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Difference of measured proton and He3 EDMs: a reduced
systematics test of T-reversal invariance

Richard M. Talman

Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY, USA

E-mail: richard.talman@cornell.edu

Abstract: The upper limit on (time reversal symmetry T-violating) permanent hadron electric
dipole moments (EDMs) is the PSI neutron EDM value; 𝑑𝑛 = (0.0 ± 1.1stat ± 0.2sys × 10−26) 𝑒 cm.
This paper describes an experiment to be performed at a BNL-proposed CLIP project which is to
be capable of producing intense polarized beams of protons, 𝑝, helions (He3 nuclei), h, and other
isotopes. The EDM prototype ring PTR (proposed at COSY Lab, Juelich) is expected to measure
individual particle EDMs (for example EDM_p for the proton) using simultaneous counter-rotating
polarized proton beams, with statistical error ±10−30e.cm after one year running time, four orders
of magnitude less than the PSI neutron EDM upper limit, and with comparable systematic error. A
composite particle, the helion faces T-symmetry constraints more challenging than the proton. Any
measurably large value of

Δ = EDMℎ − EDM𝑝,

the difference of helion and proton EDMs, would represent BSM physics. The plan is to replicate
PTR at BNL. The dominant systematic error would be canceled two ways, both made possible by
phase-locking “doubly-magic” 38.6 MeV proton and 39.2 MeV helion spin tunes. This stabilizes
their MDM-induced in-plane precessions, without affecting their EDM-induced out-of-plane pre-
cessions. The dominant systematic error would therefore cancel in the meaurement of Δ in a fixed
field configuration. Another systematic error cancellation will come from averaging runs for which
both magnetic field and beam circulation directions are reversed. Precise magnetic field reversal is
made possible by the reproducible absolute frequency phase-locking over long runs to eliminate the
need for (impractically precise) magnetic field measurement. Risk of EDM measurement failure is
discussed in a final appendix.
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1 Introduction

This paper is a companion to three other papers, of which only the first is published at present
[1][2][3]. Quite long sections appear, modified slightly at most, in these papers.

References to many historically important storage ring EDM papers, including the 2004, Farley
et al., original paper[4], are given in reference [6].

The current upper limit on (time reversal symmetry T-violating) permanent nuclear electric
dipole moments (EDMs) is the PSI neutron EDM value [7]; 𝑑𝑛 = (0.0±1.1stat±0.2sys×10−26) 𝑒 cm

A series of previous papers has shown how a “prototype ring” (PTR) [8] can be used to model
the performance of precision experiments of electric (EDM) and magnetic (MDM) dipole moments,
with the aim of detecting beyond the standard model (BSM) physics. Until now these proposals
have required the use of a “beam accumulator” ring (BA) to produce the required 1010 minimum
total number of stored countercirculating particles to perform the operations needed to measure,
for example, EDMp for the proton or EDMh for the helion individually. More importantly, it is
what is needed to measure the EDMp − EDMh difference, a combination from which the dominant
systematic EDM error cancels.

This paper emphasizes the dramatic improvement in EDM and MDM measurement capability
made possible by the huge increase in isotope source currents the light ion linac (LIL) component

– 1 –
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of the proposed Center for Linac Isotope Project) CLIP project promises. The paper describes how
this increase in source current will render bunch accumulation in a BA ring unnecessary, reducing
both cost and complexity.

Using (admittedly optimistic) assumptions, the counting statistics EDM error after continuous
running for one year is expected to be ± 10−30 𝑒 cm. This is four orders of magnitude less than the
previous upper BSM physics limit derived from measurement of the neutron EDM (as quoted in
the abstract) which includes both systematic and counting statistics errors).

As originally intended, a major goal for PTR was to measure the proton EDM, in order to guide
the estimation of and minimization of systematics of a full scale, all-electric EDM ring. To reduce
the PTR cost (to k€16,600 in 2020 euros) many cost saving design measures were taken; led by
room temperature (non-cryogenic) operation and the use of inexpensive magnetic shielding.

Using counter-circulating beams of different particle type was first suggested by Koop [9].
Parameters for the baryons Koop discussed are given in Figure 1. Subsequent studies by the

Figure 1. (Exhibited here as the photocopy of the original table to preserve chronology) this table provides
parameters for particle types considered by Koop [9] as possible candidates for EDM determination. Koop’s
symbol “a” for anomalous moment is replaced by 𝐺 in this paper. A necessary, but not sufficient condition,
for a pair of entries to be doubly-magic, is for their 𝐺-values (here 𝑎-values) to have opposite sign, as is
true for 𝑝 and He3. Though true also for 𝑝 and 𝑑 no doubly-magic pairing has, as yet, been found. The
same comment applies to the Li6,Li7 and He3,C13 pairings. Seeming exceptions to this “opposite sign”
rule are the all-electric 233 MeV proton and 14.5 MeV electron EDM rings. This is discussed in detail in
Appendix C.2.

CPEDM group [10] have shown that many systematic errors can be reduced by phase-locked loop,
frequency domain exploitation of “mutual co-magnetometry”. This is epitomized by the doubly-
magic proton-helion combination emphasized in the present paper. Because the proposed ring
has electric and magnetic fields superimposed, the term “mutual co-magnetometry” needs to be
interpreted as including the phrase “in the separate rest frames of the two beams”. As this usage is
novel, the “mutual” modifier is included wherever “co-magnetometry” appears in the sequel.

Significant uncertainties remain concerning the systematic errors associated with storage ring
operation employing superimposed electric and magnetic bending. Though investigation of these
systematic errors will be aided greatly by the above mentioned four order of magnitude improvement
in counting statistics, the systematic EDM𝑝 − EDMℎ difference can only be estimated. Conserva-
tively, the systematic error in individual EDM measurement will initially be less than ± 10−27 𝑒 cm;
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[39] and subject to continuing reduction from this value, exploiting the available statistical accuracy.
This subject is discussed further in Section 11.4.

Doubly-frozen kinematic conditions can always be found for simultaneous counter-circulation
of arbitrarily different pairs of charged particle types in a storage ring having superimposed electric
and magnetic bending. It is always possible for at least one or the other of the beams to be said to
be “magic” by virtue of having its spins “globally frozen”—spins all pointing exactly forward, for
example. In general, though, spins of the other beam can at most be “pseudo-frozen”—meaning
that, viewed stroboscopically at any location the spins “appear” to be frozen because their spin tunes
are rational fractions, such that the spins always return to the same orientation at the observation
point. For certain spin control procedures (those involving spin-phase locking capability) the
pseudo-frozen feature is sufficient, but global freezing is necessary for EDM precession to increase
monotonically for at least several minutes to enable accurate EDM measurement.

The validity of statements in the previous paragraph (many of which are far from obvious a
priori,) and similar statements to follow, is based on carefully finding all real roots of the quartic
Eq. (3.11) and quadratic Eqs. (5.12).

Because of technical limitations, for example the electric or magnetic fields may be unachiev-
ably strong, or polarimetry may not be efficient enough, or have insufficient analyzing power,
conditions that are achievable in principle may not be experimentally practical.

Almost without exception a ring with superimposed electric and magnetic bending is required to
achieve the frozen spins needed for mutual co-magnetometry. With one of the beam polarizations
frozen the magnetic moment of the particles of the other beam particles can be determined by
measuring the spin tune of that beam.

Two leading exceptions that do not require superimposed electric and magnetic fields are 14.5
MeV electrons (of either sign) or 233 MeV protons (of either sign) in purely electric rings1.

For rings with superimposed electric and magnetic bending only two “doubly magic” cases are
known, but there may be others involving higher Z nuclei. The most promising of the known cases
has doubly magic protons and He3 nuclei (of curiously close kinetic energies) both globally frozen;
the doubled helion charge compensates for the approximately doubled momentum. Furthermore,
counter-circulating in a ring of convenient and inexpensive size, excellent polarimetry is also
available. A less promising doubly magic example has counter-circulating protons and positrons.
This case is less promising because the momenta are large enough to require an expensive ring, and
because positron (and electron) polarimetry is not at all robust.

Doubly frozen pairings (with one or the other, but not both, magic) of proton and deuteron
beams, 𝑝𝑝, 𝑝𝑑, 𝑑𝑑, and 𝑑𝑝, are of special interest, both because their EDMs are of pre-eminent phys-
ical importance, and because these pairings can be investigated using well-established equipment
and technology, most of which is currently available.

Along with reproducible accelerating cavity frequency, doubly-frozen, the spin tunes (whose
parameters other than 𝛽, 𝐸0 and 𝐵0 are constants of nature) can be stabilized to precision (inversely)
proportional to run length. This will permit precise electric and/or magnetic field reversal resetta-
bility to be performed. The reason this is important is that systematic errors can then be reduced
by averaging over reversed configurations.

1Even these exceptions are disputed in Appendix C.
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In this way “mutual co-magnetometry” can exploit the “perfect” gyroscopic stabilization pro-
vided by the circulating MDMs themselves. A conceptual design for a storage ring complex capable
of exploiting this technology is presented below. It is based on a reconfiguration of the COSY stor-
age ring complex in Juelich, Germany, which has been the storage ring at which most of the required
spin control technology has been developed.

Electric/magnetic frozen spin storage rings will also be capable of measuring isotope MDM
values with unprecedented precision. Though such rings can be built inexpensively, they are not
very flexible. For this reason they need to be developed using existing facilities that match their
requirements [11].

Because the site for such an accelerator complex has not been formally selected, the ring
circumference C, nominally 100 m, has been left left open in the computer codes producing the
present report. To maintain this flexibility the lattice design described can be expressed in “scale
invariant” form [6]. But, to produce the numerical evaluations needed for concrete visualization,
the PTR circumference is here taken to be C = 102.2 m, as required to fit PTR, along with a bunch
accumulator” (BA) (required for rebunching the Juelich cyclotron proton or deuteron 25 MHz cw-
bunched cyclotron beams) into the COSY, Juelich beam hall. A layout diagram for PTR is shown
in Figure 2. A perspective view of one octant is shown in Figure 3.

2 Testing time reversal symmetry

2.1 Electric dipole moment (EDM) measurement

The excess of matter over anti-matter in the present-day universe suggests the existence of violations
of P and T symmetries substantially greater than are required by the “standard model” of elementary
particle physics. This provides the leading motivation for measuring EDMs, which must vanish if
P and T symmetries are respected.

Ultimate proton EDM measurement has been thought to require simultaneously counter-
circulating, frozen-spin 233 MeV protons in a “large” (depending on achievable electric field,
and ranging ‘in size up to 800 m circumference) nominal all-electric storage ring. A step toward
this goal is the “small” (∼100 m circumference) PTR ring with superimposed electric and magnetic
bending fields. Simultaneously counter-circulating frozen spin proton beams is one of the ultimate
features that can be demonstrated in PTR.

The need for storage rings with predominantly electric bending is based on the requirement to
“freeze the spins” of stored particle beams. This is the first step toward the measurement of electric
dipole moments (EDMs) of the circulating particles, as well as for other symmetry violation
investigations. Electrons (of either sign) along with the proton and triton baryons, are fundamental
particles whose electric EDMs are potentially measurable in all-electric frozen spin storage rings.
With superimposed magnetic bending other particles, especially deuterons and helions (He3 nuclei),
can have frozen spins.

In all cases the EDM values are so small that suppression of systematic errors makes it essential
for the storage ring to support simultaneous counter-circulating beams. With superimposed electric
and magnetic bending, constructive bending superposition in one direction implies destructive
superposition in the other direction. By itself, this does not preclude the possibility of simultaneously
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Figure 2. Lattice layouts for PTR, the proposed “EDM prototype” storage ring. The single quadrant “model
space” figure on the left can be conformally mapped to one quadrant of the “physical space” figure on the
right. Straight lines on the left map to perfect circles on the right. Sector bends, distinuished by blue and red
color, though identical in the nominal design, are separately powered. An extreme “worst case” example,
investigated in Appendix F.1 has blue sectors representing pure electric bending and red sectors representing
pure magnetic bending. In this case, for the deuteron spin tune to cancel, the magnetic an electric arc lengths
would have to be adjusted. A “compromise quadrupole triplet” is shown in the inset on the right. The
magnetic quad doublet and electric quad singlet provide very weak “optical trim correction”. Their strengths
are adjusted individually in the same [𝑀 , [𝐸 ratio as the ring bend strengths. Ideally these corrections would
be exactly superimposed, which would be mechanically challenging. To thin element approximation this
superposition is equivalent. See Appendix B.

counter-circulating beams—but it does require major difference between the beams, either in particle
type or momentum.

In contrast to a “single particle table-top trap”, the essential feature of a storage ring “trap” is
that some 1010 particles can have their spins aligned in a polarized stored beam. As demonstrated
by Hempelmann et al. at the COSY lab [12], this is a number of particles large enough for the
beam polarization to be detected externally, and fed back to permit external control of the beam
polarization. Though the table large enough for any such a “storage ring trap” would be quite large,
the level of achievable spin control, though classical, not quantum mechanical, can be comparable
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Figure 3. Copied from reference [6], a perspective mock-up of one sector of PTR, the superimposed E/M
prototype ring. Two “short-circuited ends”cos \-dipoles surround the beam tube, within which the capacitor
plates are accommodated.

to the control of one or a small number of polarized particles in a low energy trap. Precision spin
tune control at COSY has been pioneered by Eversmann et al. [13].

In true “globally frozen spin” operation the bunch polarizations remain globally frozen, for
example parallel to the circulating beam momentum vector. For all-electric bending this fixes
all kinematic quantities uniquely. But with superimposed electric and magnetic bending, the
frozen spin condition can be met over bands of E/B ratios, specific to particle type. Furthermore,
some experiments can be performed with “pseudo-frozen spins” that appear frozen locally, but not
globally.

The leading observable effect of a static particle EDM would be an “out-of-plane” spin pre-
cession, orthogonal to MDM-induced “in-plane” horizontal spin precession caused by whatever
magnetic and/or electric fields cause the particle orbit to follow a sequence of horizontal circu-
lar arcs. With standard model EDM predictions being much smaller than current experimental
sensitivities, detection of any particle’s non-zero EDM would signal discovery of New Physics.

A “nominal experimental proton EDM detectability target” has conventionally been defined to
be 10−29 𝑒 cm. An EDM of this magnitude could help to account for the observed matter/antimatter
asymmetry of our universe while, at the same time being plausibly (only one or two orders of
magnitude) larger than existing standard model calculations.

Currently the proton EDM upper limit (as inferred indirectly by measuring the Hg atom EDM)
is roughly 2.1×10−25𝑒 cm. [6] The original goal for PTR was to serve as prototype for the nominal,
full-scale, all-electric proton EDM ring. It has been possible, however to make the PTR design
flexible enough to support quite accurate EDM determinations and to achieve other goals, such as
precision measurement of anomalous magnetic moments of light nuclear isotopes.

– 6 –
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2.2 Spin tune comparator measurement of light isotope MDMs and EDMs

(Except for synchrotron radiation) first generation electron/positron colliders such as the Cornell
Electron Storage Ring (CESR) have demonstrated CPT-symmetry, and robust backward/forward
(bf)-symmetry. But the present paper considers only storage rings in which particle spins can
be globally frozen. This rules out rings with pure magnetic bending—there are no candidates.
One turns, therefore, to electric rings. Of special interest are the 232.8 MeV “nominal all-electric”
all-electric proton EDM ring, which has been under discussion for more than a decade. Also of
interest (especially at Wilson Lab) could be a (small) all-electric 14.50 MeV 𝑒+/𝑒−- storage ring in
which globally-frozen spin positrons and electrons can counter-circulate simultaneously.

For particles at rest “co-magnetometry” in low energy “table-top particle traps” has been
essential. For example, Gabrielse [14] has (with excellent justification) described the measurement
of the electron magnetic moment (with 13 decimal point accuracy) as “the standard model’s greatest
triumph”, based on the combination of its measurement to such high accuracy and on its agreement
with theory to almost the same accuracy.

Especially for the direct measurement of EDMs, storage ring technology with beam pairs that
can counter-circulate simultaneously in a storage ring with superimposed electric and magnetic
bending is required. In this context the term “mutual co-magnetometry” can be used to apply to
“beam type pairings” for which both beams have frozen spins. Usually only one of the beams can
be “globally” frozen or “magic”, however.

Surprisingly, counter-circulating beams can follow accurately identical orbits, even when the
bending is performed by superimposed electric and magnetic fields. Here we show how this can
enable the precise comparison of the spin tunes, and hence MDMs, of different elementary particle
types—hence the name “spin tune comparator”. Both beams are assumed polarized and one of the
beam type’s MDM may be much better known than the other; for example 𝑒+ better than 𝑝, or 𝑒−

better than 𝑒+.
To the extent both MDMs are already known, the known ratio can be used to adjust a com-

pensating element to match this ratio. Though EDM measurement is scarcely mentioned in this
spin tune comparator section, this remains the goal and spin tune comparator operation will permit
Koop-wheel rotation reversal with almost arbitrarily high, frequency domain, accuracy. Within
each run a precision EDM measurement (including systematic error contribution) can then be
obtained. Koop [15] argues (persuasively) that intentional roll of the Koop wheel can improve spin
coherence duration. Extraction of the EDM value then relies on linear interpolation of data taken
at negative and positive roll rates to cancel the torque applied to drive the “roll”.

All of the most important measurement methods for ultimate EDM precision can be developed
in the PTR ring. Furthermore, one can be more relaxed about parameter tolerance specifications in
a small “inexpensive” prototype than in an eight times larger eventual “ideal” ring. One of the tasks
for PTR will be to investigate how tight the tolerances have to be, and how easily they can be met.
In this spirit, the present section derives quite tight tolerances to be aimed for (but not necessarily
achieved) for measuring EDMs in a small ring with accuracy rivaling what can be achieved in the
full scale ring. This is work in progress. Unresolved technical issues are discussed in other sections.

Especially for the direct measurement of EDMs, storage ring technology with beam pairs that
can counter-circulate simultaneously in a storage ring with superimposed electric and magnetic
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bending is required. In this context the term “mutual co-magnetometry” can be used to apply to
“beam type pairings” for which both beams have frozen spins. Usually only one of the beams can
be “globally” frozen or “magic”, however.

Compared to the electron, MDM accuracies of all other particles are inferior by three orders of
magnitude or more. A task for a spin-tune-comparator can be to “transfer” some of the electron’s
precision to the measurement of other magnetic dipole moments. For example, the positron EDM
could perhaps be determined to almost the current accuracy of the electron’s, and the (presumed)
equality (in magnitude) of electron and positron MDM’s could be improved by several orders of
magnitude.

Another motivation for developing spin tune comparison capability is to study beam-based
self-compensation and self-calibration. Accurately known counter-circulating MDM’s can be used
to cancel unknown differences between electric and magnetic bending field shapes. “Introspectron”
might be an apt task for such a ring—the purpose then being to investigate its own self-consistency.
This is not without pure physics interest. With spins always a bit mysterious, confirmation (or not)
to high accuracy, that CW and CCW spin tunes are identical could be informative. This possibility
is pursued briefly in Appendix E, which suggests investigation of the Aharonov-Anandan phase.
One supposes that any gravitational phase shift will be opposite for CW and CCW circulation.

The final section contains currently unresolved technical issues, the most important of which
concerns the achievability of strong electric fields surrounded by weak magnetic fields. This is only
an issue for the small prototype ring PTR. For an eight times larger ring, for example situated in the
AGS or Wilson lab tunnel, electric field strengths much in excess of a million volts per meter are
not required (at least for the 𝑝, ℎ EDM difference measurement).

2.3 General relativistic influence on spin precession

Various authors [16][17][18] have pointed out that general relativity (GR) introduces effects that
could be measurable at the precision level promised by proposed EDM rings. A paper by László and
Zimborás [19] has calculated the GR influence on storage rings designed for MDM measurement,
such as the PTR ring under discussion here.

The nominal EDM value can be compared to a general relativistic (GR) out-of-plane precession
effect, mimicking an EDM of the order of 10−28 𝑒 cm, associated with the storage ring’s orientation in
the earth’s magnetic field. Depending on storage ring details, this reliably calculable “background
precession” will provide a “standard candle of convenient magnitude” calibration of any EDM
measurement.

Other GR references include [20][21][22][23]. These authors have calculated the GR effect of
the earth’s gravitational field on the experiment referred to above as the nominal all-electric version
of EDM measurement. They show that the GR effect mimics the EDM effect with a magnitude
such that, if mistakenly ascribed to the proton EDM, would produce a spurious proton EDM value
of 3 × 10−28 𝑒 cm. This is about thirty times greater than the precision anticipated for the ring and
not inconsistent with the Orlov, Flanagan, and Semertzidis estimate [18].

Interpretation of gravitational effect as Aharonov-Anandan spin tune shift is discussed in
Appendix E.

– 8 –
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3 Mutual co-magnetometry provided by common orbits in the same ring

3.1 Fractional bending coefficients

To aid the discussion of rings with superimposed electric and magnetic bending, (to be abbreviated
as “EM-superposition”) fractional bending coefficients [𝐸 and [𝑚 can be defined by

[𝐸 =
𝑞

𝑝𝑐/𝑒
𝐸0𝑟0
𝛽

, [𝑀 =
𝑞

𝑝𝑐/𝑒 𝑐𝐵0𝑟0, (3.1)

neither of which is necessarily positive. These bending fractions satisfy

[𝐸 + [𝑀 = 1 and
[𝐸

[𝑀
=

𝐸0/𝛽
𝑐𝐵0

. (3.2)

The “potencies” of magnetic and electric bending are in the ratio 𝑐𝐵0/(𝐸0/𝛽) because the electric
centripetal force in electric field 𝐸0 is stronger than the centripetal force produced by magnetic
field 𝑐𝐵0 = 𝐸0 by the factor 1/𝛽, as regards bending charge 𝑞 onto an orbit with the given radius
of curvature 𝑟0. Also, when expressed in term of spin tunes, the “potencies” of magnetic and
electrically induced MDM precessions are in the same ratio as the bending potencies. Defining a
“normalized momentum”

𝑝 =
𝑝𝑐/𝑒
𝑞

, (3.3)

the fractional bending coefficients can be expressed in terms of “Brho” and “Erho” factors;

[𝐸 =
1
𝑝
𝐸0𝑟0/𝛽 =

𝐸0𝑟0/𝛽
𝐸0𝑟0/𝛽 + 𝑐𝐵0𝑟0

, [𝑀 =
1
𝑝
𝑐𝐵0𝑟0 =

𝑐𝐵0𝑟0
𝐸0𝑟0/𝛽 + 𝑐𝐵0𝑟0

. (3.4)

With superimposed electric and magnetic fields, the combination 𝐸0𝑟0/𝛽+ 𝑐𝐵0𝑟0 plays the role that
𝑐𝐵𝑟0 plays for purely magnetic lattices. This imports into EM-superposition the “geometrization
of transverse optics”—which is to say “Newtonian optics with lens strengths quantified by focal
lengths”. An essential inference from Eqs. (3.1) through (3.4) is that, if forward and backward focus-
ing strengths are in the same ratio as E/M bending strengths then the forward and backward focal
lengths are in the same ratio as the normalized 𝑝 values. This is strictly true for vertical focusing
(irrespective of electric and magnetic bending fractions) but true only to a first approximation (i.e.
vanishing in the [𝑀 = 0 limit) for horizontal focusing. With this limitation, forward and backward
focal lengths will be the same, element by element and, for a lattice that is forward/backward sym-
metric the forward and backward 𝛽𝑦-functions will be identical and the 𝛽𝑥-functions approximately
the same.

This issue is discussed in numerical detail in Section 6. It is shown that forward/backward
symmetry can be satisfied closely but not quite exactly in the PTR ring. Though it is possible
to superimpose electric and magnetic bending with high precision, it is much more difficult to
superimpose electric and magnetic lumped quadrupole fields. For this reason, a significant fraction
of the present paper is devoted to designing a PTR ring that is stable and robust, using toroidal field
shaping electrodes and magnet coils along with “triplet, compromise quadrupoles” (described in
detail in Appendix B) that approximately superimpose electric and magnetic lumped quadrupoles
in the same ratio as the bending fields. To linearized order, the lattice properties will then be almost
identical for forward and backward traveling beams.
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3.2 Frozen spin mutual co-magnetometry

In the idealized storage ring to be discussed, the electromagnetic fields are “cylindrical” electric
E = 𝐸0x̂𝑟0/𝑟 (with 𝐸0 < 0) and, superimposed, uniform magnetic field B = 𝐵0ŷ (with 𝐵0 > 0).
The bend radius is 𝑟0 > 0. Terminology is useful to specify the relative polarities of electric and
magnetic bending: Cases in which both forces cause bending in the same sense will be called
“constructive” or “frugal”; Cases in which the electric and magnetic forces subtract will be referred
to as “destructive” or “extravagant”.

For a particle with spin circulating in a (horizontal) planar magnetic storage ring, its spin
precesses around a vertical axis at a rate proportional to the particle’s anomalous magnetic dipole
moment, 𝐺. For an “ideal Dirac particle” (meaning 𝐺 = 0) in a purely magnetic field the spin
precesses at the same rate as the momentum—pointing always forward, for example. Conventionally
the spin vector’s orientation is specified by the angle 𝛼 between the spin vector S and the particle’s
momentum vector p (which is tangential, by definition). For such a “not-anomalous” particle the
spin-tune 𝑄𝑀 (defined to be the number of 2𝜋 spin revolutions per particle revolution) therefore
vanishes, in spite of the fact that, in the laboratory, the spin has actually precessed by close to 2𝜋
each turn.

In general, spin 1/2 particles are not ideal Dirac particles; the directions of their spin axes
deviate at a rate proportional to their anomalous magnetic moments, 𝐺, and their spin tunes differ
from zero even in a purely magnetic field. Note also, that a laboratory electric field produces a
magnetic field in the particle rest frame, so a particle in an all-electric storage ring also has, in
general, a non-vanishing spin tune 𝑄𝐸 . Along with 𝐺 and 𝑄, all of these comments apply equally
to the polarization vector of an entire bunch of polarized circulating particles.

By convention, in the BMT-formalism [24][25], the orientation of the spin vector S′ is defined
and tracked in the rest frame of the circulating particle, while the electric and magnetic field vectors
are expressed in the lab. The spin equation of motion with angular velocity 𝜔 is

𝑑S′

𝑑𝑡
= 𝜔 × S′, (3.5)

with orbit in the horizontal (𝑥, 𝑧) plane assumed, where

𝜔 = − 𝑞𝑒

𝛾𝑚𝑐

((
𝐺𝛾

)
𝑐𝐵0 +

( (
𝐺 − 1

𝛾2 − 1
)
𝛾𝛽2

) 𝐸0
𝛽

)
ŷ

≡ − 𝑞𝑒

𝛾𝑚𝑐

(
(𝑄𝑀 )𝑐𝐵0 + (𝑄𝐸 ) 𝐸0/𝛽

)
ŷ, (3.6)

With Δ𝛼 being the in-plane spin precession advance relative to the beam direction each turn, the
“spin tune” is defined to be 𝑄𝑠 = Δ𝛼/(2𝜋). Spin tunes in purely electric and purely magnetic rings
are given by

𝑄𝐸 = 𝐺𝛾 − 𝐺 + 1
𝛾

, 𝑄𝑀 = 𝐺𝛾, (3.7)

where 𝛾 is the usual relativistic factor. Note that the sign of 𝑄𝑀 is the same as the sign of 𝐺,
which is positive for protons—proton spins precess more rapidly than their momenta in magnetic
fields. Deuteron spins, with 𝐺 negative, lag their momenta in magnetic fields. With 𝐺 positive,
𝑄𝐸 increases from -1 at zero velocity, eventually switching sign at the “magic” velocity where
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the spins in an all-electric ring are “frozen” (relative to the beam direction). When a particle spin
has precessed through 2𝜋 in the rest frame it has also completed one full revolution cycle from a
laboratory point of view; so the spin-tune is a frame invariant quantity.

3.3 Forward-backward beam pairings

For brevity one can discuss just electrons (of either sign), protons(𝑝), deuterons(𝑑), tritons(𝑡), and
helions(ℎ); or even just 𝑝, 𝑑, and ℎ, based on the consideration that (with the exception of helion
beam) most of the apparatus, and all of the technology, needed for their EDM measurement is
presently available at COSY laboratory in Juelich, Germany. Polarized helion beams of appropriate
energy will soon be available at BNL.

The circulation direction of a so-called “master beam” (of whatever charge 𝑞1) is assumed to
be CW or, equivalently, 𝑝1 > 0. A secondary beam charge 𝑞2 is allowed to have either sign, and
either CW or CCW circulation direction.

Ideally both beam polarizations would be frozen “globally” (meaning spin tune 𝑄𝑆 is zero and
the angle 𝛼 between polarization vector and momentum is constant everywhere around the ring).
(Somewhat weaker) “doubly-frozen” can (and will) be taken to mean that a “primary beam” locked
to 𝑄𝑆 = 0, circulates concurrently with a “secondary” beam that is “pseudo-frozen”, meaning
the spin tune is locked to an unambiguous, exact, rational fraction (other than zero). Only if
the secondary beam rational fraction is exactly zero, would the terminology “doubly-magic” be
legitimate.

Such particle pairings are expected to make direct MDM or EDM difference measurements of
unprecedented precision possible. For any arbitrary pairing of particle types (𝑝, 𝑝), (𝑝, 𝑑), (𝑝, 𝑒+),
etc., continua of such doubly-frozen pairings are guaranteed. This is taken to imply that both beam
polarizations can be phase-locked, which is one of the requirements for mutual co-magnetometry.

A design particle has mass 𝑚 > 0 and charge 𝑞𝑒, with electron charge 𝑒 > 0 and 𝑞 = ±1 (or
some other integer). These values produce circular motion with radius 𝑟0 > 0, and velocity v = 𝑣ẑ,
where the motion is CW (clockwise) for 𝑣 > 0 or CCW for 𝑣 < 0. With 0 < \ < 2𝜋 being the
cylindrical particle position coordinate around the ring, the angular velocity is 𝑑\/𝑑𝑡 = 𝑣/𝑟0.

(In MKS units) 𝑞𝑒𝐸0 and 𝑞𝑒𝛽𝑐𝐵0 are commensurate forces, with the magnetic force relatively
weakened by a factor 𝛽 = 𝑣/𝑐 because the magnetic Lorentz force is 𝑞𝑒v × B. By convention 𝑒

is the absolute value of the electron charge. When 𝑒 appears explicitly, usually as a denominator
factor, its purpose in MKS formulas is to allow energy factors to be expressed in electron volts
(eV) in formulas for which the MKS unit of energy is the joule. Newton’s formula for radius 𝑟0

circular motion, expressed in terms of momentum and velocity (rather than just velocity, in order
to be relativistically valid) can be expressed using the total force per unit charge in the form

𝛽
𝑝𝑐

𝑒
=

(
𝐸0 + 𝑐𝛽𝐵0

)
𝑞𝑟0, (3.8)

Coming from the cross-product Lorentz magnetic force, the factor 𝑞𝛽𝑐𝐵0 is negative for backward-
traveling orbits because the 𝛽 factor is negative.

A “master” or primary beam travels in the “forward”, CW direction. For the secondary beam,
the 𝛽 factor can have either sign. For 𝑞 = 1 and 𝐸0 = 0, formula (3.8) reduces to a standard
accelerator physics “cB-rho=pc/e” formula. For 𝐸0 ≠ 0 the formula incorporates the relative
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“bending effectiveness” of 𝐸0/𝛽 compared to 𝑐𝐵0. As well as fixing the bend radius 𝑟0, this fixes
the magnitudes of the electric and magnetic bend field values 𝐸0 and 𝐵0. To begin, we assume
the parameters of a frozen spin “master”, charge 𝑞𝑒, particle beam have already been established,
including the signs of the electric and magnetic fields consistent with 𝛽1 > 0 and 𝑝1 > 0. In
general, beams can be traveling either CW or CCW. For a CCW beam both 𝑝 and 𝛽 have reversed
signs, with the effect that the electric force is unchanged, but the magnetic force is reversed. The 𝛽

velocity factor can be expressed as

𝛽 =
𝑝𝑐/𝑒√︁

(𝑝𝑐/𝑒)2 + (𝑚𝑐2/𝑒)2
. (3.9)

Introducing the abbreviations,

E = 𝑞𝐸0𝑟0, and B = 𝑞𝑐𝐵0𝑟0, (3.10)

it has been shown in the companion paper [1] that all circular orbits satisfy the equation

𝑝4
𝑚 − 2𝑐𝐵0(𝑞𝑟0)𝑝3

𝑚 + (B2 − E2)𝑝2
𝑚 − E2𝑚2 = 0, (3.11)

where 𝑝𝑚 is the momentum of a particle of mass 𝑚.
Curiously, expressed as a quartic equation for 𝑝𝑚, the absence of a term linear in 𝑝𝑚 causes

this equation to be “independent of 𝑟0” (or rather of the product “𝑞𝑟0”) in the sense that the product
factor (𝑞𝑟0) can be chosen arbitrarily without influencing any essential implications derivable from
the equation. This and other properties can be confirmed by pure algebraic reasoning, based on the
missing linear in 𝑝𝑚 factor, or by explicit partially-numerical factorization of the left hand side into
the product of four factors linear in 𝑝𝑚.

Independence of the 𝑞𝑟0 has huge importance for planning any EDM ring prototype. In the
present paper, Tables 2, 3, 5, and 6 give parameters for rings of bending radius, respectively, 11.0 m,
50.0 m, 95.5 m, and 85.0 m. In every case, in spite of the seeming complexity of these tables, 𝑟0 can
be changed arbitrarily without difficulty. The electric and magnetic fields need only to be scaled
inversely to match the kinematic parameters to the bending radius. In this sense the 11.0 m PTR
ring is a faithful prototype for the eight times larger “nominal full scale” rings.

These considerations have removed some, but not all of the sign ambiguities introduced by the
quadratic substitutions used in the derivation of Eq. (3.11). The electric field can still be reversed,
thereby doubling the set of solutions of the equation. Note that this change cannot be compensated
by switching the sign of 𝑞, which also reverses the magnetic bending.

It is important also to realize, in cases where efficient polarimetry is available, that the sign
of 𝐵 (or 𝐸) can be reversed or reset to high accuracy without the need even to measure 𝐵 (or 𝐸).
This feature, exploiting the constancy of electron MDMs, has enabled the masses of all resonances
discovered in electron/positron colliders to be determined with such high accuracy.

3.4 Electric and magnetic contributions to spin tune

The combined field spin tune 𝑄𝑠 can be expressed in terms of the fractional bending coefficients;

𝑄𝑆 = [𝐸𝑄𝐸 + [𝑀𝑄𝑀 . (3.12)
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Superimposed electric and magnetic bending permits beam spins to be frozen “frugally”; i.e. with
a ring smaller than would be required for all-electric bending; for spin tune 𝑄𝑆 to vanish requires

𝑄𝑆 = [
𝐸
𝑄𝐸 + (1 − [

𝐸
)𝑄𝑀 = 0. (3.13)

Solving for [
𝐸

and [
𝑀

,

[
𝐸
=

𝐺𝛾2

𝐺 + 1
, [

𝑀
=

1 + 𝐺 (1 − 𝛾2)
𝐺 + 1

=
1 − 𝐺𝛽2𝛾2

𝐺 + 1
. (3.14)

For example, with proton anomalous magnetic moment𝐺 𝑝 = 1.7928474, trying 𝛾 = 1.25, we obtain
[
𝐸
= 1.000 which agrees with the known proton 233 Mev kinetic energy value in an all-electric

ring. For protons in the non-relativistic limit, 𝛾 ≈ 1 and [NR
𝐸

≈ 2/3.
The electric/magnetic field ratio for the primary beam (with anomalous moment 𝐺1) to be

magic is
[𝐸

[𝑀
=

𝐸0/𝛽
𝑐𝐵0

=
𝐺1𝛾

2
1

1 − 𝐺1𝛽
2
1𝛾

2
1
. (3.15)

For given 𝛽1, along with this equation and the required bend radius 𝑟0, this fixes the electric and
magnetic fields to the unique values that globally freeze the primary beam spins. With 1 → 2
subscript replacement, the same frozen beam formulas apply to the secondary beam; note, though,
that the 𝛽 factor has opposite sign. To be “doubly-magic” both beams must satisfy this relation. At
this time the only known dual solutions are (𝑝, 𝑝), (𝑝, ℎ), and (𝑝, 𝑒+).

4 Prototype ring (PTR) EDM measurement capability

4.1 Toroidal focusing PTR lattice design

Responsible planning for an eventual “nominal all-electric” all-electric EDM storage ring with
simultaneously counter-circulating E = 232.8 MeV frozen spin proton beams requires the con-
struction of a prototype ring (PTR). To maintain flexibility the PTR lattice design initially is
“scale-invariant” and site independent. But, for numerical examples: C=102.5 m, roughly 1/8 scale
relative to the nominal all-electric ring. Except for construction itself, PTR needs only present day
technology and apparatus available in the COSY facility.

Though planned initially as a prototype, and constrained by cost minimization compromised
performance, PTR will, itself, be capable of the performance promised in the title of the present
paper. This is largely the result of improved understanding of the EDM measurement capability
improvement produced by spin tune phase-locking, understanding the BSM power of measuring the
difference of proton and helion EDMs, and recognizing that “quadrupole free” toroidal focusing
will assure long spin coherence time, especially with betatron phase space “mixing” provided by
running on the “difference resonance”.

There is a substantial literature describing the physical importance of measuring EDMs of
elementary particles. The most recent comprehensive report is due to the CPEDM collaboration,
based mainly on experience of the JEDI group using the COSY ring in Juelich, Germany, and
described in a CERN Yellow Report [6] (referred to here as “CYR”) feasibility study for a storage
ring to search for EDMs of charged particles.
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Measurement of the proton EDM relies on the development of a storage ring with predominantly
electric bending, capable of storing simultaneously counter-circulating frozen spin proton beams.
A conclusion of the CYR study is that a low energy prototype EDM ring, here referred to as “PTR”,
as economical as practical, is needed to investigate problematical issues.

The Phase I goals for PTR are, first, to store an intense (not necessarily polarized) proton beam
and, second, to store a simultaneous counter-circulating beam. Phase II will superimpose magnetic
bending in order to store and freeze an intense frozen-spin 45 MeV proton beam.

There is considerable overlap between Chapter 7 of the CYR report and the present paper.
Figure 3 is a perspective mock-up of one sector of PTR copied from that report. Though the PTR
superperiodicity is 𝑁super = 4, it is sufficient for most purposes to display just one octant. The ring
is also forward/backward symmetric. There have been substantial lattice design changes subsequent
to the CYR manuscript commit date. The currently revised design is exhibited in Figure 2.

Quadrupoles are shown but, as mentioned previously, they are intended to be as weak as
possible, consistent with their main roles, which are to enable operational procedures requiring
large changes in ring optics, and to compensate for any unexpected systematic optical deficiencies
associated with the fabrication of the toroidal electrodes.

Based on much the same optics that has enabled scanning transmission electron microscopy
(TEM and STEM) of such spectacularly acute spatial resolution, toroidal focusing can be expected
(for the same reason) to provide exceptionally long spin coherence times (SCT) for polarized beams.
This can be expected to enable experimentation into the role played by particle spin in time-reversed
situations.

The decision to rely entirely on toroidal focusing, carries with it a significant operational penalty
resulting from the fact that, once fabricated, no smooth way of tuning the toroidal focusing 𝑚 value
has been established. Theoretical discussion of these issues in detail is contained in companion
paper [2]. Cancellation of spin polarization decoherence is greatly enhanced by toroidal focusing.
As mentioned at the start of this paper there is considerable overlap of that paper with this paper.
Here we list only essential references from that paper: [26], [27], [29], [30], [31], [32], [33], [34],
[35]. In combination, along with other technical details, these papers explain how the requirement
of conformal invariance is satisfied by the PTR design in the present paper.

The dominant bending and focusing is performed by the red and blue toroidal sectors shown
in Figure 2. The 𝑚-values are displaced slightly, with 𝑚blue 5 𝑚red. The purpose for this is to
preserve flexibility while the focusing design is being refined. At the time of final construction it
will be preferable for red and blue sectors to be identical. Otherwise, every sector bend has identical
superimposed electric and magnetic bending. As fabricated, all magnet bends will probably be
powered in series (with possible small shunt compensation) and all electrode voltages only slightly
adjustable (for closed orbit steering).

In spite of the small number of adjustable parameters, there is sufficient flexibility to tune PTR
to some of the operational MODES mentioned in previous reports. Computationally the optical
design has been performed using a MAPLE-BSM code, where “BSM” is an acronym for “Belt and
Suspenders, Modifiable”. The lumped quadrupoles can provide the somewhat stronger (separated
function) focusing needed for robust ring commissioning operations. However, a COLLIDING
BEAM mode described in previous reports cannot be achieved. This is because backward/forward
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symmetric “low beta squeeze” (for increased luminosity) is impractical with superimposed electric
and magnetic bending.

As well as violating forward/backward lattice function symmetry, lumped quadrupoles in-
evitably introduce chromaticity into ring optics. Customarily in storage rings this chromaticity is
compensated by one, or typically, at least two, families of sextupoles. Such sextupoles prove to be
acceptable for unpolarized beams, but their presence impairs the ring performance for polarized
beams. Their presence is the leading cause of spin precession decoherence, which limits the spin
coherence time (SCT). For ultimate EDM measurement precision, it will therefore be essential for
the lumped quadrupoles to be as weak as possible.

As mentioned previously, the various lattice optical designs are scale invariant and site-
independent. But, to make lattice parameters and plots more intuitive, the ring circumference
is taken to be 102.5 m, matched exactly to the ring circumferences of the proposed bunch accumu-
lator (BA) described below. As fixed by this circumference, in all subsequent lattice function plots,
the horizontal axis coordinate is the longitudinal position coordinate 𝑠.

Figure 4. Photocopied, for emphasis, from a historically important paper of Albrecht [27] who provided the
original toroidal focusing formulation. “Physical space” analytic complex function on the left is conformally
mapped to “model space” analytic complex function on the right. This figure shows field lines and equipo-
tential contours in the central horizontal ring plane for the toroidal coordinate system used in developing the
Wollnik transfer matrices used in the present paper. Electrodes cut from the full toroid surface are shown
by bolder curve sections. Electrically isolated, they are held at equal but opposite electric potentials, with
electric field lines joining exactly normal at both electrodes. Electrodes, and normal entry particle trajectories
are perfect circles. The Wollnik linear transfer matrices used in the present paper correspond to propagation
through the good field regions between these electrodes.

4.2 EDM measurement strategy

As regards the orientation of the beam polarization, it is essential to distinguish between “in-plane”
and “out-of-plane” orientations, where “the plane” refers to the ring beam plane, which is presumed
to be horizontal. In-plane precession, is routinely induced by ideal (rest frame) magnetic fields
acting on beam particle magnetic dipole moments (MDMs). Ideally, out-of-plane precession can
be induced only by P- and/or T-violating symmetry violating torques due to electric fields acting on
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particle EDMs. But, in practice, the inevitable existence of unintentional magnetic fields acting on
particle MDMs can also induce out-of-plane precession. The average radial magnetic field 〈𝐵𝑟 〉 is
expected to be the dominant source of systematic error in the determination of particle EDMs.

The leading strategy for reducing this source of systematic error is to produce simultaneously
counter-circulating frozen spin beams on “identical” orbits. This condition is to be achieved by
adjusting local vertical beam deflection corrections to cause the counter-circulting orbits to be
identical. This cancels the dominant systematic error source 〈𝐵𝑟 〉 by canceling the average out-of-
plane (vertical) orbit separation. We refer to this capability as “self-magnetometry”. The precision
with which the orbits can be matched vertically depends on the precisions of the beam position
monitors (BPMs) that measure the vertical beam positions, and on the ring lattice sensitivity to the
magnetic field errors causing the orbits to be vertically imperfect.

Assuming both beam spins are frozen, at least the “primary” beam−1 will, by convention,
be globally frozen; spin tune 𝑄𝑠1 = 0. Ideally both beams would have 𝑄𝑠 = 0 but, ordinarily,
the “secondary” beam-2 will be only locally frozen; 𝑄𝑠2 exactly equal to a rational fraction other
than 0/1. In this condition both beam polarizations can be phase-locked, allowing both beam
spin tunes to be set and re-set with frequency domain precision, meaning that synchronism can be
maintained for runs of arbitrary duration. Since the RF frequency can also be restored to arbitrarily
high precision, conditions can be set and re-set repeatedly, without depending upon high precision
measurement to the electric and magnetic bend fields. This allows, for example, the magnetic
bending field to be reversed with high precision, as would be required to interchange CW and CCW
beams. This capability can be referred to as stabilizing all fields by phase locking both revolution
frequencies and both beam polarizations, using their own MDMs as “magnetometric gyroscopes”.

4.2.1 Encapsulation of the EDM measurement strategy

• Use threefold phase locking:

1. Primary beam 1, CW, globally frozen

2. Secondary beam 2, CCW, in general, locally (𝑄𝑠 = non-zero rational fraction) frozen

3. Synchronous bunch capture onto almost identical orbits with different “best matched”
beam 1 and beam 2 harmonic numbers in a common RF cavity,

• which accurately matches beam 1 and beam 2 orbits.

• and allows conditions to be reset precisely, including magnetic or electric field reversal, with-
out the need for unachievably high precision direct electric and magnetic field measurement.

• This supports averaging over interchange of conditions to reduce systematic error. 2

2Recent “table-top” measurements of molecular EDMs have been surveyed by Alarcon et al.[28] Due to the physical
complexity of these laboratory experiments, it is impractical to reverse the direction of molecular beam transversal. The
fact that the storage ring EDM measurement has no such limitation enables some systematic errors to be cancelled by
averaging over forward and backward transversals.
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4.3 High intensity beam injection from CLIP to replace bunch accumulation using BA

Figure 5 displays a conjectured placement of PTR in the polarized beam injection line of the
(currently under review) BNL Center for Linac Isotope Production (CLIP), including the proposed
light Ion linac (LIL). The anticipated polarized injected beam currents from LIL are a factor of
roughly 6000 times larger than from the COSY cyclotron described previously. This is comparable
with the 10,000 times increase in bunch current promised by the BA bunch accumulator shown in
Figure 6.

Furthermore CLIP promises a gourmet menu of polarized nuclear isotopes, including most, if
not all, shown on Koop’s menu, Figure 1. Most exciting of all the choices is the combination of
protons, 𝑝, and helions, ℎ. It is this pairing that can provide the most precise test of BSM physics
that is likely to be achievable in the quite near future. Furthermore the range of available beam
energies is luxurious enough to require no detailed discussion.

As mentioned previously, mutual co-magnetometry with PTR can be expected to permit con-
venient and precise MDM measurements for any nuclear isotope having lifetime in excess of a
minute or so. Because of its concentration on the proton/helion EDM difference measurement, this
capability is not discussed further in the present paper.

5 Lattice design and performance

5.1 Ideal thick lens toroidal focusing

Transfer matrices from one symmetry point to the next of a storage ring with superperiodicity 𝑁𝑠

have the form

M1 =

(
cos ` 𝛽 sin `

− sin `

𝛽
cos `

)
≡

(
𝐶 𝛽𝑆

− 𝑆
𝛽

𝐶

)
, (5.1)

where ` can stand for `𝑥 or `𝑦 , 𝛽 can stand for 𝛽𝑥 or 𝛽𝑦 and similarly for 𝐶 ≡ cos ` and 𝑆 ≡ sin `.
Squaring M1 and applying trigonometric identities produces

M2 ≡ M2
1 =

(
cos 2` 𝛽 sin 2`
− sin 2`

𝛽
cos 2`

)
. (5.2)

Squaring again and applying trigonometric identities produces

M4 ≡ M4
1 =

(
cos 4` 𝛽 sin 4`
− sin 4`

𝛽
cos 4`

)
. (5.3)

By applying these formulas separately to horizontal, 𝑥, and vertical, 𝑦 transverse coordinates
produces

Mx
4 ≡ Mx

1
4
=

(
cos 4`𝑥 𝛽𝑥 sin 4`𝑥

sin 4`𝑥

𝛽𝑥
cos 4`𝑥

)
and My

4 ≡ My
1

4
=

(
cos 4`𝑦 𝛽𝑦 sin 4`𝑦

− sin 4`𝑦

𝛽𝑦
cos 4`𝑦

)
. (5.4)

What makes these formulas fascinating is that the parameters 𝛽𝑥 and 𝛽𝑦 can be chosen arbitrarily,
and not necessarily equal. This is important for maintaining conformal mapping validity with
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Figure 5. Cut and paste mock-up envisaging PTR within the CLIP complex. Above, shown in outline only,
the small ring is the existing booster, and the larger structure is the AGS. Proposed new structures are shown
in color. Below is PTR, shown as if situated in the vicinity of (slightly canted and blown-up) copy of (orange)
CLIP Building 1, with beam injected from CLIP.

a substantial fraction of the horizontal focusing being “geometric” which does not contribute to
vertical focusing. Then, by constraining the betatron phase advances `𝑥 and `𝑦 , for example as

`𝑥 = `𝑦 +
𝜋

2
, (5.5)

one obtains simpler relations. In this case

4`𝑥 = 4`𝑦 + 2𝜋 eff.
= 4`𝑦 , (5.6)
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since increasing an angle by 2𝜋 has no detectable effect. In this paper lattice design meeting this
constraint is referred to as “ideal, thick lens toroidal focusing”. Even simpler for tuning the PTR
ring would be the choice `𝑥 ≈ 𝜋/2, in which case

Mx
4 ≈

(
1 𝛽𝑥 sin 4`𝑥

− sin 4`𝑥

𝛽𝑥
1

)
and My

4 =

(
1 𝛽𝑦 sin 4`𝑦

− sin 4`𝑦

𝛽𝑦
1

)
, (5.7)

which are close to identity matrices which, in linear approximation, describe drifts of length
𝛽𝑥 sin 4`𝑥 and 𝛽𝑦 sin 4`𝑦 with (small) 2,1 elements representing weak net focusing). 𝛽𝑥 and 𝛽𝑦

are independently adjustable, and all matrix elements are simply expressible in terms of the two
parameters, 𝐶 and 𝑆, defined in Eq. (5.1) and satisfying the condition 𝑆2 + 𝐶2 = 1.

Currently the PTR lattice design shown in Figure 2 applies these formulas only up to Mx
2

and My
2. For operational flexibility, the ring optics is then controllable by the triplets (located at

symmetry points) and masquerading as superimposed electric/magnetic quadrupoles. In this sense
the ring behavior will resemble a separated function FODO lattice with free, arbitrarily strong, 𝐹
and 𝐷 focusing strength parameters. (All of this has to be consistent with 𝐹 and 𝐷 being turned off
as nearly as possible during actual EDM measurement.)

5.2 Transfer matrix for beam evolution through toroidal bending elements

The content of this paper has been limited to this point, mainly to resolving issues identified in
the (pre-Covid) CERN Yellow Report. “Covid-enforced leisure” has resulted in the revolutionary
promotion of PTR from “EDM prototype ring” to “ambitious research project” as explained so far
and in the rest of the paper.

All-electric bending fields exist in the tall slender gaps between inner and outer, almost-plane-
vertically, curved-horizontally, electrodes. The radial electric field dependence is

𝐸 = 𝐸𝑟 ∼ −1
𝑟1+𝑚 , (5.8)

Our convention has the electric field 𝐸0 being negative since the nominal beam charge is positive
and the force is centripetal. The corresponding electric potential parameterization specializes to
inverse power law dependence on the bend radius 𝑟 with the electric potential defined to vanish on
the design orbit; expressed as power series in b = 𝑥/𝑟 , it is given by

𝑉 (𝑟) = 𝐸0𝑟0
𝑚

(
(1 − b)𝑚 − 1

)
(5.9)

= −𝐸0𝑟0

(
b + 1 − 𝑚

2
b2 + (1 − 𝑚) (2 − 𝑚)

6
b3 . . .

)
.

This formula simplifies spectacularly for the Kepler 𝑚=1 case. As it happens, for relativistic
particles, 𝑚 = 1 also marks the edge of a region to which the term “toroidal optics” applies. Beyond
this edge orbits spiral in toward the center. The other edge is marked by the 𝑚 = 0 “cylindrical
edge”; beyond this edge vertical orbits diverge to infinity. These edges are defined more accurately
below by Eqs. (5.12).

For focusing index in the (approximate) range 0 < 𝑚 < 1 linearized horizontal evolution of
initial displacement vector Vx0 through a thick bending and focusing element element of length 𝑤
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is given by

Vx1 = M4Vx0 =

©«
𝑐𝑥 𝑠𝑥 0 𝑑𝑥𝑁𝑡

−𝑘2
𝑥𝑠𝑥 𝑐𝑥 0 𝑠𝑥𝑁𝑡/𝑟0

−𝑠𝑥𝑁𝑡/𝑟0 −𝑑𝑥𝑁𝑡 1 −𝑁2
𝑡

0 0 0 1

ª®®®®¬
Vx0, where Vx0 =

©«
𝑥0

\𝑥0

𝑠

𝛿𝑝/𝑝

ª®®®®¬
(5.10)

Vy1 = M2Vy0 =

(
𝑐𝑦 𝑠𝑦

−𝑘2
𝑦𝑠𝑦 𝑐𝑦

)
Vy0, where Vy0 =

(
𝑦0

\𝑦0

)
. (5.11)

The parameters are given by

𝑘𝑥 =
1
𝑟0

√︂
1 − 𝑚 + [𝐸

𝛾2 , 𝑘𝑦 =
1
𝑟0

√
𝑚, 𝑁𝑡 = 1 + [𝐸

𝛾2 , (5.12)

where 𝑁𝑡 accounts for time dilation. The transfer matrix components for elements of length 𝐿 are
expressed in terms of expressions

𝑐𝑥 = cos(𝑘𝑥𝐿), 𝑠𝑥 = sin(𝑘𝑥𝐿), 𝑑𝑥 =
1 − 𝑐𝑥

𝑟0𝑘
2
𝑥

, 𝑡𝑑 =
𝑘𝑥𝐿 − 𝑠𝑥

𝑟2
0𝑘

2
𝑥

, 𝑐𝑦 = cos(𝑘𝑦𝐿), 𝑠𝑦 = sin(𝑘𝑦𝐿).

(5.13)
Due originally to Wollnik [36], but here expressed in more conventional modern notation, these
formulas have been copied from Lebedev [37], except for having been further generalized to allow
superimposed electric and magnetic bending. 3

This accounts for the appearance of [𝐸 in Eqs. (5.12). (Recall that [𝐸 + [𝑀 = 1, noting
that one or the other of [𝐸 and [𝑀 can be negative, in which case the centripetal forces combine
“destructively”. But the fractions must sum to 1 to produce the correct 𝐸/𝐵 bend ratio.)

Operating on orbit displacement vector V, MV(𝐿) describes, to linear approximation, how
V has evolved after propogation through bend element of length 𝐿. For pure magnetic bending
[𝐸 = 0. For partial electric bending the 1 + [𝐸/𝛾2

0 combination, which approaches 1+[𝐸 in the
nonrelativistic limit, is a velocity dependent time dilation correction factor which modifies dilated
time 𝑡𝑑 as well as the “geometric focusing” supplied by the curvature.

3Subtle detail: ring tunes estimated from transfer matrices based on accepting large values of 𝐿 in advance in
Eqs. (5.13) may be seriously incorrect due to incorrect aliasing with thick element focusing. Rearranging Eqs.4.6 from
reference [1], and solving for tan𝜓 produces an expression for phase 𝜓(𝑠) in terms of matrix elements evaluated locally,
for example at arbitrary origin;

𝜓(𝑠) = tan−1 M1,2 (0, 𝑠)
𝛽0M1,1 (0, 𝑠) − 𝛼0M1,2 (0, 𝑠)

. (5.14)

Like all inverse trigonometric formulas, this equation has multiple solutions. But, with the .sxf granularity being
required to be fine enough, one can (in principle) sequentially obtain unique phases. With 𝜓(𝑠) starting from 𝜓(0) = 0,
as 𝑠 increases from 𝑠𝑖 to 𝑠𝑖+1 there is a unique solution of Eq. (5.14), 𝜓(𝑠𝑖) ≥ 𝜓(𝑠𝑖−1) such that the function 𝜓(𝑠)
increases monotonically, as required. Because the interval from 𝑠𝑖=1 to 𝑠𝑖 is non-zero, 𝜓 can, superficially, advance
discontinuously; the correct solution is the least discontinuous. The same calculation has to be done for both the 𝑥 and
𝑦 betatron sectors. Even though, theoretically, the phase advances monotonically, numerical errors can cause Eq. (5.14)
to give local phase decrease. Requiring betatron phase 𝜓(𝑠) to increase monotonically (as shown most satisfyingly in
Figure 7) can cause 𝛽(𝑠) shape variation to seem curious. This behavior was encountered especially while producing
Figure 11. This issue is pursued further in Appendix E.
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Notice that there is dependence, in Eqns. (5.12), on bending radius 𝑅0 in both 𝑘𝑥 and 𝑘𝑦 and
dependence on [𝐸 in 𝑘𝑥 , though not in 𝑘𝑦 . In the present paper the absence of dependence of 𝑘𝑦
on [𝐸 is referred to as “vertical only, geometricization”. This means that vertical focusing, and
therefore 𝛽𝑦 , is independent of beam momentum (provided the bending force matches the design
ring radius). But horizontal focusing depends on beam momentum (or, rather, momentum/charge)
through its dependence of 𝑘𝑥 on [𝐸 .

In the case of doubly-frozen or doubly-magic counter-circulating beams, the vertical focusing is
the same for both beams, independent of beam circulation direction. But the horizontal lattice optics
depends on beam momentum and is different for counter-rotating beams. Fortunately, for motion in
a purely horizontal plane, both spin tunes 𝑄𝑥 and 𝑄𝑦 , as defined in Eqs. (3.7), are “constants of the
motion”, independent of horizontal betatron oscillation amplitude to all orders. By symmetry, the
spin tunes are independent of vertical betatron oscillation amplitude, but only to linear order. This
makes it important, therefore, for 𝛽𝑦 (𝑠) to be exactly independent of beam circulation direction, as
it is. (This comment is pursued in Appendix C which discusses the so-called “hybrid option” for
ring focusing.)

The matrix M2 has determinant 1, which is the only requirement for a 2x2 matrix to be
symplectic. Block diagonalized into 2x2 matrices, the blocks on the main diagonal of M4 are
individually symplectic, and the determinant of the blocks on the other diagonal vanish. Taken
together, these conditions show that M4 is also “symplectic”.

The quotation marks here are intended to serve as a warning that, iterated indefinitely, M4
is actually divergent. The lower two rows of M4 include “chromatic” i.e. momentum-dependent
effects—primarily dispersion and time-of-flight. Another idiosyncrasy of accelerator formalism is
that (based on a fast-slow approximation) these chromatic effects are counted as “second” rather
than “first” order effects. This is related to the fact that it is only the orbit shape that can be said to
be stable for all time. (No meaning whatsoever is attached to orbit position as a function of time.)

The important feature of conformally-mapped toroidal optics is that “everything of importance”
electrodes, equipotentials, on and off-momentum closed orbits remain perfect circles. The divergent
behavior of iterating M4, represents the longitudinal beam spreading associated with the spread of
particle velocities. So a bunched beam will gradually “de-bunch”, eventually becoming a uniform
“coasting beam. As established by McMillen and Veksler, this debunching can be prevented by
using an RF cavity to capture all (or most) of the particles into stable longitudinal “buckets”.

6 PTR lattice optics

6.1 Parameters for PTR situated in the COSY beam hall

Parameters and lattice function values for the lattice design illustrated in Figure 2 are given in
Table 1. Included in this table are parameters appropriate for Figure 6, which shows the positioning
of PTR and “BA” which is a “bunch accumulator ring” needed to prepare polarized beam bunches
for injection into PTR.

6.2 “No lumped quadrupole” toroidal optics lattice functions

Figure 7 illustrates the result of lattice tuning in a storage ring with “no lumped quadrupoles”.
The quotation marks here acknowledge that PTR will, in fact, have lumped quadrupoles. But
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Figure 6. Pre-CLIP implementation of PTR in the COSY Hall. The bunch accumulator, BA, consists of an
“arcs-only COSY”, rebuilt with existing electron cooling, stripper-foil injection and electrostatic-magnetic
extraction. Both of these requirements would be met by simply retaining existing equipment. The inset figure
shows pairs of polarized bunches, transferred on successive injection cycles, from BA to counter-circulate in
PTR.

their strengths will be adjustable such that (under unrealistically ideal conditions) their strengths
will be tuned to exactly zero. The tuned-up situation is shown in the middle row of the figure;
the upper/lower rows represent varying 𝑚nom (where 𝑚nom is another name for the 𝑚 parameter
appearing in Eqs. (5.12)) below/above the tuned-up condition. For fixed ring geometry, quadrupole
free, toroidal focusing required for long term stability in both horizontal and vertical planes depends
on the value of this single parameter 𝑚nom.

From the point of view of operational practicality, this behavior is problematical in two ways;
once constructed, neither the ring geometry nor the value of 𝑚nom can be tuned conveniently.
One can contemplate altering 𝑚nom by using a smooth mechanical way of adjusting the vertical
curvature of the electrodes producing the electric field—the horizontal curvature is fixed by the
constant bending radius constraint—but no satisfactory design exists for adjusting the electrode
shape. This is because an electrode supple enough to be easily adjustable, would almost certainly
be insufficiently rigid to guarantee the long term mechanical and thermal shape constancy required
for precision mutual co-magnetometry. The absence of lumped quadrupoles would mean that the
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Table 1. PTR and COSY-arcs-only bunch accumulator (BA) parameters.
file name variable unit BA PTR

name COSY-arcs-only
circumference circum m 102.250 102.250
bend radius r0 m 11.0

E field., 30 MeV proton. E MV/m 5.370
long straight length llsnom m 4.142

totol available straight 16×llsh m 32
electrodes/quadrant 4

bend/electrode Thetah radian 2𝜋/16
electrode length Leh m 4.32

PTR stored p’s no BA 0.6 × 107

COSY-arcs-only BA 0.6 × 1011 0.6 × 1011

min/max horizontal beta 𝛽𝑥 m 9.60/10.83
min/max vertical beta 𝛽𝑦 m 16.6/24.8

horizontal tune 𝑄𝑥 1.726
vertical tune 𝑄𝑦 0.673

entire ring design has to be “dead-reckoned”.
For this reason the quadrupoles shown in Figure 7 are critical to the design but need to be

accurately tuneable to small values, consistent with achieving adequate ring stability. One might
reasonably expect at least one iteration in which, having first established the quadrupole settings
needed for stability, the electrodes could be mechanically deformed during a period of ring shutdown
to enable the quadrupoles to be weaker.

This loss of operational flexibility has to be regarded as a serious impediment to achieving pure
toroidal focusing. Nevertheless, the (eventual) benefits of toroidal focusing are so great, especially
long SCT, that this “inconvenience” has to be accepted. Further investigation will be required
to make sure the quadrupoles can be strong enough to overcome realistically large initial design,
fabrication, and positioning errors.

7 Forward and backward traveling ring optical functions

Forward and backward traveling beam optics dependence is illustrated in Figure 8. If the focusing
is frugal in the forward direction, for example, [𝐸 = 0.7, [𝑀 = 0.3, then it is extravagant,
approximately [𝐸 = 1.3, [𝑀 = −0.3 in the backward direction. Bend parameters for “doubly
magic” (both spin tunes equal zero) forward proton beam and backward traveling helion beams are
plotted in Figure 9. Similarly, Figure 10 shows parameters for a “doubly frozen” proton/proton
combination, on the left, and a “doubly frozen”proton/deuteron combination on the right. In these
graphs a forward traveling, polarized proton beam has momentum such that, with the electric and
magnetic fields shown, the forward traveling proton spin tune 𝑄𝑠 vanishes; in other words the
“magic” condition for frozen spin is satisfied for the forward traveling protons. Because the ring
elements are backward/forward symmetric the lattice optics is satisfactory for both forward and
backward beam propagation.
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Figure 7. PTR optical functions for one quadrant centered at a D-focusing quadrupole straight section, with
all quadrupole strengths set to zero. Left: beta functions plotted aginst longitudinal coordinate 𝑠; Right:
betatron tune advances plotted against longitudinal coordinate 𝑠; full ring tunes are four times the right hand
intercepts. Regarded as a spectrometer, the upper case quadrant is “under-focused” the bottom case “over-
focused”. The central row is approximately matched to 𝛼D = 0 at the crossing point with all quadrupoles
turned off. From this condition the full ring would be stabilized with very weak quadrupole strengths.

On further reflection, forward/backward compatibility may seem to be impossible; with super-
imposed electric and magnetic bending, if the bending is “frugal” (i.e. constructive) for the forward
traveling beam, it is “extravagant” (i.e. destructive) for the backward traveling beam. Does this
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Figure 8. PTR beta functions with 𝑚nom = 0.29447, corresponding to the “tuned-up” value for the central
case in Figure 7. In this configuration, in spite of being “thick lenses” the intervening bends act like
drift sections (of length not equal to the arc length in general). Optically the full ring then acts like a
separated function FODO lattice with (invisible) alternating gradient lumped quadrupole with focusing
strength 𝑑𝑒𝑙𝑞 = 0.1/𝑟0 = 0.009091/m. Fractional electric field bending fraction [𝐸 varies from 0.7 in the
top graph to 1.3 in the bottom. This variation leaves 𝛽𝑦 unchanged, but causes 𝛽𝑥 to vary (approximately
proportional to 1/√[𝐸 ).

not make it impossible for same particle type, but opposite direction beams to counter-circulate
simultaneously; one or the other beams would surely be lost.

No! There is a “loop-hole” in this argument. If both beams are protons, then the particle
momenta in the two beams can be sufficiently different for their “𝐵𝜌 and 𝐸𝜌 values” (confusing

– 25 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
6
0
P
_
0
5
2
2
 
v
4

Figure 9. Doubly magic, simultaneously-circulating frozen spin proton and helion (He3 nucleus) beams.
The axes register electric “field” 𝐸0/𝑣 and magnetic field 𝐵0, both measured in Tesla units. Both axes apply
to the “forward”, 𝛽𝑝 ≈ 0.28 frozen spin proton beam indicated by vertical broken line. The ± magnetic field
sign indicates the magnetic force is constructive for protons, destructive for helions. The vertical broken line
at 𝛽 ≈ 0.17 indicates that a simultaneously backward traveling helion beam with that velocity would circulate
stably, also with zero spin tune.

Figure 10. Simultaneously counter-circulating beam kinematics in PTR. Left-hand (coarse) scale is 𝐸/𝑣,
right-hand (fine) scale is ±𝐵. The ± factor distinguishes forward/backward. The horizontal scale is 𝛽 = 𝑣/𝑐.
A forward traveling, 49.65 MeV polarized proton beam has momentum such that spin tune 𝑄𝑠 vanishes. A
backward traveling (slightly adjustable) 24.73 MeV proton beam can be tuned, e.g. to be pseudo-frozen.

accelerator jargon for beam momentum matched to the required bending) to be appropriate for both
beams; i.e. for both beams to have the same radius of curvature. The motivation for the 𝐵𝜌, 𝐸𝜌
usage is to “geometricize” the transverse optics, effectively converting accelerator focusing design
into Newtonian optics. In the language of geometric optics, quadrupole strengths are expressed as
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inverse focal lengths. It is this feature that allows the choice of PTR length scale to be deferred4.
For counter-circulating beams having the same particle type, for example protons, one may

have 𝛽𝑝 = 0.31304 for the forward beam, and 𝛽𝑝 = −0.31304 × 41/47 for the backward beam.
Figure 10 contains graphical descriptions by which the parameters of simultaneously counter-
circulating beams can be established. This requires reduced momentum for a CCW proton beam
that can counter-circulate in a ring with the same accelerator settings. These settings could, for
example, freeze the spins of the CW beam. This would still leave some freedom concerning the
spin tune of the CCW beam. Though the CCW beam could not be arranged to have globally frozen
spins it could, in some cases, be adjusted to be pseudo-frozen. With counter-circulating beams
of different particle type, PTR could serve as an “MDM comparator”. This could be used, for
example, to make a highly precise measurement of the ratio of spin-tunes (and hence MDMs) of
two simultaneously circulating beams.

Though both beams on the left graph in Figure 10 are protons, the spins of only one can
be frozen—with constructive bending there is only one magic combination of electric and mag-
netic bending. There remains one freedom, however—for example to pseudo-freeze the counter-
circulating beam. The graph on the right of Figure 10 shows the kinematics of counter-circulating
protons and deuterons.

8 Canceling decoherence by intentional operation “on the coupling resonance”

A powerful strategy for increasing the spin coherence time (SCT) (which is equivalent to “cancel-
ing spin decoherence”) is to intentionally mix degrees of freedom. Some such cancellation occurs
automatically in longitudinal synchrotron oscillation, as particle energies systematically cycle be-
tween minimum and maximum values. What is proposed in this section is to cancel decoherence
associated with transverse (i.e betatron) oscillations, by intentionally mixing horizontal and vertical
degrees of freedom.

For the [𝐸=1 optics shown in Section 7 the fractional betatron tunes 𝑄𝑥/𝑄𝑦 = 0.726/0.673
are quite close, meaning close to a difference resonance. The effect of any skew quadrupole, present
in the ring either intentionally or unintentionally, is to excite “out of plane” betatron oscillations. As
the tunes are brought closer together the amplitude of cross plane excitation increases until, exactly
on resonance, the beams become round.

Though 𝑥, 𝑦 coupled sum resonance is fatal, coupled difference resonances are especially
stable for dual beam stability (though disappointingly not helpful for high luminosity beam-beam
operation, as first investigated and established at the Orsay storage e+/e- storage ring ACO [40] as
well as at CESR [41][42].) The optimal ACO tune ratio was 𝑄𝑥/𝑄𝑦 = 1.86/2.86.

With careful tuning the fractional PTR tune equality can be made exact (as well as shifted
away from third integer resonance, to which 𝑄𝑦 has so far been unacceptably close. The result of
doing this tuning is shown in Figure 11. Relative to the central case in Figure 8 this mainly entailed
the change: focusing index 𝑚nom = 0.29447 −→ 0.32349. The result of this change is shown in

4There is no equivalent trick for “geometricizing” longitudinal dynamics—parameters such as RF frequency depend
on times-of-flight along particle orbits, a concept not present in geometric optics.
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Figure 11. The altered fractional tunes have become equal, as shown at the bottom of the plot.
Otherwise lattice focusing functions have been little changed.5

Figure 11. Lattice functions for essentially all electric bending ([𝐸 = 0.9999), and quite weak lumped
quadrupole tuning with (𝑑𝑒𝑙_𝑞 = 0.009091 m−1). The horizontal and vertical fractional tunes have been made
equal (0.7073). In this condition, by itself, the presence of betatron motion causes no beam depolarization.

Figure 11 represents “fully mixed” long coherence time operation in the all-electric case
but, for realism, with a small, one part in 10,000 magnetic bending component. Replacing [𝐸

by 1.0001 and/or reversing the sign of 𝑑𝑒𝑙𝑄 in any combination, produces essentially the same
graph. Replacing [𝐸 by 1, however, produces no solution. This is of no physical significance—the
code failure is caused by zero denominators in the calculation of magnetic field influence on the
kinematics.

On the coupling resonance any “cross-plane coupling” causes the beam to become round (or
rather to have equal horizontal and vertical emittances, because their sum 𝜖𝑥 + 𝜖𝑦 is conserved)
[30]). For any particular particle 𝜖𝑥 and 𝜖𝑦 can be interpreted as “Courant-Snyder invariants”
(whose sum is a constant of the motion). By virtue of cycling regularly between horizontal and
vertical betatron motion, in this condition, betatron motion induces the same spin precession for
every particle having the same 𝜖𝑥 + 𝜖𝑦 sum. As a result (ignoring rare stochastic events) there is no
spin decoherence among all particles lying on any centered ellipse in betatron phase space—which
is to say, every particle. In this condition, by itself, the presence of betatron motion causes no beam
depolarization. This has been confirmed by simulation, indirectly, in the past.

5Raw lattice description files for PTR tuned to the conditions of Figure 11 are available at Click Here , in four different
formats, in four different sub-directories, con-xml, nocon-xml, adxf, and sxf, always with filename having matching
suffix, such as PTR_m_nomEQ0p0.32349_sl4.sxf.
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The true situation is not quite as simple as has just been described. With betatron oscillations
ignored, the presence of dispersion causes the beam to be dispersed radially, with off-momentum
bending radius proportional to momentum, which is different for every particle. At the same time
there is a similar mixing in the synchrotron phase space. This complicates the previous discussion.
The longitudinal mixing itself is purely beneficial from the point of view of maximizing SCT.
But the chaotic mingling of transverse and longitudinal mixing has the potential for introducing
unpredictable resonance effects. This possibility will have to be addressed by simulation or by more
sophisticated analysis than has been attempted here.

To the extent that the relativistic 𝛾 factor is the same for every particle and the resulting motion
remains purely horizontal, synchrotron oscillation by itself would also not induce depolarization via
decoherence. Since neither of these conditions is exactly true there will be a systematic precession
proportional to 𝛾 offset. Since both electric spin tune𝑄𝐸 and magnetic spin tune𝑄𝑀 depend (only)
on 𝛾, there is a strong tendency for spin decoherence to be closely correlated with energy offset.
To leading order in synchrotron oscillation amplitude, the decoherence associated with synchrotron
oscillations would therefore still cancel. Regrettably, without care, synchrotron oscillations tend
to be quite nonlinear. However, by superimposing weak third harmonic RF cavities, the spin
decoherence from this source can also be canceled to high accuracy. These effects can also be
studied by simulation.

Optimistically one concludes that decoherence will be sufficiently canceled to have become
insignificant, even with no powered sextupoles employed to increase polarization SCT. This does
not yet mean that day-long runs can be anticipated. The phase-locking on which everything in this
paper is predicated relies on efficient polarimetry. Yet, at this time, non-destructive polarimetry
does not exist. One can assume, therefore, that run durations will be dominated by particle loss
associated with polarimetry.

It should be understood that most of the tasks PTR has to perform in its role as EDM prototype do
not depend on subtle effects such as have been discussed in this section, nor on the no-quadrupole
requirement for optimizing EDM measurement precision that led to the lattice design shown in
Figure 2. As already anticipated in the CYR, the commissioning is expected to proceed in successive
phases each lasting as long as a year. It is only in later phases, for optimal MDM and EDM
measurements to proceed, that the delicate toroidal focusing requirements will need to be met.

9 “Quadrupole free” PTR transfer matrix lattice design

9.1 Transfer matrix algebra

For a 2 × 2 transfer matrix M to be symplectic it must satisfy the algebraic relation

M−1 = −SM𝑇 S, where S =

(
0 −1
1 0

)
, (9.1)

and the only imposed constraint for 2 × 2 transfer matrices requires them to have unit determinant.
For any higher (necessarily even) dimensions the same equation is satisfied with S being replicated
along the diagonal. This introduces symplecticity conditions going beyond the unity determinant
requirement.
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Transfer matrices Mx and My for one PTR superperiod as well as powers up to M8
x and M8

y,
which describe two consecutive complete revolutions follow:

Mx =


0.33015 9.04118 0.0 8.68780
−0.09855 0.33015 0.0 1.27816
−1.27816 −8.68780 1.0 204.00230

0.0 0.0 0.0 1.0


My =

[
0.95513 12.95238
−0.02167 0.95513

]

Mx2 =


−0.78201 5.96980 0.0 23.11206
−0.06507 −0.78201 0.0 0.84395
−0.84395 −23.11206 1.0 385.79588

0.0 0.0 0.0 1.0


My2 =

[
0.63162 24.74233
−0.04139 0.63162

]

Mx4 =


0.22307 −9.33687 0.0 10.07647
0.10177 0.22307 0.0 −1.31996
1.31996 −10.07647 1.0 732.58076

0.0 0.0 0.0 1.0


My4 =

[
−0.62514 31.25562
−0.05229 −0.62514

]

Mx8 =


−0.90048 −4.16564 0.0 24.64854
0.04541 −0.90048 0.0 −0.58890
0.58890 −24.64854 1.0 1491.76252

0.0 0.0 0.0 1.0


My8 =

[
−1.24343 −39.07858
0.06537 −1.24343

]

9.2 Interpretation of the transfer matrices

Even for the 4 × 4 matrices (mentally-partitioned 2 × 2) one can check mentally (at least at the
10% level) that all determinant values are close to 1. Displayed only to 6 place accuracy, each of
these matrices satisfies Eq. (9.1) to machine precision. In fact, this too is an understatement; these
matrices are, in fact, analytically exact. They have been obtained purely algebraically.

This is all that is required for the transverse propagation to be Hamiltonian, and hence loss-free.
No paraxial approximation, nor small angle, nor small amplitude approximations have been made;
no truncated power series have been employed, no linear, quadrupole, sextupole and higher orders
introduced. Admittedly these statements are true primarily because the starting transfer matrix was
assumed to be exact. This is an excellent (but not perfect) assumption for the toroidal focusing
design, which has been adopted in modern day (Scanning) Transmission Electron Microscopy
(STEM), as described most recently in a textbook by P. Erni [32], with clear elementary physical
discussion, especially in Section 5.
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9.3 Longitudinal optics; beam capture into stable buckets

In spite of this splendid transverse evolution description one cannot fail to notice that the horizontal
4x4 matrices are, in some sense, divergent. Concentrating on the 𝑀34 elements, referring to
Eq. (5.10), and visualizing 𝛿p/p=10−5 as a possible fractional momentum offset, one finds that, after
a single turn, the longitudinal arc length parameter 𝑠 will have advanced by 0.75 cm, relative to a
central particle.

For a few turns in a ring of circumference 100 m this advance would be scarcely noticeable, but
circulating at roughly a MHz rate for, say, two minutes, the beam spread will be of order 106 m. In
other words the beam will have by then spread around the ring into a uniformly distributed coasting
beam. To keep the beam bunched, which is required for phase-locking, the PTR beam has to be
quickly captured into stable RF buckets. This should be straightforward.

10 Practical simultaneous frozen spin beam combinations

A selection of practical frozen spin combinations are given in Tables 2 and 3. Phase-locked
parameters are given as rational numbers (i.e. ratios of integers). Table 2 shows “doubly frozen”
proton, deuteron combinations, for which the primary beam spin tune vanishes, while the secondary
beam spin tune, though a rational fraction, is not zero. Table 3 shows the “doubly magic” proton,
helion case in which both spin tunes vanish. In all of these cases the RF cavity frequencies are also
given as rational fractions. In this condition the RF frequency can also be phase-locked, but it is only
the primary beam for which the EDM-induced, out of plane precession accumulates monotonically.

In all cases the frequencies are “over-determined” in the sense that the circumferences of
primary and secondary beam, though close, are not quite identical. The defects are spelled out in
the figure captions. With orbits not quite identical, the precession-inducing error fields to which
the beams are subject are not quite equal. To leading order, the EDM measurement error will be
canceled by averaging over runs with primary and secondary beams interchanged.

Initially this defect can be analyzed and compensated for by theoretical calculation of correc-
tions to the measured EDM values. The issue can also be faced experimentally be introducing a
very weak secondary RF cavity, synchronized to the secondary beam and strong enough to alter the
secondary beam radius to match the primary beam radius. To avoid affecting the primary beam,
this longitudinal RF signal, synchronized to the secondary beam would have to be gated to affect
only the secondary beam. This would require gate opening and closing switching times at the 10 ns
level.
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bm m1 G1 q 𝛽1 K1 E0* cB0* m2 G2 q−𝛽2/𝛽1 KE2 Qs2 bm
1 GeV MeV MV/m cT/1e3 GeV ∗† MeV 2

𝑟0∗ = 11.0 m Qs1=0 PRESENT DAY, 2022 PTR
p 0.9383 1.7928 1 0.31304 49.7 6.26 8.11 0.9383 1.79 1 41/57 24.7 -2/1 p
p 0.9383 1.7928 1 0.29175 42.7 5.33 7.76 1.8756 -0.57 1 53/100 22.8 -9/8 d
d 1.8756 -0.5713 1 0.18000 31.1 -7.73 74.12 1.8756 -0.57 1 83/172 7.12 -25/31 d
d 1.8756 -0.5713 1 0.17760 30.3 -7.52 73.11 0.9383 1.79 1 35/67 4.06 43/127 p

Table 2. Quantities expressed as rational fractions are exact and phase locked to arbitrarily high accuracy.
Except for PTR construction itself, these pairings use only present day technology and apparatus. Beam 1:
is globally frozen in every case ; 𝑄𝑠1 = 0/1; so the beam 1 EDM signal accumulates monotonically. Except
for 𝑟0∗, ∗†, E0* and cB0* columns, all entries are EXACT, either integers, or (truncated) physical constants
or calculable, kinematic quantities. “Closed orbit mismatches”, from the † column, are 0.71927 = 41/57 -
0.0000282, 0.52997 = 53/100 - 0.0000299, 0.48261 = 83/172 + 0.0000518, 0.52235 = 35/67 - 0.0000380.

bm m1 G1 q 𝛽1 K1 E0* cB0* m2 G2 q −𝛽2/𝛽1 KE2 Qs2 bm
1 GeV MeV MV/m cT/1e3 GeV ∗† MeV 2

𝑟0∗ = 11.0 m NEAR FUTURE PTR
p 0.9383 1.7928 1 0.27831 38.6 3.90 6.13 2.8084 -4.18 2 107/180 39.2 0/1 h
h 2.8084 -4.1842 2 0.16544 39.2 3.90 -6.13 0.9383 1.79 1 180/107 38.6 0/1 p

Table 3. Doubly magic, proton/He3 combination case: Quantities expressed as rational fractions are exact
and can be phase locked to arbitrarily high accuracy, Rational fraction entries in the † column of the table
are fixed by RF synchronism; the orbit circumference ratios are close, but not exact. Precise magnetic field
reversal is assured by three-fold phase locking as spelled out in Section 4.2.
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11 Error estimation

11.1 Insignificance of horizontal- relative to vertical- orbit dipole moment control

One notes, from Eqs (3.7), that electric spin tune 𝑄𝐸 and magnetic spin tune 𝑄𝑠 depend kine-
matically only on the relativistic factor 𝛾, which is phase locked and globally constant for stored
beams. Though not stated previously, this simple behavior assumes the central orbit lies in a single
(typically horizontal) plane. For constant 𝛾 MDMs are therefore unaffected by horizontal bend
errors to all orders. By up-down symmetry, MDMs are constant only to linear order in vertical
displacement error. As a consequence, it is mainly vertical positioning that needs to be tightly
specified; here to ±0.1 mm, or less, as required.

11.2 Insignificance statistical- relative to systematic- error in EDM measurement

An essential difference between neutron and proton EDM measurements comes from the fact that,
though dominant for the neutron EDM measurement, the statistical proton EDM measurement error
is negligible by comparison. A convenient way to exploit this is to note that the statistical error for
a “nominal week long” (2 × 105 s) storage ring measurement will be about ±10−29 𝑒 cm. This is an
accuracy level which (conventional) thinking has suggested to be a plausible BSM proton EDM.
For all practical purposes, the implication for storage ring EDM measurement is that we can ignore
counting statistics and concentrate entirely on systematic errors.

11.3 Reduction of systematic error by averaging over reversed beam conditions

• CW/CCW beam reversal requires reversing the magnetic field.

• Setting, reversing, and resetting magnetic field with frequency domain accuracy relies only
on MDMs acting as “magneto-sensitive gyroscopes” for phase locking both betatron tunes.

• This avoids the need for (unachievably precise) magnetic field measurement, while allowing
systematic error reduction by averaging over CW/CCW reversal.

11.4 Error estimation for the doubly magic proton-He3 combination

The doubly magic proton-He3 combination has been especially emphasized in the present paper.
This is because, with equipment currently in hand, or at least described in careful design proposals,
the detection of BSM physics, in the form of non-vanishing EDMs of fundamental particles is
possible inexpensively in the near future, using proven operational techniques. Parameters for the
(essentially unique) proton/He3 doubly-magic pairing are given in Table 3.

The EDM signature is out-of-plane MDM precession. The dominant systematic error is due
to unintentional (and unknown) radial magnetic field error acting on particle MDMs, which mimic
the effect of intentional electric field acting on particle EDMs. Such unknown magnetic sources
are discussed in Chapter 3 of reference[38]. In particular, Section 3.3.4 of that book argues that
the systematic storage ring proton EDM error can be estimated to be comparable to the systematic
Ramsey neutron EDM error (coming from the same source). Copying from the first sentence of the
abstract to the present paper, the current day neutron EDM systematic error is ±0.2sys × 10−26 𝑒 cm
(five times smaller than the neutron EDM statistical error in the same experiment).
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Another way of estimating the storage ring proton EDM systematic error is based on the
precision with which the vertical separation of countercirculating beams can be minimized—zero
average vertical beam separation would imply vanishing radial magnetic field average, 〈𝐵𝑟 〉 and,
therefore, zero spurious out-of-plane precession. Uncertainties in this estimate come from the
estimated beam position monitor (BPM) precision, and the extent to which the vertical BPM
sensitivity can be increased by reducing the vertical focusing strengths. As regards order of
magnitude, estimates by the author[38], calculations by Tahar and Carli [39] and by Lebedev
[37] are consistent with the ±0.2sys × 10−26 𝑒 cm systematic error estimate given in the preceeding
paragraph.

11.5 Systematic error cancellation in Δ = EDM[proton]-EDM[He3] measurement

Treated as composite, the proton consists of quarks and gluons, but treated as a fundamental particle,
the proton EDM should vanish, or at least be very small. Consisting of two protons and a neutron,
the He3 nucleus is unambiguously composite. To the extent that T-symmetry is respected, as in
the standard model, He3 would still be required to have vanishing EDM. Recognizing that it is
quite challenging for the electric center and the mass center of two protons and one neutron to be
identical, in an experiment looking for T-violation, one can conjecture that the magnitude of any
He3 EDM is significantly greater than the proton EDM.

For the mutual co-magnetometry emphasized in the present paper, this suggests treating any out-
of-plane proton precession as spurious (i.e. caused by spurious radial magnetic field acting on the
proton EDM). Why not, therefore, utilize the proton for mutual co-magnetometry by phase locking
the proton EDM into the horizontal plane, which amounts to cancelling 〈𝐵𝑟 〉. In this circumstance,
any measureable out-of-plane precession of the He3 beam polarization can be interpreted as a
measure of the He3 EDM. This is a picturesque way of visualizing our experiment designed to
measure Δ = EDM[proton]-EDM[He3]. (Among the many other things that could go wrong) there
remains the possibility that, by chance, proton and He3 EDMs are equal, but opposite in sign—this
would be both surprising and unfortunate. In any case non-zero Δ would still imply BSM physics.

11.6 Anticipated systematic errors for various beam configurations

Based on the previous discussion, systematic errors anticipated in various configurations are listed
in Table 4. In all cases one will reduce systematic error by averaging over CW and CCW circula-
tion. The “consecutive” column systematic error assumes that simultaneous CW and CCW beam
circulation has been established. Successive runs alternate between CW and CCW. “Concurrent”
columns assume the simultaneous phase-locked circulation of CW and CCW beams, with at least
one beam globally frozen in the “singly magic” case and both beams globally frozen in the “doubly
magic” case. The final column pulls out all the stops, taking advantage of the cancellation of
systematic error for Δ in the proton-He3 case.

12 Practical limits, uncertainties, issues and ackowledgements

The content of this paper has been largely theoretical— not theoretical particle physics, but theo-
retical experimental physics. What has been missing is practical experimental physics including

– 34 –



N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
I
N
S
T
_
0
6
0
P
_
0
5
2
2
 
v
4

run sequencing consecutive concurrent concurrent Δ

singly magic singly magic doubly magic p-He3
±𝜎syst. ±𝜎syst. ±𝜎syst.

𝑒 cm 𝑒 cm 𝑒 cm 𝑒 cm
single run 10−26 10−27 10−28

polarization reversal 0.5 × 10−26 0.5 × 10−27 0.5 × 10−28

CW/CW reversal 10−27 10−28 10−29 < 10−29

Table 4. Systematic error estimates for various EDM measurements using the PTR storage ring.

much of which is essentially electrical engineering. Since mutual co-magnetometry depends on si-
multaneous counter-circulating beams, accurate electric/magnetic superposition is essential. There
are grounds for both optimism and pessimism in this area concerning the PTR design.

Experience with the AGS-Analogue electron ring, as described in considerable detail in ref-
erences [43], [38], and [44], provides grounds for optimism concerning purely electric storage
rings. With a circumference of 43 m, less than the proposed PTR circumference in the ratio 43/102,
the electron kinetic energy was 10 MeV (which corresponds approximately with 20 MeV proton
kinetic energy, as regards achievable electric field value), the AGS-Analogue ring was built quickly,
inexpensively and without much bother. The cost of the ring itself was undoubtedly much smaller
than the cost of the building housing it.

Based only on the AGS-Analogue ring experience, the proposed PTR ring could be expected
to meet the requirements of the 𝑝, 𝑑, and ℎ examples spelled out in Section 10.

This is likely to remain true for PTR, especially if the voltage and current power supply circuits
remain simple. For design purposes, in a ring with eight-fold super-periodicity, one could power
each octant or quadrant individually. This would make beam steering easy. All electrodes would
be powered in parallel, all magnet coils in series. Even simpler, if construction tolerances allow it,
would be to power all ring elements from just two supplies. Individual element powering would
probably lead to serious and useless complication.

Less carefully documented is the evidence concerning electrical breakdown and, especially,
sparking “catalyzed” by the presence of weak local magnetic fields. For PTR, for which superim-
posed electric and magnetic fields are required for best systematic EDM error reduction, this is
undoubtedly the area of greatest concern for simultaneous beam frozen spin functionality in PTR.

Experience seems to have shown that occasional sparking in high electric field bending elements
is unavoidable. On the other hand, at least with short enough electrodes (i.e. of small capacitance)
the breakdown causes no permanent damage. Ignoring possible damage to sensitive electronics,
sparking rates less than one per day would only be a nuisance, but greater than one per hour would
make quality data collection impossible.

To reduce capacitance the length per construction unit will have to be quite short, perhaps one
meter. By butting construction lengths quite closely (perhaps a few mm separation, with resistive
separation spacers for registration) the electrode field uniformity degradation at transitions should
be acceptably small.

Further details concerning PTR and mutual co-magnetometry are contained in references [45],
[46], [47]. [48], [49], [50], [51], [52].
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At some cost in EDM systematic error coming from out-of plane spin precession (the so-called
“geometric phase problem”) counter-circulating orbit matching could be sequential, rather than
simultaneous. Electric and magnetic bending could alternate on a quite short distance scale to
preserve much the same frozen spin combinations as are possible with simultaneous beams. This
would, however, require magnetic field reversal between runs in order to reverse the circulation
direction.. Spin tune phase locking would make this possible, as has been explained above, without
the need for impractically precise magnetic field measurement. This would also aggravate the
problem of time dependent magnetic field error bursts—an important source of error also in the
neutron EDM determination.
Acknowledgments: All acknowledgments in the companion paper [1] to this one apply to the
present paper. Special acknowledgment to Hans Ströher, Frank Rathmann, Alex Nass, Kolya Niko-
laev and my son John can be repeated; along with continuous support, all have made substantial
contributions, suggestions and corrections to this paper. More significant yet have been the contri-
butions of Christian Carli who, in a continuing series of communications, has found mistakes and
formulated insightful questions that have invariably resulted in major correction, reorganization and
clarification.

A Magnetic/electric field strength ratio constraints

A.1 Backward/forward (bf) ring symmetry

A moving picture of particle orbits in a magnetic storage ring, with a clock visible, can produce
a record of “forward” evolution. By running the moving picture backwards one can produce a
predicted time-reversed record. To test time-reversal symmetry one needs to establish initial orbit
conditions that match the previous final orbit conditions, but with reversed momenta (P-reversal),
clock jiggered to run backwards (T-reversal), in preparation for photographing the time-reversed
evolution. Traveling backward in the same magnetic field, the same particles would be deflected in
the wrong way to retrace their paths. This could be remedied by reversing the particle charge, for
example by switching (C-reversal) from protons to anti-protons. Because of the close connection
between damping and T-conservation, the near absence of synchrotron radiation causes protons to
be favored over electrons in the present context. The Fermilab Tevatron 𝑝𝑝 collider can therefore
be said to provide the best “direct” laboratory demonstration of CPT-symmetry—in this case, in
the electromagnetic domain. (Here “direct” is meant to exclude inferences reliant on elementary
particle theory.)

Because particles and anti-particles have opposite charge, a storage ring containing only mag-
netic elements is automatically “(C-bf)-symmetric” (“C” meaning “charge” and “bf” meaning
“backward-forward”), for particle-antiparticle colliding beams. This is a very high level of sym-
metry in the sense that forward and backward orbits are identical even with off-axis orbits and
arbitrarily-displaced, arbitrarily-imperfect, elements (provided, of course, that the imperfections
are, themselves, purely magnetic).

A.2 Magnetic/electric element strength ratio constraint

Like thoroughbred race horses, storage rings are “high-strung”—meaning, tempermental, recalci-
trant, etc. We use instead the term “finely-tuned”, with much the same meaning as intended when
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applied by particle theorists when discussing “unnaturally accurate” parameter equality, but with
better etymological justification for the usage [54].

The CW ring functions properly, for example, only after its “quadrupole knobs” have been finely
tuned. But having adjusted a quadrupole knob to stabilize the CCW beam might have destabilized
the CW beam. This will complicate two-beam tune-up.

The implications for the electric/magnetic storage ring proposed in this paper are therefore
serious. For a start, to make forward and backward orbits identical, the ratio of electric to magnetic
bending strengths have to be everywhere as identical as possible. Even then, as already explained,
because “constructive” bending in one direction is “destructive” in the other direction, the beam
particles of the counter-circulating beams have to differ, either in particle type or in (absolute value
of) momentum.

Another implication of the previous discussion is, ideally, that the ring quadrupoles should have
superimposed magnetic and electric field strengths in the same ratio as for the bending elements.
For the same reason, other correction elements, for example for beam steering, must have magnetic
and electric field strengths in the same ratio. This would include sextupoles as well (should they be
required) but their opposite spatial symmetry, along with their minuscule absolute strength, means
that purely electric sextupoles should be adequate for tuning PTR chromaticities.

Yet another implication is that, to the extent the particle velocities are relativistic, effects,
such as Lorentz contraction and time dilation, need to be accounted for. Fortunately, for the EDM
prototype ring, the betas are only about 0.3, so the effects are fairly small. The situation resembles an
all-electric EDM ring viewed from a rotating frame of reference. In a rotating frame an “all-electric”
ring would have significant magnetic bending. Until now such effects have been unimportant; they
have not (nor need be) accounted for in particle tracking codes. But for counter-circulating beams
of different velocity, the beams have to be treated individually.

The purpose for the present section has been to explain how bf-symmetry can be restored by
meeting one (highly restrictive) condition: the ratio of electric to magnetic field strengths would
ideally be the same everywhere—this means, especially, that the electric and magnetic bending field
shapes have to be identical and be superimposed as exactly as possible. This applies also to steering
corrections and focusing corrections. Deviations from meeting these constraints will impose the
need for applying theoretically calculated (probably via simulation) corrections to measured EDM
values.

B “Triplet compromise” magnetic/electric quadrupole design

Ideally, the discrete lattice quadrupoles would have electric and magnetic fields superimposed in
the same ratio [𝐸/[𝑀 as in the bend regions. In frozen-spin proton PTR application the magnetic
bending is hardly “perturbatively small” compared to the electric bending; [𝑀/[𝐸 ≈ 1/3. This
presents a serious design problem.

Clearly the coils producing the magnetic field need to be outside the electrodes producing the
electric field. Any scheme with (insulated) current carrying conductors situated between electrodes
is doomed to fail, since the electric and magnetic quads would be skew relative to one another.
Yet, the electric and magnetic quadrupole field reference radii would preferably be equal, for the
field ratio to be constant over the full ring aperture. As a compromise an approximate match
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can be obtained by replacing each quadrupole by the symmetric quadrupole triplet arrangement
shown in Figure 12. This provides the required match in thin-element approximation, though not in
higher order approximation. This provides the primary motivation for reducing lumped quadrupole
strengths to the extent possible.

With each of the three quadrupoles forming the “triplet” on the left side of Figure 12 being
“focusing”, treated as a single quadrupole, its symbol would be “F”. Similarly, the “triplet” on the
right, treated as a single quad, symbolized as “D”.

Because the thin element approximation is valid only perturbatively, and the [𝑀/[𝐸 ≈ 1/3
ratio is not negligible, the forward and backward optical functions can never be exactly equal. This
does not seriously impair the EDM determination, provided that both forward and backward optics
are stable. With quads situated at crossing points, as in the design shown in Figure 2, there should
be comfortably broad bands of joint stability.

wM wMwE

d d

η q /2
M

η q /2
M

qη E

wM wMwE

d d

η q /2
M

η q /2
M

qη E

COMPROMISE CONVERGENT COMPROMISE DIVERGENT

E
M M M M

E

Figure 12. ”Compromise triplet” representation of an electric quadrupole with (weak) magnetic quadrupole
superimposed. Blue quads are electric, red magnetic. For the primary beam all quads combine constructively;
for the secondary (backward-traveling) beam the red signs reverse. In thin element approximation, with the
quad strengths shown, the triplet approximates a thin lens of strength 𝑞 = 1/ 𝑓 , with (perturbatively small
but) unequal forward and backward focal lengths 𝑓 . The purpose for this complication is to make backward
and forward 𝛽-functions as nearly identical as possible. For sufficiently small values of both 𝑑 and [𝑀/[𝐸
the triplet acts like a singlet quadrupole with weak magnetic field superimposed on strong electric field.

C “Hybrid” EDM ring design issues

C.1 Inconvenient hybrid ring operational characteristics

Ring designs with electric bending and magnetic focusing have come to be referred to as “hybrid”
[55]. Assuming the central orbit for both CW and CCW orbits pass through the centers of every
quadrupole (which is always at least approximately true) then CW and CCW central orbits are
identical, irrespective of whether the quadrupoles are electric, or magnetic, or some combination
of both.

Horizontally focusing/defocusing quads are conventionally denoted by “F”/”D”. In a ring with
electric bending and separated function magnetic FODO focusing, the transverse CW and CCW
beam profiles are forward/backward symmetric but with horizontal maxima coincident with vertical
minima, and vice versa. This does not mean, however, that horizontal and vertical beam widths
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are the same. This is because there is “geometric focusing” which “focuses” horizontally but
not vertically; 𝛽𝑦 maxima will coincide with 𝛽𝑥 minima alternating with 𝛽𝑦 minima coinciding
with 𝛽𝑥 maxima. As a consequence the transverse shapes of backward and forward stored beams
superimpose approximately only after relative longitudinal displacement by one half-cell.

Once one has accepted the systematic EDM error coming from imbalanced lattice functions for
CW and CCW beam shapes being different, some difficult operational problems remain. Several
modes of operation will be needed in a storage ring capable of EDM measurement. Ideally
there is a lattice matched to each of these modes, which include injection, initial commissioning,
possible optimization for polarimetry, possible bunching and rebunching and optimization for EDM
measurement.

Here we consider only the most basic of these, which, during commissioning, is the establish-
ment of “identical” CW and CCW central orbits and, during data collection is the exact preservation
of central orbits. Smoothing the CW and CCW design orbits individually can be performed using
routine procedures.

Ideally (though often unnecessarily extravagant) for a ring with 𝑁𝑐 cells there would be 𝑁𝑐

vertical BPMs situated at the locations of 𝑁𝑐 𝛽𝑦 maxima, and 𝑁𝑐 horizontal BPMs situated at
the locations of 𝑁𝑐 𝛽𝑥 maxima [56]; these are points of maximum BPM sensitivity in each case.
Typically there are fewer steering elements than BPMs, but here we assume there are the same
numbers 𝑁𝑐 vertical and 𝑁𝑐 horizontal, optimally situated around the ring.

For establishing the design orbit there are 2𝑁𝑐 measured BPM positions that need to be best fit,
in a Gaussian least square sense, using the settings of the 2𝑁𝑐 steering adjusters. For a single beam
this is routinely achieved by satisfying 2𝑁𝑐 linear equations in 2𝑁𝑐 unknowns. The coefficients in
these equations are calculable “influence functions” 𝑇𝑖 𝑗 which, multiplied by adjuster “𝑖” strength,
produces the displacement at detector “ 𝑗” due to adjuster “𝑖”. For a ring lattice (such as PTR) that
is bf-symmetric, having solved these equations to find the smoothest possible CW orbit, the CCW
orbit will be the same to good accuracy.

But, for a ring with magnetic quadrupoles, more conditions need to be met. For a start one
might assign 𝑁𝑐 of the adjusters to the CW beam and the remaining 𝑁𝑐 adjusters to the CCW beam.
With 𝑁𝑐 being a significantly large number, the CW closed orbit established by the CW adjuster set
would produce a tolerably good closed CW orbit. Applied separately, the same procedure could be
applied to produce a good CCW closed orbit.

Unfortunately, the influences of the CW and CCW adjuster sets are not independent. Changing
the CW adjusters will foul up the CCW orbit and vice versa. This complicates the optimization
terribly. One can only seek the most favorable setting for every adjuster. Again a least squares fit
can be sought. Two-way influence functions 𝑇𝐶𝑊

𝑖 𝑗
and 𝑇𝐶𝐶𝑊

𝑖 𝑗
can be calculated. Each coefficients

of the least squares sum would be the coherent sum of the 𝑇𝐶𝑊
𝑖 𝑗

s and the 𝑇𝐶𝐶𝑊
𝑖 𝑗

s, each multiplied
by its corresponding adjuster “𝑖” and summed over all “ 𝑗” BPMs.

This complication is brought about by the hybrid choice having electric bends and magnetic
quadrupoles. The PTR ring lattice optics favored for EDM measurement as described in the present
paper is backward/forward symmetric. Provided that the closed orbit steering adjusters respect the
[𝐸/[𝑀 field ratio as all other elements in the ring, the backward and forward beam steering will
behave almost identically, and the forward and backward beta functions will be close in value. This
has been demonstrated for PTR in Figure 8.
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C.2 Splitting the degenerate closed orbit fixed point in “all-electric” 𝑝 or 𝑒 EDM rings

“Appendix A: Existence of Equilibrium Orbits” in the famous Courant and Snyder paper [30],
that introduced alternating gradient (AG) accelerator optics, contains mathematics that is curiously
rigorous for an accelerator physics paper. This reflects a long heredity in Mathematical Physics:
Ernest Courant, son of Richard Courant, student of Hilbert, colleague of Riemann, student of
Gauss, all in Göttingen, Germany. Apart from the well known Courant and Hilbert volumes,
Richard Courant is perhaps best known for his Hilbert space refinement of the “Dirichlet Principal”
[31] which Courant and Snyder exploit as the mathematical basis for the long term stability of three
dimensional closed orbits in magnetic accelerators. Their Appendix A proves that magnetic rings
have stable 3D closed orbits. Then, specializing in Appendix B to a more detailed Hamiltonian
description of orbits in rings with up/down symmetry, they demonstrate the stability of 2D orbits
lying in a horizontal plane.

By now it has been adopted as “intuitively obvious” that all storage rings have stable 3D orbits.
For rings with both electric and magnetic bending this may or may not be true; generalization
to the assumption that equal-energy, globally-frozen spin, proton beams can counter-circulate
simultaneously in a 233 MeV hybrid storage ring is a large and questionable step to take. Because
of their opposite sign [𝑀 values, for the beams to simultaneously have vanishing spin tunes requires
their 𝛾 offsets to have compensating magnitudes. Though challenging, one supposes that this
condition can be met, perhaps by shifting their equilibrium synchrotron phases in a common RF
cavity.

The situation is somewhat different in the nominal, truly all-electric, “nominal all-electric”
233 MeV proton beam (with electric quadrupoles) described in the CERN Yellow Report [6] and
in the present paper. Instead of quoting the proton spin tune at 233 MeV as 𝑄𝑠 = 0 one could as
well express the spin tune as degenerate, 𝑄𝑠 = ±0. Because of imperfect magnetic shielding the
[𝑀 values, as well as having opposite sign, will have (slightly) different magnitudes. This will split
the degeneracy, producing a situation with one beam having slightly positive spin tune along with
energy slightly in excess of the nominal magic 233 MeV value. For the other beam both of these
shifts will be reversed.

As explained in the CYR, because the zero spin tune contour passes through zero at the
exact symmetry point, the sign reversals of both 𝑄𝑠 and magnetic field offsets needed to preserve
vanishing spin tune occur at precisely the same point. As a result, counter-circulating 𝑝 beams will
satisfy the conditions for being doubly-magic in the presence of either intentional or unintentional
magnetic bending. In this way the 𝑝, 𝑝 combination, can meet the doubly-magic requirement of
opposite sign spin tunes. Inevitably, though, the energies of CW and CCW beams will be slightly
different.

This has established conditions under which counter-circulating 𝑝, 𝑝 beams can both have
vanishing spin tunes, irrespective of whether the focusing is electric or magnetic, and of the fact
that their beam energies will have to be different. A natural procedure, in any case, would seem to
be to intentionally allow for the inclusion of significant intentional, adjustable magnetic bending.
This has always been contemplated as a possible ingredient of the “nominal all-electric” program.
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D Parameters for a mutual co-magnetometer EDM ring in AGS or Wilson tunnel

Table 5 contains parameters for a full-scale mutual co-magnetometry EDM ring that would fit into
the AGS tunnel with bend radius 𝑟0=95.5 m, matching the Omarov et al. reference [55] proposal.
Such a ring could have basically the same “quadrupole-free” design as PTR, but probably with
super-periodicity of 16, and bending radius of approximately 95 m. This table contains some of
the same parameters as are given in Table 3. As before, all entries on the left side of the table are
“magic” with globally frozen, spin tune zero parameters but spin tunes on the right have not been
converted to closest rational fraction required for (pseudo-) freezing the spins. Repeating a previous
statement, for phase-locking beam spin tunes, as required for setting and resetting and stabilizing
beam conditions, only pseudo-frozen spin tunes are required.

The top row represents, for example, the doubly magic pairing of a forward 𝑝 beam and a
backward ℎ beam. The second row then provides the parameters of an ℎ beam that would travel
in the forward direction in the ring with the same electric and magnetic field values. Precise
measurement of this spin tune would provide a significant consistency check of the apparatus. The
next two rows describe essentially the same situation as the first two rows, but with the helion beam
treated as primary and the proton beam as secondary.

The top two four-line blocks represent “doubly-magic” cases. The following lines represent
generic situations in which the primary beam is “magic”; though the other beam may be pseudo-
frozen, its spin tune cannot vanish. The final two deuteron rows are provided both to acknowledge the
special importance of measuring the deuteron EDM measurement, and indicate the disadvantageous
kinematic conditions that result from the deuteron’s small anomalous MDM. The deuteron case is
ironic in the sense that, though the deuteron’s quite small anomalous MDM makes it the baryon
closest to being an ideal Dirac fermion, result in kinematic parameters that make the simultaneous
storage of counter-circulating deuteron kinematically difficult. These comments are continued in
Section F.1.

Compared to PTR, the nominal all-electric full-scale ring bending radius is an order of mag-
nitude greater. The most important consequence of this is that the electric electric field is roughly
an order of magnitude less. One can confidently expect that an electric field of this magnitude can
have superimposed magnetic field without electrical breakdown.

Though reversing the sign of 𝐵0 introduces new solutions, reversed-magnetic field solutions
obviously cannot apply to simultaneously counter-circulating beams. Reversed-sign magnetic field
solutions can apply only to consecutive, not concurrent, runs. The two four-line blocks at the top
of Table 5 represent the only “doubly magic” cases known. The 𝑝, 𝑝 case is “generic” in that
only the primary beam can be magic, but there is a continuum of singly magic counter-circulating
cases, two of which are demonstrated in the following four-line blocks. In each of these cases the
primary beam is frozen with spin tune zero, so its EDM signal accumulates monotonically, and can
therefore be measured, for example by interpolating measurements taken with Koop wheel rolling
forward and backward, as explained in the CYR [6]. The bottom two “deuteron rows” are repeated
in Table 7, which is discussed further in Appendix F.1. Note that, like all paired rows in this table,
both deuteron beams are traveling in the same direction (though not (typically) at the same time).

Table 6 contains parameters for a full-scale mutual co-magnetometry EDM ring with 85 m
bending radius (matching the Wilson Laboratory tunnel, for which the CESR circumference is
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bm m1 G1 q1 beta1 KE1 E0 cB0 m2 G2 q2 beta2 KE2 bratio Qs2 bm
1 GeV MeV MV/m cT/1000 GeV MeV 2
p 0.9383 1.7928 1 0.27831 38.5941 0.5513 0.8659 2.8084 -4.1842 2 -0.16544 39.2396 -0.59444 7.48827e-05¶ h
p 0.9383 1.7928 1 0.27831 38.5941 0.5513 0.8659 2.8084 -4.1842 2 0.22206 71.9095 0.79788 -1.98943e+00 h
h 2.8084 -4.1842 2 0.16544 39.2393 0.5513 -0.8658 0.9383 1.7928 1 -0.27830 38.5924 -1.6822 -4.62057e-05¶ p
h 2.8084 -4.1842 2 0.16544 39.2393 0.5513 -0.8658 0.9383 1.7928 1 0.19532 18.4265 1.1806 -2.12302e+00 p

pos 0.0005 0.0012 1 0.99986 30.0937 1.3311 -1.0109 0.9383 1.7928 1 -0.40242 86.6501 -0.40247 1.45851e-04¶ p
pos 0.0005 0.0012 1 0.99986 30.0937 1.3311 -1.0109 0.9383 1.7928 1 0.31316 49.6955 0.31321 -1.59219e+00 p
p 0.9383 1.7928 1 0.40238 86.6324 1.3309 1.0107 0.0005 0.0012 1 -0.99986 30.0967 -2.4849 3.10250e-05¶ pos
p 0.9383 1.7928 1 0.40238 86.6324 1.3309 1.0107 0.0005 0.0012 1 1.00000 223.1135 2.4852 5.06189e-01 pos
p 0.9383 1.7928 1 0.31304 49.6542 0.7215 0.9337 0.9383 1.7928 1 -0.22516 24.7291 -0.71928 -2.00000e+00 p
p 0.9383 1.7928 1 0.31304 49.6542 0.7215 0.9337 0.9383 1.7928 1 0.31304 49.6542 1 -6.00000e-15 p
p 0.9383 1.7928 1 0.22516 24.7281 0.3457 0.7351 0.9383 1.7928 1 -0.15313 11.1980 -0.68009 -2.27831e+00 p
p 0.9383 1.7928 1 0.22516 24.7281 0.3457 0.7351 0.9383 1.7928 1 0.22516 24.7281 1 -8.00000e-15 p
d 1.8756 -0.1430 1 0.18000 31.1438 -0.1115 4.2136 1.8756 -0.1430 1 -0.02383 0.5326 -0.13237 -5.93955e-01 d
d 1.8756 -0.1430 1 0.18000 31.1438 -0.1115 4.2136 1.8756 -0.1430 1 0.18000 31.1438 1 -3.00000e-15 d

Table 5. Kinetic parameters for various pairs of polarized beams circulating in a tunnel designed initially
for an AGS having 809 m circumference. Entries marked ¶ in the final column can be tuned exactly to zero.
Double horizontal lines separate matched, four set solutions of Eq. (3.11). The doubling of solutions is
explained in companion paper [1]. It occurs because 𝐸0 appears only as 𝐸2

0 in Eq. (3.11). Every second
row in this table shows co- (not contra-) rotating cases—beta1 and beta2 are both positive in these rows.
i.e. beams of two different momenta can travel in the same direction on the same circular trajectory—for the
higher/lower momentum the bending is constrctive/destructive. Reversing the sign of magnetic field 𝐵0 (with
𝐸0 fixed) would reverse the stable circulation directions and interchange constructive/destructive bending.

764 m). This table differs from the previous table by displaying [𝐸 and 𝑝𝑐/𝑞 values. For rough
purposes the difference in bending radius for this and Table 5 is not very important. The “etaE” and
“pc/q” values are useful for estimating the significance of the different focusing behavior of counter-
circulating beams. In particular, for the critically important proton/helion case, the relevant p1c/q1
ratios are 0.2719 and -0.2356. Differing in sign only because the 𝑝 factor has opposite sign, their
approximately equal magnitudes indicate that forward and backward optics will be correspondingly
close. This has been confirmed in Figure 8. As explained previously, and confirmed in the same
figure, the vertical beta functions will be identical for proton an He3 beams.

The order of magnitude momentum imbalance is considerably more serious for the doubly-
magic proton/positron case. This, and the absence of positron polarimetry makes the 𝑝, 𝑒+ EDM
difference measurement problematic.

bm m1 G1 q1 etaE1 p1c/q1 E0 cB0 m2 G2 q2 etaE2 p2c/q2 bratio Qs2 bm
1 GeV GeV MV/m cT/1000 GeV GeV 2
p 0.9383 1.7928 1 0.69584 0.2719 0.6194 0.9728 2.8084 -4.1842 2 1.35106 -0.2356 -0.59444 7.48827e-05¶ h
h 2.8084 -4.1842 2 1.35103 0.2356 0.6194 -0.9728 0.9383 1.7928 1 0.69585 -0.2719 -1.6822 -4.62057e-05¶ p

pos 0.0005 0.0012 1 4.15491 0.0306 1.4956 -1.1358 0.9383 1.7928 1 0.76593 -0.4124 -0.40247 1.45851e-04¶ p
p 0.9383 1.7928 1 0.76596 0.4124 1.4953 1.1355 0.0005 0.0012 1 4.15386 -0.0306 -2.4849 3.10250e-05¶ pos

Table 6. Kinetic parameters for doubly-magic counter-circulating beams in a tunnel comparable in size
to that in Table 5 with 85 m bending radius (matching the Wilson Laboratory tunnel, for which the CESR
circumference is 764 m). Entries marked ¶ in the final column can be tuned exactly to zero.
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E Experimental investigation of Aharonov-Anandan spin tune shift

The abstract to a paper “Phase Change during a Cyclic Quantum Evolution” by Aharonov and
Anandan [57] announced a “new geometric phase defined for any cyclic evolution of a quantum
system” and continued with the statement that “this phase factor is a gauge-invariant generalization
of one found by Berry”. Paper [57] is reprinted, along with many similarly-motivated papers, in
reference [58].

Continuing to quote from Aharonov and Anandan, their first paragraph reads: “A type of
evolution of a physical system which is often of interest in physics is one in which the state of the
system returns to its original state after an evolution. We [meaning Aharonov and Anandan] shall
call this a cyclic evolution. An example is periodic motion such as the precession of a particle with
intrinsic spin and magnetic moment in a constant magnetic field. Another example is the adiabatic
evolution of a quantum system whose Hamiltonian 𝐻 returns to its original value and the state
evolves as an eigenstate of the Hamiltonian and returns to its original state. A third example is the
splitting and recombination of a beam so that the system may be regarded as going backwards in
time along one beam and returning along the other beam to its original state at the same time.”

With one minor change, the proposed PTR ring matches all three of these types of phase
evolution. The first example needs to have “constant magnetic field” made more explicit by its
replacement by “constant magnetic field in the particle rest frames”. This seems harmless. A
frozen spin beam propagating for billions of turns in a time independent storage ring is an example
of the second type. The third Aharonov-Anandan example also fits the PTR configuration of beams
following time reversed orbits as the “cyclic evolution of a quantum system”.

In their Eq. (3),

𝛽 ≡ 𝜙 + ℎ−1
∫ 𝑡

0
〈𝜓(𝑡) |𝐻 |𝜓(𝑡)〉𝑑𝑡, (E.1)

Aharonov and Anandon distinguish a dynamical part 𝛽 from a phase part 𝜙. Then, combining
Schroedinger picture and Heisenberg picture equations, and defining 𝜙 by

|𝜓((𝜏)〉 = 𝑒𝑖𝜙 |𝜓((0)〉, (E.2)

they obtain

𝛽 =

∫ 𝑡

0
〈�̄� |𝑖(𝑑 |�̄�〉)/𝑑𝑡)𝑑𝑡, (E.3)

as the formula for the “phase independent part” 𝛽 of the evolution.
As explained in companion reference [1], it is useful to distinguish between Schroedinger

and Heisenberg pictures even in the purely classical mechanics analysis of storage ring orbits.
As commented upon in the long footnote in Section 5.2 of the present paper, a significant phase
ambiguity can arise in the description of transverse (i.e. betatron) oscillations in a storage ring.
This ambiguity exposes itself, for example, in the comparison of results obtained in Schroedinger
and Heisenberg pictures. In the footnote “blame” for the phase ambiguity is placed on the aliasing
ambiguity present in any trigonometric expression for a “phase angle”.

Though expressed as an aliasing issue in classical physics, it seems clear that an equivalent
phase ambiguity makes its appearance in the quantum mechanical axiom, as stated by Hermann
Weyl [59], “All assertions concerning the probabilities in a given state x are numerically unaltered
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when x is replaced by 𝜖x, where 𝜖 is an arbitrary complex number of modulus 1”; “we cannot
distinguish between these two cases”.

Berry phases are usually quantified by anholonomic angular phase advances acquired during
a single complete traversal around a closed path. In a storage ring the same path is traversed
billions of times. In accelerator jargon the precession rate is expressed as spin tune 𝑄𝑠, which is
the precession occurring each turn as a fraction of 2𝜋. This makes it appropriate to express excess
precession of beam polarization as a “shift 𝛿𝑄𝑠 in spin tune”.

In the case of counter-circulating beams in PTR such a tune shift is readily measurable with
high precision as the difference between counter-circulating spin tunes. Formulas for spin tunes
𝑄𝐸

𝑠 and 𝑄𝑀
𝑠 have been given previously in Eqs. (3.7). Any measurably large deviation from these

equations would represent deviation from current theory.

F Worst case scenarios: failure risks from fundamental physics or cost

As recommended in the CERN Yellow Report [6] (CYR), the fundamental reason for building a
prototype EDM ring (referred to here as PTR) was to investigate and reduce the risk of complete
failure of the nominal all-electric EDM proton EDM ring. Such failure could result from funda-
mental physics issues or from excessive cost. Though these issues are tightly coupled, they are
discussed individually in the next two subsections.

F.1 “Compromise bending” for deuteron EDM measurement

A risk that is deathly serious is the possibilty that the presence of magnetic bending field (of
whatever magnitude) superimposed on electrical bending field will lead inexorably to unacceptably
high sparking breakdown of the electric field. Most of what is known about sparking breakdown for
such electric/magnetic superposition was learned at various labs, including CERN, before 1965, in
connection with the design of electrostatic beam separators. Probably correlated with poor vacuum,
major advances have been made in this area in the meantime. Though primary beam separation in
such separators is due to electric field, to cause separated beams to suffer no net bending requires
(very weak) compensating magnetic bending. These issues are discussed in References [48]
through [52].

It has been shown in Appendix C that, because of their magnetic quadrupoles, even the “all-
electric” hybrid EDM ring design will require a more or less uniform superimposed magnetic
field to cancel the net bending associated with establishing a smooth closed orbit. (Without this
compensation CW and CCW proton beam energies could not be simultaneously globally frozen,
because of their slightly different energies.)

Lattices with separate electric and bending elements, intended for deuteron EDM measurement
have been investigated at COSY, especially by Yuri Senichev [53]. As it happens, it is understanding
of complications in the measurement of the deuteron EDM that makes it easiest to understand the
compromises imposed by “compromise bending” (i.e. physically separated magnetic and electric
bending elements).

The caption to Table 5 promised later discussion of the deuteron rows, which are now repeated
in Table 7, though with more convenient column headings. One sees from the small electric bending
fraction “etaE1” (i.e. [𝐸 = −0.17243) that global freezing of deuteron spins requires a ring with
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bm m1 G1 q1 etaE1 p1c/q1 E0 cB0 m2 G2 q2 etaE2 p2c/q2 bratio Qs2 bm
1 GeV GeV MV/m cT/1000 GeV GeV 2
d 1.8756 -0.1430 1 -0.17243 0.3432 -0.1253 4.7341 1.8756 -0.1430 1 0.52631 -0.0447 -0.13237 -5.93955e-01 d
d 1.8756 -0.1430 1 -0.17243 0.3432 -0.1253 4.7341 1.8756 -0.1430 1 -0.17243 0.3432 1 -4.00000e-15 d

Table 7. Kinetic parameters for counter-circulating deuteron beams in a tunnel of the same size as in Table 5
with 95.5 m bending radius, matching the AGS tunnel, for which the circumference is 809 m. These deuteron
rows are typical of all (or most) atomic nuclei for which only one or the other beam can have vanishing spin
tune. But the kinematic beam conditions are especially hard to meet in the deuteron case because the ratio,
“bratio”, of frozen spin beam velocities, like the ratio of energies, is so different from unity. As an aside,
one notes though, because of the large bending radius of the AGS tunnel, that all electric and magnetic field
values are conveniently small, which likely prevents superimposed electric/magnetic bending from being a
“show stopper”.

primarily magnetic bending—opposite to freezing proton spins, which requires primarily electric
bending. Referring again to the lattice layout shown in Figure 2 one sees that, with red sectors
representing magnetic bending, and (much shorter) blue sectors representing electron bending, that
the spins of a circulating deuteron beam could be frozen by making the ratio of blue/red sector
angles equal to 0.17243/0.82757. Since these sectors are completely disjoint, this “compromise
bending” would avoid the need for superimposed electric/magnetic bending.

The reason the title for this section includes “worst case” is that such a ring could be used
only for deuteron EDM measurement—otherwise the requirement for the closed orbit to remain
circular would prevent adjusting the beam spin tune. Even for deuteron EDM measurement there
is a defect to segregating electric and magnetic bending. This defect was clearly explained in the
original Farley et al. paper [4]. (Slightly edited for brevity) they state

“ It might be supposed that the electric and magnetic fields could be applied to separate sections
of the orbit, with the result that the spin makes small to and fro movements about the vertical axis
but the net precession is zero over one turn. While this would fulfill the main requirement, some
misalignment errors would not be perfectly canceled. For example, a harmonic of the azimuthal
field B would cause the spin to oscillate about the horizontal axis parallel to p. Because rotations
do not commute, the combination would generate a net rotation about the radial axis, leading to a
false EDM. This is an example of Berry phase. Similarly, a misalignment of the electric field would
generate an oscillating radial angular velocity as explained previously. The combined oscillation
would give rise to a false EDM. To minimize these effects, the electric and magnetic fields must be
located at the same place. This error is also canceled by injecting CW and CCW. “

F.2 Need for ultra-magnetic shielding and/or cryogenic vacuum?

For brevity, and because they are covered in the CYR [6], many important technical issues con-
cerning the PTR design have not even been mentioned in the present paper. As recommended
in the CYR, the PTR was to be as inexpensive as possible, consistent with establishing whether
ultra-magnetic shielding and/or cryogenic vacuum would be required for the nominal all-electric
proton EDM ring [55]. As one consequence PTR design assumes only minimal magnetic shielding.

In the two-plus years since completion of the CYR, both PTR and nominal all-electric designs
have diverged significantly. As presently understood, the PTR circumference will be roughly eight
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times smaller than the full scale all-electric ring. Its cost can be estimated, therefore, to be eight
times less. However, this fails to account for the excess cost of cryogenic vacuum and/or ultra-
magnetic shielding, either of which could double the cost. In this sense the PTR cost can perhaps
be assessed as twenty times less than the full scale ring.

There has been a more significant divergence between the PTR (quadrupole-free, combined
function focusing)6 and the “Hybrid” (electric bending, separated function, magnetic focusing) full
scale proton EDM ring.

The presence of absence of magnetic quadrupoles enters the present discussion only because
of the influence of magnetic quadrupoles on the cost of magnetic shielding of a full scale proton
EDM ring. Though not cheap, it might be practical to magnetically shield a continuous toroidal
tube containing a truly all-electric ring. But the presence of stray magnetic fields from the current
leads needed to power the 100, or so, separated-function quadrupoles would seriously complicate
the ultra-magnetic shielding. This might, for example require 100 separate “magnetically shielded
rooms” one for each bend. For reducing magnetic fields to the miniscule level needed to render
negligible the spurious, MDM-induced, EDM mimicking, out of plane precession, would be very
expensive.

The contention of the present paper is that phase-locked spin control methods, and concentrating
on the doubly-magic proton-He3 case, can avoid the need for ultra-magnetic shielding, while
investigating BSM with sensitivity as good or better than proposed by the nominal all-electric
design in the Omarov [55] paper.
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