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A B S T R A C T

For the measurement of the electric dipole moment of protons and deuterons, a novel waveguide RF Wien filter
has been designed and will soon be integrated at the COoler SYnchrotron at Jülich. The device operates at the
harmonic frequencies of the spin motion. It is based on a waveguide structure that is capable of fulfilling the
Wien filter condition E B(

⎯→⎯
⊥

⎯→⎯
) by design. The full-wave calculations demonstrated that the waveguide RF Wien

filter is able to generate high-quality RF electric and magnetic fields. In reality, mechanical tolerances and
misalignments decrease the simulated field quality, and it is therefore important to consider them in the
simulations. In particular, for the electric dipole moment measurement, it is important to quantify the field
errors systematically. Since Monte-Carlo simulations are computationally very expensive, we discuss here an
efficient surrogate modeling scheme based on the Polynomial Chaos Expansion method to compute the field
quality in the presence of tolerances and misalignments and subsequently to perform the sensitivity analysis at
zero additional computational cost.

1. Introduction and motivation

The results of simulated electromagnetic models and the real
fabricated systems may differ. Not every single detail can be included
in the electromagnetic model due to the finite computational capacity.
Assumptions are made and some aspects of the real-world model are
ignored. The electromagnetic models themselves are error-prone,
depending for instance on the number of mesh cells and discretization
uncertainties.

Fabrication processes, with their inherent mechanical uncertain-
ties, have an impact on the actual electromagnetic response.
Waveguides are one example of such systems; the electromagnetic
modes are influenced as a result of the mechanical uncertainties. The
RF Wien filter recently designed is based on a parallel-plates waveguide
[1]. This waveguide is subject to stochastic mechanical variations.
Unfortunately, analytic solutions for the fields resulting from a complex
structure such as the RF Wien filter do not exist. Approximation
methods such as perturbation theory for instance [2] cannot be applied
to tackle tolerance problems, therefore numerical solutions are applied
to quantify the uncertainties.

The classical Monte-Carlo (MC) approach requires the calculation

of a large number of responses corresponding to a set of uncertain
parameters. Basically, Monte-Carlo methods converge slowly in the
sense that they require a substantial number of simulations (typically
of the order of 104 to 105) to provide a reliable estimate of the system
performance. We rely on a commercially available software to simulate
the RF Wien filter.1 In the case where the model evaluation requires
full-wave simulations of a complex electromagnetic structure such as
the RF Wien filter, the Monte-Carlo approach cannot be used because
of the long time required for each simulation.

The proposed method in this study is primarily based on the so-
called Polynomial Chaos Expansion (PCE). The aim is to build a
surrogate mathematical model that requires only a small number of
model evaluations to reconstruct the response of the RF Wien filter in
terms of the field homogeneity. Surrogate modeling is one possible
solution that is feasible and which provides a reliable method to
quantify uncertainties and provides a sensitivity analysis at zero
additional cost. The PCE method has been used in many engineering
applications, such as modeling uncertainties in electric motors [3], and
also in accelerator science [4].

This paper is organized as follows: Section 2 describes the motiva-
tion and the requirements for the proposed modeling scheme. Section 3

http://dx.doi.org/10.1016/j.nima.2017.03.040
Received 28 December 2016; Received in revised form 5 March 2017; Accepted 23 March 2017

⁎ Corresponding author.
1 CST Microwave Studio – Computer Simulation Technology AG, Darmstadt, Germany, http://www.cst.com.

Nuclear Instruments and Methods in Physics Research A 859 (2017) 52–62

Available online 25 March 2017
0168-9002/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

MARK

http://www.sciencedirect.com/science/journal/01689002
http://www.elsevier.com/locate/nima
http://dx.doi.org/10.1016/j.nima.2017.03.040
http://dx.doi.org/10.1016/j.nima.2017.03.040
http://dx.doi.org/10.1016/j.nima.2017.03.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nima.2017.03.040&domain=pdf


describes the considered electromagnetic field uncertainties. Section 4
briefly introduces the PCE theory and describes the mathematical
formulation necessary for the purpose of this paper. Section 5 shows
the application of the PCE theory and how it can be used to quantify the
quality of the electric and magnetic fields. To conclude the analysis,
Section 6 reports about the global PCE-based sensitivity analysis, and
in Section 7 results are summarized. Four appendices can be found at
the end of the paper. Appendix A explains the construction of the
univariate and multivariate Hermite orthogonal polynomials (basis),
and Appendix B clarifies and validates the theory with a simple
example. Appendix C discusses the employed PCE truncation scheme.
Finally, Appendix D explains the least-angle regression method used in
this paper.

2. Modeling mechanical uncertainties of the RF Wien filter

The RF Wien filter is based on a novel concept of a parallel-plates
waveguide as shown in Fig. 1. The system consists of a transmission
line composed of two conductors that supports the transverse electro-
magnetic (TEM) mode in the frequency range required by the electric
dipole moment experiment (see [1]). The RF Wien filter requires an
orthogonal electromagnetic field without components in the beam
direction which is fulfilled by the TEM mode. The field quotient
Z E H= − /q x y controls the Wien filter condition (see [1]), e.g., for
deuterons at 970 MeV/c, Zq must be ≈173 Ω to provide zero Lorentz
force. To set Zq to any particular value, the wave mismatch theory [5]
has been used. This mismatch forces part of the electromagnetic field to
be reflected back into the structure, thereby forcing a forward and
backward propagation of fields. The fields sum up vectorially to
produce the necessary field quotient. Together with the optimally
shaped electrodes, a minimal integral Lorentz force can be ensured.
A ferrite structure surrounds the electrodes to homogenize the
magnetic field and to increase the magnetic field by 25% compared
to a ferriteless solution.

As shown in Fig. 2, x1 and x2 represent the lengths of the upper and
lower electrode, respectively. x1 and x2 are considered independent
random variables. According to the information provided by the
manufacturer [6], the electrodes can be produced with a fabrication
tolerance of ± 0.1 mm, such that x = 808.8 ± 0.1 mm1,2 . Statistically, x1
and x2 are modeled as Gaussian-distributed, independent random
variables with a mean μ = 808.8 mm and a standard deviation
σ = 0.1 mm, abbreviated as G μ σ( , ).

In reality, deviations from the ideal parallelism of the electrodes
may occur which needs to be included in the field simulations. This is
taken into account by allowing the two plates to rotate in the xy and xz
plane (see Figs. 2 and 3 for coordinates). A rotation in the yz plane is

less probable and is therefore not considered here2. x7 and x8 represent
the tilt angles of the possible rotations of the electrodes in the xz plane
(see Fig. 2). The electrodes can also move independently with a
rotational interval up to ± 1 mrad [6].

As shown in Fig. 3, the variation of the width of the electrodes (x3
and x4) and their rotation in the xy-plane (x5 and x6) are considered as
well in the calculations. x9 and x10 correspond to undesired rotations of
the ferrite structure in the xy and the xz plane, respectively. All random
variables may vary simultaneously. The statistical characteristics of the
random variables considered here are listed in Table 1.

3. Electromagnetic field uncertainties

A full-wave simulation numerically solves Maxwell's equations in
the RFWien filter. The solution is expressed in terms of the electric and

magnetic fields, E r
⎯→⎯

(→) and H r
⎯→⎯

(→), respectively.
The desired electric field should point into the x-direction, thus

ideally produce E( , 0, 0)x , while the magnetic field should point into the
y-direction, H(0, , 0)y . The unwanted field components are denoted by

E
⎯→⎯

⊥ and H
⎯→⎯

⊥ and were defined in [1] as

⎛

⎝
⎜⎜
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The results for 1000 full-wave simulations are collected in Fig. 4, in

terms of the magnitude of E
⎯→⎯

⊥ and H
⎯→⎯

⊥ . These simulations used the
Gaussian distribution of the xi i( = 1,…,10), as given in Table 1, and
the stochastic variations of the unwanted fields E⊥ and H⊥ are evaluated
along the beam axis. Mechanical tolerances lead to deviations of the

wave vector k
→

from its ideal direction along the beam axis. Such
deviations generate unwanted fields. For instance E⊥, shown in
Fig. 4(a), can reach 30 V/m inside the RF Wien filter, while at the
edges, a value 150 V/m is possible. The fields at the edges are
approximately 5 times larger than the inner ones.

The magnetic fields H
⎯→⎯

⊥ , shown in Fig. 4(b), exhibit a different
behavior. The unwanted fields at the edges have roughly twice the
magnitude compared to the inner ones. Inner deviations reach up

Fig. 1. CAD design model of the RF Wien filter, showing the parallel-plates waveguide
and the support structure (Figure taken from [1]). The coordinate system used for the
design calculations is indicated. The stored beam moves along the z-axis of the RF Wien
filter. 1: beam position monitor (BPM); 2: copper electrodes; 3: vacuum vessel; 4: clamps
to hold the ferrite structure; 5: belt drive for 90° rotation; 6: ferrite structure; 7: CF160
rotatable flange; 8: support structure of the electrodes; 9: inner support tube.

Fig. 2. Stochastic variation of the parameters of the waveguide RF Wien filter in the xz-
plane. The solid grey lines represent the electrodes and the solid blue lines the ferrites.
The shaded counterparts indicate the possible rotational displacements and misalign-
ments. x1 and x2 model the random lengths while x7 and x8 model the random angular
rotations of the electrodes in the xz-plane. x10 models the possible rotation of the ferrites.
(For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

2 Each electrode is connected to the support structure via eight metallic screws. For a
rotation to occur, all screws would have to be simultaneously misaligned which is
unlikely.
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0.7 A/m in contrast to 1 A/m at the entrance and exit of the RF Wien
filter. Uncertainties deform the cross-section of the waveguide at the
entry and exit points of the Wien filter in an asymmetric manner,
resulting in non-equidistant and non-parallel electrodes. This explains
the non-uniformity and asymmetries of the field variations.

The field homogeneities, specified via fE
int
⊥
and fH

int
⊥
are calculated by

taking into account the total fields (see [1]), which results in

∫

∫

∫

∫
f

E d

E d
f

H d

H d
=

|
⎯→⎯

| ℓ

|
⎯→⎯

| ℓ
= , and =

|
⎯→⎯

| ℓ

|
⎯→⎯

| ℓ
= .E E H H

int −ℓ/2

ℓ/2
⊥

−ℓ/2

ℓ/2
int −ℓ/2

ℓ/2
⊥

−ℓ/2

ℓ/2⊥ ⊥
(3)

The effective length of the RF Wien filter amounts to 1550 mm. In
order to speed up the calculations, the integrals in Eq. (3) were
evaluated for ℓ = 1152 mm along the longitudinal axis of the RF Wien
filter. The field contributions outside the considered length are very
small (of the order of 104) and are not taken into account. In the
following, the electric and magnetic fields homogeneities are denoted
by E and H . These are the quantities that this paper tries to estimate
within a reasonable number of full-wave simulations.

3.1. Note on the full-wave simulations

During the design phase of the RF Wien filter, around 63 × 106 mesh
cells have been used in the simulation software. Each simulation required
roughly 12 h on a GPU-based computing system. For a reliable MC
simulation, 105 simulations would be required, corresponding to years of

computation time. Clearly this is not a feasible solution.3 Each individual
simulation comprises four excitation ports, two on each side of the RF
Wien filter. In fact, each port requires one full-wave simulation. This
means, for each combination of the random input variables, four actual
simulations are required to gather the field results. These four simula-
tions ran in parallel on the GPU-cluster.

For the uncertainty analysis, the complexity of the electromagnetic
model of the waveguide RF Wien filter has been reduced, ignoring
therefore many details of the mechanical model, e.g., support screws
and their holding rings. The number of mesh cells has been reduced to
38 × 106 mesh cells. Moreover, the material properties of some
components have been simplified; the vacuum vessel and the inner
support tube do not affect the field quality and they can be safely
changed from non-magnetic stainless steel to perfect electric conduc-
tors. Thereby, the number of mesh cells could be further decreased to
13 × 106 and the simulation time for one configuration was reduced to
about 2.5 h.

As a validation criterion for the reduction of the number of mesh
cells, fE

int
⊥
and fH

int
⊥
have been computed for both the fine- and the coarse-

meshed models. The electric field homogeneity was reduced from
f = 4.15 × 10E

int −6
⊥

to 4.36 × 10−6, while the magnetic field homogeneity

increased from f = 1.2 × 10H
int −5
⊥

to 1.18 × 10−5, thus implying a relative

variation of −0.05 and +0.02, respectively. The absolute variation of fE
int
⊥

and fH
int
⊥
for the fine and coarse mesh is about as large as the uncertainty

of the unwanted field components picked up by an extended beam
passing through the RF Wien filter when the low-β section is switched
off, given in Table 3 of [1].

It should be noted that without such simplifications, an uncertainty
analysis would not have been possible at all. Computation times of
2.5 h are also not very affordable (2.5 h is the pure solving time, which
does not include the preparation phase for the simulations, e.g., the
meshing and the preparation of the material matrices). In total, it took
more than 115 days to perform 103 simulations, which were carried out
discontinuously, depending on the availability of the GPU-cluster.

4. Polynomial Chaos Expansion (PCE)

4.1. Introduction

Polynomial Chaos Expansion (PCE) is a spectral method that can
describe randomness (e.g., uncertainties) in stochastic dynamical
systems in a Fourier-like series expansion. It was originally proposed
by Norbert Wiener [7] and integrated into the finite-element method
(FEM) by Ghanem and Spanos [8]. According to Wiener, Hermite
polynomials are orthogonal with respect to Gaussian probability
measures [9] in 2-normed spaces. Hermite polynomials can therefore
be used as basis functions to represent Gaussian random variables [10]
by a set of deterministic coefficients. In principle, the theory is not
restricted to Gaussian spaces, in fact, other polynomials can span non-
Gaussian spaces, as described in [10].

4.2. System representation and calculation of coefficients

Fundamental for the PCE calculations is the so-called multi-index
set. This is simply a multi-dimensional indexing scheme related to the
multivariate Hermite polynomials. The multi-index set is represented
as i and is defined as

i ii i p= { = [ ,…, ]; ≤ }m p m, 1 1 (4)

p is the order of the polynomial (also called the expansion order), · 1 is
the 1 norm, explained in Appendix B. x is the vector of all random

Fig. 3. Stochastic variation of the parameters of the waveguide RF Wien filter in the xy-
plane. The solid grey lines represent the electrodes and the solid blue lines the ferrite
structure. The shaded counterparts indicate the possible rotational displacements and
misalignments. x3 and x4 model the random widths of the electrodes while x5 and x6
model the random angles rotations of the electrodes in the xz-plane. x9 models the
possible rotation of the ferrites. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Table 1
Statistical distributions of the random variables representing the stochastic mechanical
variations of the waveguide RF Wien filter. G μ σ( , ) indicates a Gaussian distribution with
a mean value of μ and a standard deviation of σ, in units of mm or mrad.

Variable Description Distribution Unit

x1 Length of the upper electrode G (808.8, 0.1) mm
x2 Length of the lower electrode G (808.8, 0.1) mm
x3 Width of the upper electrode G (182, 0.1) mm
x4 Width of the lower electrode G (182, 0.1) mm
x5 Rotation of the upper electrode in the (xy-

plane)
G (0, 1) mrad

x6 Rotation of the lower electrode in the (xy-
plane)

G (0, 1) mrad

x7 Rotation of the upper electrode in the (xz-
plane)

G (0, 1) mrad

x8 Rotation of the lower electrode in the (xz-plane) G (0, 1) mrad
x9 Rotation of the ferrite structure in the(xy-

plane)
G (0, 1) mrad

x10 Rotation of the ferrite structure in the(xz-
plane)

G (0, 1) mrad

3 Although MC simulations can be parallelized, setting up our commercial software
tool1 on a supercomputer is expensive and would exceed the financial budget of the
project.
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parameters that represent the possible uncertainties in the RF Wien
filter, i.e., x x x x= { , ,…, }1 2 10 , as collected in Table 1. denotes the
output of the system (also called the model response). describes in
fact the electric and magnetic field inhomogeneities.

For the PCE series to converge, it is necessary that x be standar-
dized. Standardization is a form of iso-probabilistic transformation that
transforms an arbitrary random variable into a normally distributed
one with zero mean and unity standard deviation. Thus, the input
parameters xi are transformed into the corresponding standardized
random variables ξi. The stochastic spectral representation, expanding
the model response with an m-dimensional truncated PCE to the
order p reads

∑ξ ξα Ψ= ( ) = ( ).
i

i i
∈ m p, (5)

Here is called the meta-model and it denotes the solver used. In the
analysis conducted by Ghanem and Spanos [8], was the finite-
element method (FEM). But it can be in principle any solver such as the
finite integration technique (FIT), as in the case of this work4. The αi
denote the (deterministic) expansion coefficients to be determined, Ψi
are the basis functions (the multivariate chaos polynomials). The
detailed computation of the homogeneous chaos basis functions is
explained in Appendix A.

To compute the expansion coefficients, intrusive and non-intrusive
approaches can be used. Intrusive methods alter the underlying code
by introducing another form of discretization. This stochastic discre-
tization converts the governing stochastic equation into a large system
of linear equations. This technique is computationally fast, but altering
code is often error-prone. In addition, the deterministic code may not
be available, or may require many difficult analytical calculations. The
other approach, the non-intrusive one, considers the (existing) deter-
ministic code as a black-box. No changes of the code are required. It
runs independently from the solver used in the deterministic code,
which makes it an attractive option. The expansion coefficients are
calculated having multiple calls to the deterministic code via regression
or projection.

Projection requires the evaluation of expected values (integrals)
and relies on the orthogonality of polynomials to compute the

coefficients in the form of

α Ψ
Ψ

E
E

= { }
{ }

.i
i

i
2 (6)

Regression on the other hand computes the coefficients with the
least-square minimization method. According to [3], regression leads
to more accurate results and it is used in this work. Regression
methods require the solution of a large system of linear equations
(LLSE) and matrix inversion, as will be shown later.

Matrix inversion may fail. To avoid this case, a well-posed restric-
tion is imposed on the LLSE, in the least-square sense. In terms of the
PCE analysis, this restricts the lower bound on the costly lower number
of full-wave deterministic simulations N. N as a rule of thumb must be
at least 1.5 times the number of polynomials basis P calculated as the
following permutations

⎛
⎝⎜

⎞
⎠⎟P m p

p
m p

m p
= + = ( + )!

! !
.

(7)

Rewriting Eq. (5) in matrix form, yields

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

ξ ξ
ξ ξ

ξ ξ

Ψ Ψ
Ψ Ψ

Ψ Ψ

α
α

α
⋮

=

( ) … ( )
( ) … ( )
⋮ ⋱ ⋮

( ) … ( )

· ⋮ .

N

N

N
N P P

T

N

1

1

1

1

2
0 0

1 1

−1 −1

1
2

(8)

Eq. (8) must be solved for the electric and magnetic field inhomogene-
ities individually.

By using the regression method, and assuming N is large enough,
the coefficients are calculated using the least-square estimation method
(LSE), given by

Ψ Ψ Ψα = ( · ) · · .i
T −1 (9)

The output of the full-wave simulations is expressed in terms of the
electric and magnetic field homogeneities via E and H , respectively.

without any index refers to either of the two cases.

4.3. Sparse PCE

With high-dimensional problems (the number of uncertain vari-
ables m ≥ 10), such as the RF Wien filter, classical-full rank PCE is not
feasible in the sense that the number of full wave simulations is
intolerably large. In this case, PCE theory does not provide any
advantages compared to MC methods. This was the motivation to look

Fig. 4. Low-order Monte-Carlo simulations showing the evaluation of E|
⎯→⎯

|⊥ and H|
⎯→⎯

|⊥ along the beam axis for a 10 kW input power. In the worst case, E|
⎯→⎯

|⊥ does not exceed 150 V/m, while

H|
⎯→⎯

|⊥ does not exceed 1 A/m. The solid black line represents the ideal case, i.e., with perfect alignment of all elements of the RF Wien filter and zero tolerances. (a) 1000 full-wave

simulations showing the magnitude of the unwanted electric field E|
⎯→⎯

|⊥ along the beam axis. (b) 1000 full-wave simulations showing the magnitude of the unwanted magnetic field H|
⎯→⎯

|⊥
along the beam axis.

4 The deterministic code used in this work is the full wave simulator commercial
software package, CST Microwave Studio. The simulations were executed on a dual-Xeon
E5 CPU with 4 Tesla C2075 GPU with 448 CUDA cores each.
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for a sparse version of PCE. Blatmann et al. [11] proposed a systematic
methodology to build an adaptive sparse PCE. Blatmann proposed to
select only a subset of the basis functions that have the highest effects
on the system response and to reject the other functions using a two-
step procedure, in particular, a hyperbolic truncation scheme followed
by a least angle regression (LAR) algorithm [12]. In his dissertation,
Blatman showed that sparse PCE can still produce accurate meta-
models but with much less complexity.

The PCE series shown in Eq. (5) is truncated5 up to a finite order p.
The hyperbolic truncation scheme [13], implements an additional
truncation scheme on the already p-truncated series by eliminating the
basis functions with the highest order of interaction, as clarified in
Appendix C. In [14], an interaction is formally defined as the
“Existence of joint factor effects in which the effect of each factor
depends on the levels of the other factors”, while a factor is defined as
“A controllable experimental variable that is thought to influence the
response”. According to the so-called sparsity-of-effects principle, the
low-order interactions monumentally dominate the high-order ones.
This concept is implemented in the PCE equations by manipulating the
multi-index set in Eq. (4). Altering the multi-index set clearly changes
Eq. (5) and the subsequent ones. The new hyperbolically-truncated
multi-index set is referred to as m p q, , . The new term in defines the
so-called ‘q-norm’, a quantity explained in Appendix C. It defines a
quasi-norm in the ‘probability space’, as the probability space is also a
metric space. The ‘q-norm’ is selected between 0 and 1, with 1 being
not truncated.

Next, a method used in machine learning, the least-angle regres-
sion method (LAR), is employed in the context of PCE. LAR employs a
routine of iterating over the remaining chaos basis functions to select
the set that has the highest influence on the model response. The basis
will be filtered according to their contribution to the system response
regardless of their order of interaction. The LAR algorithm was
originally proposed by Efron [12], while [15] is a descent of the
least-square regression method used to solve LLSE. The LAR algorithm
is not used to compute the chaos expansion coefficients but to select the
basis functions. Then, the LSE is used to compute the coefficients. The
resulting LAR truncated multi-index set is referred as *m p q, , . Executing
the LAR algorithm results in a number of solutions (many possible
basis functions sets). The selected LAR model chosen that yields the
minimum leave-one-out error Loo is explained later. The coefficients
are then calculated using the ordinary LSE regression. If the Loo does
not reach the required threshold accuracy, new samples are added and
the algorithm is repeated. The algorithm chart is detailed in ([16]).

4.4. Cross-validation

Cross-validation is a technique employed to assess the quality of the
PCE meta-model. The basic idea is to decompose the (input/output)
data into K sets. K − 1 sets are used to build the fit model and the error
is calculated by predicting the remaining set not included in the fitting
calculations. This method is called the K-fold cross-validation techni-
que [15]. When K equals the cardinality of the design of experiment N,
the validation method is called the leave-one-out cross-validation
(LOOCV). The implemented algorithm selects a single instance ξk from
the input set and computes the meta-model of the remaining set, i.e.,

ξ ξ( − { }) =k k. The algorithm iterates over each of the sets and the
leave-one-out error is calculated according to

∑e
N

= 1 ( − )rr
k

N
k

=1

2
LOO

A reliable PCE meta-model requires a leave-one-out error errLOO in the
order of 10−2 [17].

5. Results

The 10-dimensional input data were generated using a quasi-
random scheme, called the nested latin hypercube sampling
(NLHS). Firstly, latin hypercube sampling (LHS) is an efficient
sampling scheme proposed by McKay [18] that offers better represen-
tation of the input data compared to MC-based sampling methods [19].
It offers similar performance compared to MC-based schemes in the
sense that the latter requires a larger number of samples and
consequently a larger number of simulations to provide the same
quality as the LHS. The nested LHS (NLHS) allows the initial size of the
design of experiment to be increased in order to fulfill the errLOO. One
does not know in advance how many simulations must be performed in
order to build a reliable statistics. It is probable (as in this paper) that
the number of simulations must be increased to meet the cross-
validation conditions. The NLHS is one validated method [16] to do
this.

At first, 100 full wave simulations have been carried out, then the
number of simulations was increased to 300, until the leave-one-out
error threshold has been reached. A q-norm q of 0.4 has been selected,
as suggested in [19]. The PCE expansion was truncated at the
p = 11th-order. Applying the LAR algorithm results in 300 meta-
models with the coefficients for the electric and magnetic fields,
respectively, shown in Fig. 5. On each set of LAR coefficient the
leave-one-out cross-validation is performed and the meta-model with
the lowest value is select to be the optimum solution as shown by the
dashed red vertical lines in Fig. 5. For the electric field, only 55 basis
functions are used to produce a final e = 0.0264rrLOO , while for the
magnetic field 84 basis functions were computed to provide a
e = 0.0452rrLOO . This means that in total 168 full-wave simulations
would be sufficient to produce a Monte-Carlo equivalent result. With
the optimummeta-model in hand, the new, LAR-based, multi-index set

*m p q, , is calculated and consequently the basis functions Ψ are
constructed. The expansion coefficients can be easily computed by
applying Eq. (9).

The probabilistic performance of the RF Wien filter is shown in
Fig. 6. These are not the probability distributions; the results were
fitted with a Gaussian distribution with arbitrary mean values and
standard deviations, and the parameters are summarized in Table 2.
The magnetic field undergoes much faster and stronger variations than
the electric field. This is clearly obvious from Fig. 4. As a result, the
values of the homogeneity integrals for the magnetic field will me more
difficult to detect and to estimate. The number of basis functions to
span the variation of the magnetic field was higher. Even in Fig. 6, the
electric field fits better to the 1000 simulations than the magnetic field.

According to the results of the PCE simulations (see Table 2), the
electric field maintains a high field homogeneity compared to the ideal
(no-uncertainty) model. However, the magnetic field seems to be more
sensitive to mechanical variations by about a factor of 10 than the
electric field.

6. PC-based sensitivity analysis

To conclude this analysis, a sensitivity analysis is indispensable,
which will allow us to identify the most influential parameters on the
performance of the device. The results may be used by the mechanical
engineers during the assembling of the RF Wien filter.

The basic idea is to decompose the variance of the output ( E and

H) as a function of the contribution of each variable and possibly their
combination. This is called the ANalysis Of VAriance, or ANOVA. The
independence of the random input variables and the orthonormality of
the PCE, permits the direct computation of one known sensitivity
scheme, called the Sobol sensitivity via the Sobol decomposition at
zero-cost [20]. Zero-cost means that no additional computation is
required. The PC coefficients can be used directly.

If is the total output, then ξi denotes the output produced by the5 Any expansion implemented on a computer is actually truncated.
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random variable ξi. Rewriting Eq. (5) as a function of terms of the
variable ξi gives

∑ξ α Ψ ξ= ( ) = ( ).
i

i iξ i
∈

i
ξi (10)

Here ξi is the multi-index set of the variable ξi, i.e., the i th term in the

multi-index row is non-zero. Therefore, to characterize the output
related to the ξi or any of its combinations, all that is required is the PC
coefficients. If D denotes the variance of the estimated output , the
partial variances corresponding to the random input variables are
denoted as Dξ ξ, …,1 10. In this case, the total and partial variances are
calculated, respectively, as

Fig. 5. The sparsity of the PCE depends on the least-angle regression algorithm which produces multiple meta-models for the electric and magnetic field homogeneities. The selected
meta-model will be used to rebuild the multi-index set and then select the basis functions. (a) Estimated coefficients (vertical cuts) for each meta-model of the electric field homogeneity

E , created by the least-angle regression algorithm. On the horizontal axis, the iteration number is shown. The optimum coefficients set is shown by the vertical cut of the red-dashed

vertical line with respect to the leave-one-out cross validation. (b) Estimated coefficients (vertical cuts) for each meta-model of the magnetic field homogeneity H , created by the least-

angle regression algorithm. On the x-axis, the iteration number is shown. The optimum coefficients set is shown by the vertical cut of the red-dashed vertical line with respect to the
leave-one-out cross validation. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 6. Comparison of the statistical distribution of the estimated homogeneities of the electric and magnetic field computed using the sparse PCE and the low-order MC method. The
quantitative results are summarized in Table 2. (a) Estimated statistical distribution of the electric field homogeneity f=E E⊥

int calculated using the sparse generalized PCE method with

an expansion order 12 fitted to a Gaussian distribution. 104 samples of the PC basis have been used for the construction of the distribution. The result of fitting the low-order MC E with

a Gaussian distribution is displayed as well. (b) Estimated statistical distribution of the magnetic field homogeneity f=H H⊥
int calculated using the sparse generalized PCE method with an

expansion order 12 fitted to a Gaussian distribution. 104 samples of the PC basis have been used for the construction of the distribution. The result of fitting the low-order MC
distribution H with a Gaussian distribution is also shown.
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∑ ∑D α D α= , and = .
i

i
i

iξ
∈ −{0}

2

∈

2
i

ξi (11)

Finally, the Sobol indices corresponding to the parameters ξi are
calculated according to

∑ iS
α
D

i i= ; { = ∈ : > 0, = 0}.
i

i
ξ ξ ξ ξ ξ

∈

2

≠i
ξi

i i i j
(12)

Only the first order Sobol indices are shown; they constitute 97% of the
total contribution over the higher order indices, as can be seen in Fig. 7.
The results of evaluating Eq. (12) for the electric and magnetic fields
are shown, respectively, by the blue and yellow bars in Fig. 7. On the x-
axis, the uncertain parameters, i.e., ξ ξ,…,1 10 are shown. Within the
± 0.1 mm manufacturing uncertainty and according to the PCE simula-
tions, the most influential variables on the electric field homogeneity
are ξ1, ξ2, ξ5, ξ7, and ξ8. The tolerances in the electrodes lengths, ξ1 and
ξ2, are responsible for 5%–10% deviation of the field homogeneity from
the mean value. Because Sξ1 and Sξ2 have different levels, this implies
that the electrode displacement contributes to the performance. The
widths of the plates does not have a noticeable influence on the
homogeneity of the electric field. The rotation of the upper electrode
with respect to the xy-plane has the highest sensitivity value (62%). ξ6
also represents the rotation of the second electrode with respect to the
xy-plane but with minimum effect. Electrode misalignments and the
rotation of the ferrite structure in the xz-plane contribute by up to 20%.

The ferrites, due to their high magnetic permeability μ value, flatten
the magnetic field lines inside the RF Wien filter. At the corresponding
frequencies, the ferrites have a larger impact on the magnetic field than
on the electric field. The Sobol index is expected to be high for the
values related to the ferrites. The sensitivity analysis for the magnetic
field shows that ξ9 is the most important one, reaching a value of 85%.
The parameter ξ9 represents the rotational misalignment of the ferrite
structure in the xy-plane. If the angular alignment of the ferrite

structure could be improved by about a factor of 3 from 1 mrad to
0.3 mrad, a substantial improvement of the standard deviation of H⊥ is
to be expected. The rotation of the electrodes in the xy-plane, as well as
in the xz-plane affect slightly the standard deviation of H⊥ by about
10%. Hx is the main source of parasitic magnetic field, though it is very
small compared to the main field, it does not cancel out when
integrating along the longitudinal axis, but rather accumulates.

Similar variables, e.g., ξ5 and ξ6, that represent the same physical
quantity, should not necessarily possess the same Sobol sensitivities
(see Fig. 7). The electromagnetic effect of a rotation of the upper and
lower electrode is exactly the same because parallel-plate waveguides
are symmetrically invariant with respect to the xy-plane. When
modeling the uncertainties, ξ5 and ξ6 for instance, are allowed to vary
independently within their error margins [and the same is true for the
other pairs ξ ξ( , )1 2 , ξ ξ( , )3 4 , and ξ ξ( , )7 8 ]. In this way, a misalignment
(breaking of parallelism) of the electrodes in the xy-plane can be
modeled using only two variables. The stochastic independence of ξ5
and ξ6 makes sure that the electromagnetic response from the two
electrodes is different, unless the electrodes are identical. However, if
ξ5 and ξ6 take the same values, this means that the parallelism is
conserved and the variables must have the same Sobol sensitivities.
Fig. 7 emphasizes that parallelism is the major factor in preserving the
electric field.

7. Conclusion and outlook

This paper presents an application on sparse and non-intrusive
Polynomial Chaos Expansion (PCE) as a low-cost calculation method of
the electromagnetic field quality of the novel RF Wien filter. The sparse
PCE basis functions were built by first using the hyperbolic truncation
scheme to exclude the higher-order basis functions out of the full PCE
basis. Then, with the help of the least-angle regression (LAR) algo-
rithm, only the most influencing basis functions were selected, redu-
cing therefore the number of required full-wave simulations. The LAR
algorithm generates many possible solutions. By applying the leave-
one-out cross-validation (LOOCV), the best of these basis functions
were kept. The expansion coefficients were then calculated using the
ordinary least-squares regression method. Therefore, the combination
of different techniques namely, PCE, LAR and LOOCV, must be used
together in order to provide an accurate and low-cost framework for
the quantification of uncertainties.

The fabrication and assembly limitations of the electrodes and the
ferrite structure have been modeled and were evaluated as a function of
the homogeneities of the electric and magnetic field. Because of the
high-dimensionality of the problem, a sparse version of PCE has been
used based on the least-angle regression method. The results were
compared to low-order MC simulations, and a very good agreement
between the two techniques was found. The influence of the individual
parameters on the performance has been quantified based on the
Sobol-sensitivity analysis.

It has been found that the parallelism of the electrodes in the xy-
plane is the most crucial parameter that influences the performance of
the electric field. The alignment of the ferrite structure in the xy-plane
was the dominant factor for the magnetic field. We do not have
measurement nor simulation results in order to decide in favor of a
better field homogeneity of the electric or the magnetic field. After the
first EDM experiments with the RF Wien filter in 2017, we will see
whether the present design criteria should be altered. For example, flat
electrodes provide a more homogeneous magnetic field compared to
the electric field by about a factor of 11.

The PCE theory can be applied to many problems in high-precision
experiments, for which an accurate specification of uncertainties is
required. Examples include, but are not limited to the performance
analysis of the designs of highly-accurate BPMs, the influence of the
position of dipoles and quadrupoles on the spin-precession in storage
rings.

Table 2
Mean and standard deviations of the PCE and MC-based system response for fE⊥

int and
fH⊥

int .

Mean μ Width σ

E
(MC) (2.03 ± 6.81) × 10−5 (4.95 ± 0.96) × 10−4

E
(PCE) (2.39 ± 6.60) × 10−5 (4.87 ± 0.93) × 10−4

H
(MC) (1.54 ± 0.23) × 10−4 (3.22 ± 0.04) × 10−3

H
(PCE) (1.91 ± 0.38) × 10−4 (3.08 ± 0.06) × 10−3

Fig. 7. Sobol sensitivity of the electric and magnetic field homogeneity to the design
parameters of the waveguide RF Wien filter. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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Appendix A. Building the homogeneous chaos basis

In closed form, the 1D Hermite polynomials ψ ξ( )n are defined as

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ψ ξ ξ d

dξ
ξ( ) = (−1) exp

2
exp −

2
.n

n
n

n

2 2

(A1)

With respect to the inner product in 2-normed Hilbert spaces, Hermite polynomials ψ ξ( )n are orthogonal with respect to the Gaussian measure,
i.e.,

∫ψ ξ ψ ξ
π

ψ ξ ψ ξ f dξ δ ψ ξ( ) ( ) = 1
2

( ) ( ) = ( ) .n m n m ξ mn n−∞

∞
2

Here fξ denotes the normal probability density function.
In most cases, when more than one variable is involved, the multi-dimensional polynomial basis is required. The multidimensional Hermite

polynomials are constructed using the tensor product of the 1D Hermite polynomials, via

∏Ψ ψ= .
i

i

Here i is called themulti-index set (also known as tuplets); it indicates the degree of the polynomial in each of the input variables. An example of a
multi-index set is located on the leftmost column of Table A3. For instance, (1, 0) implies that the first parameter is elevated to the first order and
the second to the zeroth level and so on.

Appendix B. Example

To further facilitate the understanding of the basic theory, in this section a simple example is provided.
Consider the function y, defined as

y x= sin( ). (B1)

This function may represent the unknown dynamical behavior of an unknown system. Now, the dependent variable x is not deterministic, but varies
stochastically according to some distribution, say a Gaussian one. The output will then also be a stochastic variable. To build the statistics of the
output, classically a Monte-Carlo simulation is conducted. Because the analytic form of the dynamics of the system is given, the performance of the
PCE can be evaluated against the input analytic solution.

The blue line in Fig. B8 shows the analytical solution. 10 random sample points are created and the corresponding output is drawn (the red
crosses in Fig. B8). With the input and output data being present, the PCE meta-model can be constructed. As the input is a Gaussian distributed
random variable, the Hermite polynomials are used to surrogate the analytical model. Fig. B8 shows the performance of the PCE with respect to the
expansion order with a constant sampling of 10 points. A 2nd order expansion was clearly not sufficient to reconstruct the model response, while
with the 4th order expansion, the PCE could reproduce the model within the range of the sample points, but not outside this range. On the other
hand, increasing the expansion order to the 5th allowed the PCE to replicate the exact model even outside the sample range but not at the edges of
the function. The meta-model does have enough polynomials to predict the full response. Finally, the 8th order PCE is capable to fully reconstruct
the response.

On a probabilistic basis, the statistical distributions of the output is the main criterion to consider. With a sample of 36 random points and an
expansion fraction of 8, the probability density function and the cumulative density functions samples are shown in Fig. B9 [labels (a) and (b)],
respectively. A very good congruence can be noticed proving that the PCE theory can be used to accurately surrogate models with a good accuracy.

Appendix C. PCE truncation

Practically, PCE cannot extend to infinity and normally, the expansions are truncated to a degree p (PC expansion order). In terms of the multi-
index set , it is expressed in terms of dimensionality of the problem m and the expansion order p as m p, , defined as follows:

Table A3
2D PCE parameters.

n p n ψn
th i

0 0 1 (0,0)
1 1 ξ1 (1,0)
2 1 ξ2 (0,1)
3 2 ξ − 11

2 (2,0)

4 2 ξ ξ1 2 (1,1)
5 2 ξ − 12

2 (0,2)
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i i p= { ∈ : ∥ ∥ ≤ },m p
M

, 1 (C.1)

where∥·∥1 is the 1-norm. Now, to eliminate the higher order interactions, a new form of distance is defined and applied on the multi-index set m p, ,
called the q-norm ∥·∥q, which modifies the ∥·∥1 by

⎛
⎝⎜

⎞
⎠⎟∑∥·∥ = (·) .q

m
q

q1/

(C.2)

Fig. B8. The sine function is sampled with 10 points. Increasing the PCE order, increases the fit quality. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. B9. Probabilistic comparison between MC and PCE. (a) The estimated probability density function (PDF) fy of both Monte-Carlo simulation and PCE. (b) The estimated cumulative
probability density function (CDF) Fy of both Monte-Carlo simulation and PCE.
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The new hyperbolic multi-index set is denoted by m p q, , and becomes

i i p= { ∈ : ∥ ∥ ≤ }m p q
m

q, , (C.3)
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A graphical representation of the hyperbolic truncation scheme set can be found in Fig. C10 with a q-norm varying from 0.8 to 0.4. The higher
order interactions are taken out gradually. The polynomial terms selected for the first random variable are located on the horizontal axis, while on
the vertical axis the corresponding terms of the second variables are shown. If blue dots on the outer layer are connected, the shape resembles a
hyperbola, hence the name hyperbolic truncation.

Appendix D. The least angle regression algorithm

The least angle regression (LAR) method is a statistical tool heavily used in machine learning and estimation theory. The LAR is a descendant of
the least absolute shrinkage and selection operator method known as the (LASSO). In comparison to the full PCE, LAR-based PCE is much more
difficult to implement, but in total it saves a large amount of time. With a large number of input variables m=10, the full PCE requires a large
number of full wave simulations which is not feasible. In a similar approach conducted by Blatman et al. [11], the LAR-PCE based method has been
implemented here with the following steps:

1. Set the coefficient to zero and set the residual R = − .
2. Find the vector (basis polynomial) Ψij that is most correlated with the residual R.

3. Move the corresponding coefficient aij from 0 to Ψ Ri
T
j until another polynomial Ψik has stronger correlation with the residual.

4. Move aij and aik in the direction defined by their joint least square coefficient on the current residual of Ψ Ψ( , )i ij k until some other basis has more
correlation with the current residual.

5. Continue until the P basis (also known as predictors) have been entered.

Fig. C10. Hyperbolic basis truncation with different q-norms. As the q-norm decreases, The basis cardinality decreases. The red dots represent the full basis elements and the blue
crosses indicates the selected (remaining) basis elements. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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When applying the LAR algorithm on the magnetic field homogeneity, the selected basis functions H are shown in Fig. D11. It is clear that very
few polynomials have been considered in the field calculations which require much smaller number of full-wave simulations.
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