
of both beams induced by Earth’s gravity is therefore

ΔyE ≈ 13 pm: ð4Þ

In this scenario, both counterrotating beams will have an
identical gravitational displacement. As for the spin rota-
tions of the protons, the impact of the gravity-compensat-
ing electric field focusing in the vertical direction would
correspond to a rotation of their magnetic dipole moments
in a radial magnetic field of opposite sign for clockwise and
counterclockwise propagating beams, respectively. This
would distinguish such a signal from a real EDM signal,
which will be identical for both beams. However small
the displacement may be, the false EDM effect due to the
gravity-compensating electric field is even larger than the
EDM effect expected for dp ¼ 10−29 e cm [2,8,9].
A recent proposal of a hybrid electric ring with magnetic

focusing [3,4] assumes a circumference of 800 m with
ωrev¼1.4×106 s−1 and a vertical betatron tune νy ¼ 2.3,
giving a coherent gravitational vertical displacement of

ΔyB ≈ 1.3 pm; ð5Þ

and an average beam splitting of 2.6 pm. Note that the
magnetic quadrupoles exert forces of opposite sign on
counterrotating beams, resulting in vertically nonidentical
orbits of the two beams.

III. CLASSICAL MECHANICS OF rf-DRIVEN
BEAM OSCILLATIONS

The treatment of the classical limit provides the neces-
sary background and elucidates the subsequent transition to
the deep quantum regime. Here we follow the discussion
of Ref. [12] and extend it to include the effects of intrabeam
scattering and interaction with the residual gas. In the
experiment described in Ref. [12], the beam was strobo-
scopically excited with a mismatched rf Wien filter once
per turn. In this way, a vertical Lorentz force,

FyðnÞ ¼ Fy cosðnωWFTÞ; ð6Þ

is exerted on the stored particle, where n is the number of
turns, ωWF denotes the angular phase velocity of the rf in
the Wien filter, and T ¼ 2π=ωrev is the beam revolution
period. With vanishing Lorentz force, each individual
particle of the beam performs idle vertical (and horizontal)
betatron oscillations

yidleðtÞ ¼ yð0Þ
ffiffiffiffiffiffiffiffiffiffiffi
βyðtÞ
βyð0Þ

s
cos ½ψyðtÞ�; ð7Þ

where βyðtÞ is the vertical betatron amplitude function. The
amplitudes and initial betatron phases of different particles

are uncorrelated. The betatron phase advance ψyðtÞ sat-
isfies ψyðtþ TÞ − ψyðtÞ ¼ ωyT ¼ 2πνy.
According to the superposition principle of solutions of

linear ordinary differential equations, the generic betatron
motion at the Wien filter position will be the sum

yðtÞjt¼nT ¼ ½yidleðtÞ þ ydrivðtÞ�t¼nT ð8Þ
of the idle oscillation yidleðtÞ of Eq. (7), the homogeneous
solution, and the betatron motion ydrivðnÞ≡ ydrivðtÞjnT
stroboscopically driven at times t ¼ nT, n > 0, by the
Wien filter in the straight section of the ring—the inhomo-
geneous solution with the initial condition ydrivð0Þ ¼ 0. The
change at turn n of the vertical velocity vy of the
stored particle accumulated during the time interval Δt ¼
l=vz ≪ T spent by the particlewith longitudinal velocity vz
per turn inside the Wien filter (which is of length l short
compared with the circumference of the storage ring) is
given by

ΔvyðnÞ ¼
FyðnÞΔt

γm
¼ −ζωy cosðnωWFTÞ: ð9Þ

Again γ andm are the Lorentz factor and the rest mass of the

particle, respectively, while the abbreviation ζ ≡ −FyΔt
γmωy

has

been introduced here for convenience. The changeΔy of the
vertical position y in the short Wien filter can be neglected.
According to Eq. (7), the stroboscopic signal of the

betatron motion observed at any point in the ring follows
the harmonic law as a function of nT with angular velocity
ωy, and we invoke the familiar description of the oscillatory
motion in terms of the complex variable z ¼ ydriv − ivy=ωy.
The one-particle master equation for the buildup of rf-
driven oscillations directly downstream of the Wien filter is

zðnÞ ¼ zðn − 1Þ expðiωyTÞ −
i
ωy

ΔvyðnÞ: ð10Þ

Note that the contribution of the external force in this
equation does not depend on the idle betatron motion of the
particle. Subject to the initial condition zð0Þ ¼ 0, Eq. (10)
has the generic solution (valid for integer n > 0)

zðnÞ ¼ −
i
ωy

expðiωynTÞ
Xn
k¼1

ΔvyðkÞ expð−iωykTÞ; ð11Þ

which yields for the stroboscopic force of Eq. (9)

zðnÞ ¼ iζ
2

�
expðinωyTÞ − expðinωWFTÞ

exp½iðωy − ωWFÞT� − 1

þ fωWF → −ωWFg
�
: ð12Þ

This solution shows the standard phenomenon that every
periodic external force also excites idle (homogeneous)
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oscillations ∝ expðinωyTÞ. A similar analytic result
holds also for generic ac dipole-driven betatron oscillations,
applied in a completely different context of machine
diagnostics, described in Ref. [24] (see also references
therein).
The amplitude of the rf Wien filter Fourier component

of the beam oscillation, yWFðnÞ ¼ −ξy cosðnωWFTÞ, is
given by

ξy ¼
ζ

2

sinð2πνyÞ
cosð2πνWFÞ − cosð2πνyÞ

; ð13Þ

where the WF tune is νWF ¼ ωWF=ωrev. Note the resonance
at νWF ¼ νy.

1 The amplitude in Eq. (13) is independent
of the amplitude and phase of the betatron idle motion of
individual particles (7) and is shared by all particles in the
bunch. It can be filtered out and measured by Fourier
analysis of the BPM response with, e.g., lock-in amplifiers.
The Heisenberg uncertainty limit Q for the betatron

oscillation amplitude ξy is obtained equating the betatron
oscillation energy 1

2
mγQ2ω2

y to the zero-point oscillator
energy 1

2
ℏωy:

Q2 ¼ ℏ
mγωy

: ð14Þ

Under the conditions of the experiment, this gives

Q ¼ 82ffiffiffiffiffiffiffi
γνy

p nm ¼ 41 nm; ð15Þ

while the smallest value of the measured oscillation ampli-
tude at BPM17 of COSY was ξminy jBPM¼ð1.08�0.52Þ μm,
so that at the location of the Wien filter ξmin

y jWF ¼ ð0.45�
0.22Þ μm was deduced, as described in Ref. [12].
One can extend the above considerations to include the

impact of the interaction with the residual gas (RG). Let us
assume that the scattering off the residual gas occurs during
the turn nRG, followed by an instantaneous vertical velocity
kick vRGy , where the particle still remains within the ring
acceptance angle, θacc. It is then straightforward to add the
contribution of such a collision-driven kick to the generic
expansion (11) by encoding it as a further −iΔvy=ωy

contribution. The result is given by

zRGðtÞjt¼nT ¼ −
i
ωy

vRGy exp ½ifωyðn − nRGÞT þ ψRG
y g�

× Θ½n − ðnRG − ϵÞ�; ð16Þ

where ψRG
y is the betatron phase advance from the

scattering point to the WF, while Θ is the Heaviside step
function with ϵ > 0 and infinitesimal. According to the
superposition principle, this contribution has to be added
linearly to the betatron oscillation (8), yðtÞjt¼nT → ½yðtÞ þ
yRGðtÞ�t¼nT where yRGðtÞjt¼nT is the real part of (16).
Indeed, the oscillation pattern shows that scattering off
the residual gas does not contribute at all to the rf-driven
oscillations with angular phase velocity ωWF. Such a kick
only changes the amplitude and phase of the idle betatron
motion of a particle, thus contributing to the emittance
growth, but leaves the evolution of the rf-driven oscillations
unimpeded. The same is true, of course, for the intrabeam
Coulomb scattering.
However, weak though they are, losses due to intrabeam

scattering and elastic scattering off the residual gas beyond
the ring acceptance angle, and the absorption due to
inelastic electromagnetic and hadronic interactions with
the residual gas must be taken into account. To this end, the
EDM rings discussed in the literature [1–4] are expected
to operate with revolution frequencies in the ballpark of
1 MHz, so that typically T=τ ∼ 10−9 (given that τ ∼ 103 s,
see, e.g., Fig. 14 in [12], and τ > 6000 s in [25]).
Consequently, the familiar quadratic attenuation correction
to the betatron oscillation can in principle be neglected, as
well as damping for any single turn—the damping becomes
observable upon accumulation after a very large number of
turns beyond n ∼ 106.
The effects of beam damping can be addressed as

follows. Note that the experimentally observable quantity
at a given time t is the number of unabsorbed particles in
the beam times the amplitude of the rf-driven oscillations,
which is universal to all unabsorbed particles in a WF-
passing beam bunch. Therefore, the rf-driven oscillations
of a nonabsorbed particle cannot be affected at all by the
attenuation at times prior to the observation time t.
The corollary is that during the continuous operation of
the Wien filter, regardless of the number of particles in
the unabsorbed bunch, the observed coherent oscillation
amplitude of the centroid of the bunch, yWFðnÞ ¼
−ξy cosðnωWFTÞ, is preserved and can still be extracted
from Eq. (12).

IV. QUANTUM MECHANICS OF rf WIEN
FILTER-DRIVEN OSCILLATIONS

The above treatment of the proximity to the quantum
limit by classical mechanics can be justified a posteriori,
should the observed amplitudes turn out to be much larger
than the amplitude of the zero-point quantum oscillations,
as was the case in Ref. [12] [see also Eq. (15)]. Such
a posteriori comparison of two amplitudes could have been
performed the other way around if the perturbation of the
beam had been much smaller than the zero-point quantum
amplitude. The challenge is to demonstrate that all particles

1In fact, the real part of zðnÞ, as given in Eq. (12), simply reads
ydrivðnÞ ¼ −ξyfcosðnωWFTÞ − cosðnωyTÞg þ ζ

2
sinðnωyTÞ. Thus

on resonance, we obtain yresdrivðnÞ ¼ − ζ
2
ðn − 1Þ sinðnωWFTÞ.
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in a rarefied-gas beam do acquire identical rf-driven
oscillation amplitudes regardless of their quantum state.
In order to treat this new regime, one has to resort to the
time-dependent Schrödinger equation

iℏ
d
dt
ΨðtÞ ¼ fĤ0 þ V̂ðtÞgΨðtÞ; ð17Þ

where Ĥ0 is the time-independent Hamilton operator of
the harmonic oscillator (HO), while the perturbative
potential reads

V̂ðtÞ ¼ −Fy · ŷ · cosðωWFtÞ

¼ −Fy ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2γmωy

s
ða† þ aÞ · cosðωWFtÞ

¼ −
1ffiffiffi
2

p FyQða† þ aÞ cosðωWFtÞ; ð18Þ

where a† and a are the harmonic oscillator creation and
annihilation operators.2 This perturbation stroboscopically
acts for very short time intervals, Δt ≪ T, once per turn at
time tn ¼ nT.
We are interested in ultrasmall oscillations driven by a

weak rf potential, and resort to perturbative theory. Let
Ψð−; nÞ be the wave function before, and Ψðþ; nÞ directly
behind the WF. The impact of the WF potential leads to the
following discontinuity of the wave function:

iℏfΨðþ; nÞ − Ψð−; nÞg ¼ V̂ðnTÞΔtΨð−; nÞ: ð19Þ

This is a difference equation that takes the role of the
differential equation (17) at this time step. It gives

Ψðþ;nÞ

¼
�
1þi

Fy

ffiffiffi
ℏ

p
Δtð1−δn;0Þ

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γmωy

p cosðnωWFTÞða†þaÞ
�
Ψð−;nÞ;

ð20Þ

which is valid for any positive integer n including n ¼ 0,
where the initial condition Ψðþ; 0Þ ¼ Ψð−; 0Þ applies. The
rest of the turn proceeds in the time-independent harmonic
potential. The creation and annihilation operators change

the energy of the state by �ℏωy and thus its phase by
e∓iωyT , respectively. Taking this into account, we obtain the
master equation

Ψð−; kþ 1Þ ¼
�
1þ i

FyΔtð1 − δk;0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏγmωy

p cosðkωWFTÞ

× ða†e−iωyT þ aeiωyTÞ
�
Ψð−; kÞe−iωinT;

ð21Þ
valid for any integer k ≥ 0. Here ℏωin is the energy of the
initial wave function Ψð−; 0Þ.
Before proceeding to a solution of this equation, we

recall that the annihilation, a, and creation, a†, operators are
dimensionless. Next we observe that the dimensionless
parameter on the right-hand side of the master equation can
be cast in the form

η ¼ FyΔtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏγmωy

p ¼ ζ

Q
; ð22Þ

where the numerator is a classical mechanics scale of
the oscillation amplitude in the perturbation potential [see
Eq. (13)], while the denominator is the Heisenberg quan-
tum uncertainty limit of Eq. (14). A perturbative solution of
the master equation in the deep quantum regime of η ≪ 1,
which is the subject of this paper, proceeds as follows.
The beam passes the Wien filter at times tk ¼ kT with the
integer k labeling the number of passes (¼ turns), i.e.,
k ¼ 1; 2;…; n. A transition from the initial state
jΨð−; 0Þi≡ jΨðþ; 0Þi ¼ jini to the perturbation compo-
nents a†jini and ajini can take place during any pass k.
According to Eqs. (20) and (21) the transition amplitude
belonging to the component a†jini then acquires
cosðkωWFTÞ from the Wien filter potential and, as an
effect of the increase of energy by the creation operator
by ℏωy, an extra phase factor exp½−iðn − kÞωyT� from
the subsequent evolution in the confining potential. Here
k ¼ n directly refers to Eq. (20), while the other cases
0 ≤ k ≤ n − 1 follow from Eq. (21), where Ψð−; 1Þ ¼
Ψð−; 0Þe−iωinT holds specifically for k ¼ 0. The transition
amplitude belonging to the component ajini acquires for
the pass k again the factor cosðkωWFTÞ from the Wien filter
potential but now the complex conjugate phase factor
exp½iðn − kÞωyT� from the subsequent evolution in the
confining potential. Upon the summation of all transitions
from k ¼ 0 to k ¼ n, we obtain to linear order in η

jΨðþ; nÞi

¼
�
1þ i

FyΔtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏγmωy

p ðSðnÞa† þ S�ðnÞaÞ
�
e−inωinT jini;

ð23Þ

2Note that force derived from the potential in Eq. (18),
F̂yðtÞ ¼ − ∂V̂ðtÞ

∂ŷ ¼ Fy cosðωWFtÞ, is the quantum operator
analog of the classical expression Eq. (6). Furthermore,

p̂y ¼ i
ffiffiffiffiffiffiffiffiffiffi
ℏγmωy

2

q
ða† − aÞ is the canonical momentum operator of

the position operator ŷ, such that the canonical commutator
relation ½a; a†� ¼ 1 implies ½ŷ; p̂y� ¼ iℏ and vice versa.
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valid for n ≥ 0, where the accumulated complex-valued
weight factor is given by

SðnÞ ¼ ð1 − δn;0Þ
Xn
k¼1

cosðkωWFTÞ expf−iðn − kÞωyTg

¼ 1 − δn;0
2

�
expð−inωyTÞ − expð−inωWFTÞ

expð−iðωy − ωWFÞTÞ − 1

þ fωWF → −ωWFg
�
: ð24Þ

Now we are in the position to evaluate the driven
oscillation amplitude. To the linear order in the perturbation
parameter η ≪ 1, we obtain the WF-forced expectation
value of the quantum mechanical position operator

yQMðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2γmωy

s
hΨ�ðþ; nÞjða† þ aÞjΨðþ; nÞi

¼ i
FyΔt
2γmωy

hinj½ða† þ aÞ; ðSðnÞa† þ S�ðnÞaÞ�jini

¼ −i
FyΔt
2γmωy

½S�ðnÞ − SðnÞ�hinj½a; a†�jini

¼ −i
FyΔt
2γmωy

½S�ðnÞ − SðnÞ�: ð25Þ

We observe that the scale for yQMðnÞ is set by the
dimensionless perturbation parameter η times the
Heisenberg uncertainty limit Q. And indeed,

FyΔt
γmωy

¼ ηQ ð26Þ

yields yQMðnÞ, which, in view of Eq. (22), contains no
explicit dependence on ℏ.3

It implies that the driven coherent oscillation amplitude
in the deep quantum limit is universal for all particles in the
beam, regardless of their individual quantum excited initial
state, be it a pure state or a mixed state. The crucial point
behind this insight is that the creation, a†, and annihilation,
a, operators enter Eq. (25) in terms of the canonical
commutator ½a; a†� ¼ 1. This is tantamount to the inde-
pendence of the classical driven oscillation amplitude from
the amplitude and phase of the inherent betatron motion
[12]. The amplitude of the rf Wien filter-driven oscillations
of a beam bunch is the same for each individual particle
in the bunch, which is equivalent to the definition of a
coherent oscillation of the beam. The analytic form of the

derived quantum amplitude yQMðnÞ of Eq. (25) is exactly
the same as for ydrivðnÞ ¼ Re zðnÞ from Eq. (12), with ζ

replaced by the ratio −FyΔt
γmωy

, cf. Eq. (9).

A comment on the mixed initial state is in order. Without
loss of generality, we can assume that the density matrix of
such a mixed state reads at turn n

ρ̂ðnÞ ¼
XN
i¼1

wijΨðþ; nÞiihΨ�ðþ; nÞij ð27Þ

with N real-valued weights wi ≥ 0 of normalizationP
N
i¼1 wi ¼ 1. Note that each jΨðþ; nÞii, labeled by the

index i ¼ 1;…; N, evolves from its initial state jinii of
initial energy ℏωini in complete analogy to Eq. (23),
with SðnÞ exactly as in Eq. (24). Inserting jΨðþ; nÞii
into the right-hand side of Eq. (25) we get, because of
hinijða† þ aÞjinii ¼ 0 and hinij½a; a†�jinii ¼ 1, still the
final relation of Eq. (25). Thus the expectation value of
ŷ is given by the following trace relation:

Tr½ŷ ρ̂ðnÞ� ¼
XN
i

wihΨ�ðþ;nÞijŷjΨðþ; nÞii

¼
XN
i¼1

wiyQMðnÞ ¼ yQMðnÞ: ð28Þ

A comment on the higher order quantum corrections to
the above result is in order. The second term, proportional
to η, in the expansion of Eq. (23) is the first order correction
of the unperturbed (initial) state jΨ0ðþ; nÞi ¼ e−inωinT jini,

jΨ1ðþ; nÞi ¼ i
ηffiffiffi
2

p ðSðnÞa† þ S�ðnÞaÞjinie−inωinT: ð29Þ

One of the typical η2 corrections to the above derived first
order term yQMðnÞ is given by

y2ðnÞ ¼ hΨ1ðþ; nÞjŷjΨ1ðþ; nÞi

¼ η2Q

2
ffiffiffi
2

p hinjðS�ðnÞaþ SðnÞa†Þða† þ aÞ

× ðSðnÞa† þ S�ðnÞaÞjini
¼ 0: ð30Þ

The reason for the vanishing corrections is that here
emerges an expectation value of an operator, which con-
tains an odd power of the annihilation operators a, unpaired
with the creation operators a†, and vice versa. This generic
argument holds for other second-order corrections, which
stem from the ∝ η2 corrections to the initial wave function.
This observation is sufficient for the purposes of our
considerations. We can argue that our very special observ-
able, which is an evidently odd function of the force Fy, can

3Note that
ffiffiffi
ℏ

p
cancels when the state (23) is inserted in the

first relation of Eq. (25), subject to the initial condition
yQMð0Þ ¼ hinjV̂ð0Þjini ¼ hinjŷjini ¼ hinjða† þ aÞjini ¼ 0, con-
sistent with ydrivð0Þ ¼ 0 for the classical WF-driven component
in Eq. (8).

SLIM, NIKOLAEV, RATHMANN, and WIRZBA PHYS. REV. ACCEL. BEAMS 26, 014201 (2023)

014201-6



receive corrections, if any, only from the third and higher
odd orders of the perturbation theory.
Beam losses, arising from scattering beyond the beam

acceptance angle or from direct absorption due to inter-
actions with the residual gas, can be accounted for by
augmenting the Schrödinger equation (17) with still
another interaction V̂exðtÞ which couples bound states to
loss states,

iℏ
d
dt
ΦðtÞ ¼ fĤ0 þ V̂ðtÞ þ V̂exðtÞgΦðtÞ: ð31Þ

Within the standard Weisskopf-Wigner-Lee-Oheme-
Yang formalism [26–29], Eq. (31) for the so extended
ensemble of states Φ can be truncated back to the
seemingly non-Hermitian equation for the bound states,

iℏ
d
dt
φðtÞ ¼

�
Ĥ0 þ V̂ðtÞ − iℏ

2τ

�
φðtÞ: ð32Þ

If one takes the ansatz

φðtÞ ¼ ΨðtÞ exp
�
−

t
2τ

�
; ð33Þ

one obtains from Eq. (32) with the attenuation term exactly
the Schrödinger equation (17) for ΨðtÞ. Accordingly, the
above ansatz for φðtÞ admits an obvious interpretation: the
exponential attenuation factor in

jφðtÞj2 ¼ jΨðtÞj2 exp
�
−
t
τ

�
ð34Þ

describes the survival probability of unabsorbed beam
particles, while ΨðtÞ describes the internal evolution of
the unabsorbed state. Thus the expectation value of the
operator ŷ is still given by Eq. (25), which exactly agrees
with ydrivðnÞ. And this implies that the rf-induced coherent
oscillations at ωWF of the centroid of the unabsorbed
beam are still given by yWFðnÞ ¼ −ξy cosðnωWFTÞ with
input from Eqs. (12) and (13).
Finally, it should be noted that the above equality of the

results of quantum mechanics for ultrasmall amplitudes
in the deep quantum regime and classical mechanics for
large amplitudes of driven oscillations can be regarded as
an exemplary case of Ehrenfest’s theorem. We reiterate that
this result was not obvious from the beginning, since
quantum corrections may have gained the upper hand in
the deep quantum region. We presented arguments why this
is not the case.

V. SUMMARY AND CONCLUSIONS

We have presented a quantum mechanical description of
the excitation of coherent betatron oscillations by radio-
frequency electromagnetic fields. Remarkably, one and the

same formula [Eq. (13)] covers the whole range of
amplitudes from large classical ones to well below the
one-particle quantum limit. Neither scattering from the
residual gas nor intrabeam scattering contribute to these
coherent betatron oscillations of the beam centroid.
As far as the prospects of searches for the EDMs of

charged particles in storage ring experiments are con-
cerned, we conclude that in principle the amplitude of
coherent oscillations of the center of mass of a particle
bunch in a storage ring can be measured with an accuracy
of better than one picometer within the framework of the
Heisenberg uncertainty principle. Our analysis may be
applied to other problems involving pulsed excitation of
quantum oscillators.
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