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High-frequency driven resonant spin rotators are routinely used as standard instruments in polarization
experiments in particle and nuclear physics. Maintaining the continuous exact parametric spin resonance
condition of the equality of the spin rotator and the spin precession frequency during operation is one of the
challenges. We present a detailed analytical description of the effects of detuning the exact spin resonance
on the precessing vertical and in-plane components of the polarization. An important part of the formalism
presented here is the consideration of experimentally relevant spin decoherence effects. Within the
developed formalism, we address the impact of feedback via pilot-bunch-based comagnetometry on
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continuous spin flips and on the related interpretation of charged-particle electric dipole moment searches
using storage rings. We propose a spin-flip-based tomography of the longitudinal profile of polarization in a
bunch, which is important for the evaluation of the polarization-dependent luminosity in collider
experiments. We emphasize the potential importance of the previously unexplored phase of the horizontal
polarization of the envelope as an indicator of the stability of radio-frequency-driven spin rotations in
storage rings and as a testing ground for spin decoherence mechanisms.

DOI: 10.1103/PhysRevAccelBeams.27.111002

I. INTRODUCTION

Controlled spin rotations, notably the spin flips (SF), are
imperative for particle and nuclear physics experiments that
involve polarized particles (see, e.g., [1], for extensive
reviews, see [2,3]). In storage rings, the rf magnetic field
resonant to the idle spin precession acts as a spin flipper,
resembling the familiar case of nuclear magnetic resonance
(NMR) [4–7]. In an ideal magnetic ring, one stores beam
particles with on average vertically oriented polarization,
and the spin precession frequency is given by fs ¼ Gγfrev,
where frev denotes the revolution frequency of the ring, and
G and γ denote magnetic anomaly and relativistic γ-factor
of the stored particles [8].
In practice, the magnetic field imperfections in the

machine, especially the ones tangential to the beam orbit,
bring about a substantial and often poorly known correction
to the above simple formula for fs [2,3,9]. There are other
complications that contribute, such as spin decoherence due
to beam momentum spread Δp=p from synchrotron
oscillations and from orbit lengthening due to betatron
oscillations, which require chromaticity tuning [10–12]. A
more fundamental obstacle is that the beam energy is so

poorly known that, rather conversely, the spin precession
frequency can be used to calibrate the beam energy [13].
For instance, this problem of fs being uncertain can be
overcomewith the Froissart-Stora scan approach, where the
particle spin is subjected to a magnetic field of slowly
varying frequency [14]. When the scanned frequency range
is sufficiently broad to cover the not so well-known spin
precession frequency fs, then during the scan, the nuclear
magnetic resonance condition will be encountered.
There are important spin-physics experiments in storage

rings being conducted or anticipated, where it is imperative
to maintain the exact spin-resonance condition for a long
time, including a large number of SFs under continuous
operation of an rf spin rotator. The present study was
largely motivated by the program of the JEDI collaboration
[15] to investigate systematic effects in the search for the
electric dipole moment (EDM) of charged particles in
storage rings, which is carried out at the cooler synchrotron
(COSY) storage ring at Forschungszentrum Jülich [16,17]
(see Fig. 1). As a part of this program, the JEDI collabo-
ration has developed a technique to measure the idle spin-
precession frequency with an accuracy of 10−10 within a

FIG. 1. Schematic diagram of the cooler synchrotron COSY as an example of a storage ring with rf Wien filter as a spin flipper and
internal polarimeter. (Figure taken from Ref. [21] and slightly modified.).
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time interval of 100 s [18,19]. When interacting with an
internal polarimeter target, the precessing horizontal
polarization component of the beam leads to an up-down
asymmetry in the polarimeter detector system that oscillates
with the spin-precession frequency (see Refs. [18–20] for
details). A Fourier analysis of the time-stamped events in
the polarimeter allows the determination of the oscilla-
tion frequency and also the envelope of the precessing
polarization.
The knowledge of the spin-precession frequency makes

it possible to excite spin flips with rf spin rotators. The
EDM signal is the rotation of the spin in an electric field,
and even in a purely magnetic storage ring, such as COSY,
the spin-flip frequency is sensitive to the EDM of the stored
particles [22,23] (for a review article, see [24]). However, if
the spins are closely aligned along the vertical axis in the
machine during a single or multiple spin flips [25], the
control of the spin-precession frequency fails because in
this case the horizontal polarization component is either too
small or disappears completely. To go beyond the first
quarter of the spin-flip period, comagnetometry must be
invoked. A closely related problem is the feedback required
to compensate for the phase shift of the spin-precession
frequency caused by instabilities of the ring [18,19], which
is also relevant for special so-called EDM rings with frozen
spin [24,26–28].
Recently, the JEDI collaboration has proposed a solution

to the problem of comagnetometry based on the so-called
pilot bunch approach, which is applicable to a situation
with multiple bunches stored in the ring [29]. The spin
manipulations applied to the orbiting particles can be
organized in three stages: (i) In the first stage, the initial
vertical spins of multiple bunches of the stored deuterons
are rotated into the horizontal plane by an rf solenoid,
operated as a fixed-frequency spin rotator, like in the
previous JEDI experiments. (ii) In the second stage, the
frequency fs of the spin idle precession of the (horizontal)
in-plane polarization is measured. (iii) In the third stage, the
rf Wien filter (WF) is used as a Lorentz-force free, and thus
orbit preserving, spin rotator [30–32] in a special mode
where it is switched off once per beam revolution for a short
period of time when one of several stored bunches (pilot
bunch) passes through the spin rotator. The operation of the
WF starts at the frequency fWF ¼ fs as measured in stage II
and is kept locked to the continuously measured spin-
precession frequency fs of the unperturbed (pilot) bunch.
The pilot bunch, therefore, acts as a co-magnetometer,
providing information about fs that can be used as an input
signal for a feedback system that ensures that the signal
bunches are exposed to WF rf fields, which operates at
frequency fs ¼ fWF.
The pilot-bunch technique was proposed primarily in

connection to the precision spin experiments on tests of
fundamental symmetries, such as a search for the parity
and time-reversal-invariance violating permanent EDMs of

charged particles [24,26–28,33], but it may find other
applications in spin physics at storage rings.
In practice, a certain amount of detuning is an indis-

pensable feature of the rf-driven spin dynamics in storage
rings. The frequency of rf power supplies can only be
controlled with finite accuracy, leaving room for residual
detuning of the WF and spin precession frequencies.
Moreover, the betatron and synchrotron oscillation-induced
spin tune spread is endemic in ensembles of stored
particles. Finally, the process of feedback to lock the
WF and spin precession phases is nothing more than a
continuous compensation of the detuning caused by the
instabilities of the storage ring. It is important to assess the
impact of constant or time-varying detuning of individual
particles in the ensemble on various aspects of the long-
time continuous spin flips, ranging from the amplitude and
tunes of the vertical spin oscillations to the time depend-
ence of the envelope and phase of the precessing horizontal
polarization. A very different effect of synchrotron oscil-
lations, namely their impact on single Froissart-Stora
crossings of the spin resonance [14] and the behavior of
the polarization in the relatively short time periods there-
after, was studied earlier at COSY [34].
Yet, another closely related issue is the role of the finite

spin-coherence time. For instance, damping is known to
shift the frequency of the classical harmonic oscillator. In
the case of a parametric spin resonance, involving non-
commuting spin rotations, this requires a dedicated treat-
ment of the impact of spin decoherence on the spin
precessions and its dependence on the mechanism leading
to spin decoherence.
Considering the JEDI experiments with polarized deu-

terons at a beam momentum of p ¼ 0.97 GeV=c, the
hierarchy of typical frequencies involved is listed in Table I.
The typical time scales involved are the spin observation
times (cycle times) texp ≈ 100 s and the in-plane (horizon-
tal) spin-coherence time τSCT ∼ 1000 s.
The experimental investigations revealed a non-negli-

gible variation of the idle spin precession frequency of the
order of about 10−8 from one fill to another and during each
fill [18]. The feedback (fb) to synchronize the rf WF with
the spin precession frequency introduces another frequency

TABLE I. Hierarchy of typical frequencies.

System Frequency Value (Hz)

Beam revolution frev 750 000
Spin precession with respect
to particle momentum

fs 120 000

Synchrotron motion fsy 200
Feedback frequency ffb 0.2
rf-driven spin flip fSF 0.1
Feedback system induced spin
precession spread

Δffbs 0.010
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scale ffb. Several consecutive measurements within a time
interval of tfb ∼ 3 s with a spin phase spread of the order of
σfb ∼ 0.2 rad are necessary to correct the WF frequency
during the next time interval tfb [20]. The full feedback
period of 2tfb defines the feedback frequency

ffb ¼
1

2tfb
∼ 0.2 Hz; ð1Þ

and the corresponding spread of the spin-precession fre-
quency, which is of the order of

Δffbs ∼
σfb
2πtfb

∼ 10 mHz: ð2Þ

A similar hierarchy was observed for polarized protons
at a beam kinetic energy of 49.3 MeV in COSY, where 99

successive flips driven by an rf solenoid were performed
within 300 s. Assuming exponential attenuation of polari-
zation, the average spin flipper efficiency was found to be
ϵflip ¼ 0.9872� 0.0001 [17], corresponding to a lifetime of
the continuously flipping spin of τflip ≈ 240 s. With the rf
spin flipper turned off, the vertical polarization was found
to have a much longer lifetime of τp ¼ ð2.7� 0.8Þ × 105 s,
Eq. (40) in [17]. Such a change of polarization lifetime by
about three orders in magnitude is a clear indication of a
close link between depolarization and spin-flip dynamics.
The hierarchy of frequencies given above (Table I)

allows one to pursue all aspects of the rf-driven spin
dynamics within a unified Bogoliubov-Krylov (BK)
averaging approach [35] and paves the way to the first
fully analytic and compact formalism for the detuned
rf-driven parametric spin resonance taking into account

TABLE II. Glossary of frequently used parameters and variables. Typical numerical values of frequencies are
given in Table I and derived auxiliary variables are omitted.

Parameter/variable Notation Defined in or near

Spin precession feedback period tfb Eq. (1)
Spin precession phase walk during feedback period σfb Eq. (1)
Turn number n Eq. (3)
Spin tune νs Eq. (3)
Spin phase increment per turn θs Eq. (3)
Spin stable axis e⃗s Eq. (3)
Axis of spin rotation in WF w⃗ Eq. (6)
WF phase increment per turn θWF Eq. (6)
WF tune νWF Eq. (7)
WF side band K Eq. (7)
Spin kick in the WF χWF Eq. (7)
Gyromagnetic anomaly of a particle G ¼ ðg − 2Þ=2 G Introduction, Eq. (7)
Beam velocity in units of the speed of light β Eq. (7)
Relativistic factor γ Eq. (7)
Polarization vector S⃗ Eqs. (3) and (9)
Polarization envelope p⃗ Eq. (9)
Spin-flip oscillation phase x Eqs. (18) and (30)
Spin-flip tune on the exact spin resonance ν0SF Eq. (19)
Initial phase of the in-plane polarization Φin Eq. (21)
Spin precession vs WF frequency detuning parameter δ Eq. (25)
Spin-flip tune off the exact spin resonance νSF Eq. (31)
Angle of orientation of the spin envelope precession axis ρ Eqs. (29) and (32)
Shift of the spin-flip symmetric interval x∈ ½ζ; 2π þ ζ� ζ Eq. (41)
In-plane polarization envelope phase during continuous spin flips ϕðxÞ Eq. (45)
In-plane polarization damping per turn in the Bloch approximation Γ Eqs. (81) and (82)
Spin coherence time τSCT Eqs. (82) and (124)
Fractional revolution phase of a particle ϕ Eq. (92)
Slip factor η Eq. (99)
Gaussian rms width of the synchrotron oscillation amplitude distribution σsy Eq. (101)
Amplitude of the synchrotron oscillations in the spin precession phase ψ sy Eq. (102)
Normalized synchrotron oscillation amplitude ξ Eq. (102)
Synchrotron oscillation amplitude distribution function FðξÞ Eq. (103)
Parameter of the synchrotron oscillation driven slip of the WF phase CWF Eq. (104)
Synchrotron oscillation strength in the spread of the spin-flip phase Qsy Eqs. (115) and (116)
Tilt of the spin stable axis by the electric dipole moment of a particle ξEDM Eq. (144)

N. N. NIKOLAEV et al. PHYS. REV. ACCEL. BEAMS 27, 111002 (2024)

111002-4



the decoherence of the polarization, thus extending the
extending earlier considerations considerably [9,25,36,37].
There is a strong need for such a description because fitting
the experimental data with multiple spin flips requires large
number of calls of the spin evolution code, which cannot be
readily met by the numerical solution of the spin evolution
for up to ∼108 revolutions of the beam. To this end, we
emphasize that the above specified conditions are about
typical for storage rings dedicated to the search for the
charged particles electric dipole moments [24,26,27]. We
regard our formalism as a toolbox for the determination of
the detuning parameter for individual fills of a machine,
and it may find applications in accelerator physics beyond
the description of the pilot bunch regime.
Synchrotron oscillations (SO) entail an SO amplitude-

dependent depolarization of particles in the bunch, and
it was pointed out earlier how partial depolarization of
the pilot bunch in the regime of incomplete masking
(gating-out) of the rf of the spin rotator will open a way
toward a tomography of the longitudinal profile of the
bunch polarization. Evidently, a nonuniform longitudinal
bunch polarization profile colliding bunches will affect
the calibration of double polarization observables, for
instance, in polarized deep inelastic scattering at the
EIC. Such a tomography has not been discussed before,
and it will be complementary to the corresponding
transverse polarization profile of the bunch observed
at RHIC [38], discussed in Ref. [39]. We pay particular
attention to the as yet unexplored role of the phase
of the spin envelope of the horizontal polarization on
the control of the stable performance of rf-driven spin
rotations, for which we provide a fully analytic des-
cription. This phase motion is expected to exhibit a
strong sensitivity to detuning and to spin decoherence
mechanisms.
A glossary of frequently used parameters and variables

can be found in Table II, and the further presentation is
structured as follows. In Sec. II, we present basics of the
BK averaging approach to continuous spin flips in a form
best suited for the interpretation of experimental data in the
regime of detuned resonances. Section III contains an
introduction to the main effects stemming from frequency
detuning. Manifestations of detuning in the polarimetry of
the in-plane polarization, most crucial for the pilot-bunch
technique, are treated in Sec. IV. The impact of spin
decoherence on spin flip is treated in Sec. V. The reduction
of the spin-flip frequency by the feedback system to
compensate for the walk of the spin-precession frequency
that are caused by ring instabilities is discussed in Sec. VI.
In Sec. VII, we discuss spin-flip tomography along the
length of the bunch and depolarization of the pilot bunch
caused by incomplete gating-out of the rf WF. The impact
of the derived formalism on the interpretation of the
precursor EDM experiments is explored in Sec. VIII. In
Sec. IX, the main results are summarized.

II. STROBOSCOPIC SPIN EVOLUTION IN THE
OFF-RESONANCE REGIME

A. Master equation

The average polarization S⃗ of an ensemble of particles in
a storage ring points along the local stable spin axis e⃗s.
The one-turn evolution of the spin S⃗ consists of the idle
precession by an angle θs ¼ 2πνs about the spin stable axis
e⃗s, followed by the stroboscopic spin kick in the orbit-
preserving rf WF, which is used as a spin flipper and is
located in a straight section of the ring. Here νs ¼ fs=frev
denotes the spin tune, i.e., the number of spin precessions
with respect to particle momentum per revolution. The
length of the WF is negligibly small compared to the ring
circumference and it acts on the spin stroboscopically once
per turn. As an introduction to the subject, in this section,
we describe the rf excited spin rotations in the SO(3)
formalism [37] (for the alternative spinor formalism see
[40], textbook [2], and Ref. [9]).
The stroboscopic master equation for the spin vector

S⃗ðnÞ as a function of the turn number n is given by

S⃗ðnÞ ¼ RWFðnÞRsðθsÞS⃗ðn − 1Þ; ð3Þ

whereRsðθsÞ andRWFðnÞ are the ring andWF spin transfer
matrices, respectively. Alongside e⃗s, we define the radial
unit vector e⃗r and the longitudinal unit vector e⃗t (tangential
to the orbit), e⃗t ¼ e⃗r × e⃗s; e⃗r ¼ e⃗s × e⃗t. The vectors e⃗r and
e⃗t define the spin precession plane. Because of the
magnetic field imperfections in the ring lattice, the ori-
entation of e⃗s differs slightly from e⃗y, the normal one to the
storage ring plane, also known as the fe⃗x; e⃗zg momentum
plane, see Fig. 1, and the spin precession plane is tilted with
respect to the ring plane [37]. Wherever relevant, we will
distinguish between the spin and momentum bases, and our
reference to e⃗s as the vertical direction, and to the
components of the spin in the spin precession plane as
the horizontal (in-plane) ones, should not cause any
confusion. We start with a particle on the reference orbit
and in the approximation of vanishing spin decoherence.
The idle precession spin transfer matrix per turn is given by

RsðθsÞ ¼

0
B@

cos θs 0 sin θs
0 1 0

− sin θs 0 cos θs

1
CA ð4Þ

with two precessing in-plane polarization eigenvectors

u⃗rðnÞ ¼ e⃗r cosðθsnÞ þ e⃗t sinðθsnÞ;
u⃗tðnÞ ¼ −e⃗r sinðθsnÞ þ e⃗t cosðθsnÞ; ð5Þ

where n is the turn number. The rf WF rotates spin about
axis w⃗ is along its magnetic field B⃗WF with the rotation
angle (spin kick)
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χðnÞ ¼ χWF cosðθWFnÞ ð6Þ

with the amplitude

χWF ¼ −
qð1þ GÞ
mγ2βc

Z
dlBWF; ð7Þ

where BWF is the amplitude of magnetic field in the WF, c
is the speed of light, q, m, β, and G are the charge, mass,
velocity, and magnetic anomaly of the orbiting particles,
respectively. The WF is operated at the frequency fWF, the
WF tune is given by νWF ¼ fWF=frev and θWF ¼ 2πνWF.
Evidently, the spin rotation in the WF is identical for all
side bands νWF ⇒ νWF þ K;K ¼ 0;�1;�2;… Without
loss of generality, we can focus the discussion on the
so-called magnetic-dipole moment (MDM) mode, when
w⃗ ¼ e⃗r and je⃗s × w⃗j ¼ 1. The corresponding spin transfer
matrix for pass n through the WF equals

RWFðnÞ ¼

0
B@

1 0 0

0 cos χðnÞ − sin χðnÞ
0 sin χðnÞ cos χðnÞ

1
CA ¼ 1þWðnÞ:

ð8Þ

B. Bogoliubov-Krylov averaging
for exact spin resonance

The above outlined hierarchy of spin evolution frequen-
cies (Table I) dictates invoking the Bogoliubov-Krylov
(BK) averaging [35] as a tool for a solution of the
master equation (3). The starting point is the interaction
representation

S⃗ðnÞ ¼ jS⃗ð0ÞjRsðnθWFÞp⃗ðnÞ; ð9Þ

where p⃗ðnÞ is the spin envelope with initial condition
jp⃗ð0Þj ¼ 1. The envelope p⃗ðnÞ is the polarization as seen
by an observer in the co-rotating spin reference frame
rotating about the axis e⃗s with frequency fWF

S⃗ðnÞ ¼ jS⃗ð0ÞjfprðnÞu⃗rðnÞ þ psðnÞe⃗s þ ptðnÞu⃗tðnÞg; ð10Þ
where u⃗r;tðnÞ are counterparts of e⃗r;t and are defined by
Eq. (5) in terms of θWF instead of θs. Without loss of
generality, in the following, we set jS⃗ð0Þj ¼ 1.
This particular choice of the co-rotating frame is dictated

by the point that fWF is the only known primary frequency in
the problem. The spread of spin tunes in the bunch and the
unknown walk of the spin precession frequency fs neces-
sitate a continuous (stroboscopic once per turn)measurement
of this unknown fs in order to obtain a feedback for setting
the WF to another known frequency, etc. To the extent that
intrabeam interactions are weak to depolarize the beam (see
for instanceRef. [17] and the related discussion in Sec. I), the
bunch can be treated as an ensemble of independent particles
so that we solve first the one-particle problem and then take
the average over the ensemble.
We illustrate the BK averaging on the case of exact

resonance νs ¼ νWF following the treatment in Ref. [9].
Master equation for the spin envelope takes the form

p⃗ðnÞ ¼ Rsð−nθWFÞRWFðnÞRsðnθWFÞp⃗ðn − 1Þ: ð11Þ
In view of χWF ≪ 1, the envelope evolution is slow and the
stroboscopic Eq. (11) can be cast in the differential form

p⃗ðnÞ
dn

¼ Rsð−nθWFÞWðnÞRsðnθWFÞp⃗ðnÞ: ð12Þ

To the leading order in the small parameter χWF, the BK
averaging over the spin precession periods proceeds as
follows:

hRsð−nθWFnÞWðnÞRsðnθWFnÞi ¼
*0
@ 0 −χðnÞ sinðnθWFÞ 0

χðnÞ sinðnθWFÞ 0 −χðnÞ cosðnθWFÞ
−0 χðnÞ cosðnθWFÞ 0

1
A+

¼

0
B@

0 0 0

0 0 − 1
2
χWF

−0 1
2
χWF 0

1
CA ¼ 2πνSF

0
B@

0 0 0

0 0 −1
0 1 0

1
CA ¼ 2πνSFU; ð13Þ

where we applied

hcos2ðθWFnÞi ¼
1

2
and hcosðθWFnÞ sinðθWFnÞi ¼ 0:

ð14Þ

The solution of Eq. (12) for the envelope will be

p⃗ðxÞ ¼ expð2πνSFnUÞp⃗ð0Þ ¼ E0ðxÞp⃗ð0Þ; ð15Þ

where the subscript 0 stands for zero detuning. Making use
of the recursive relations:

U2nþ1 ¼ ð−1ÞnU; U2n ¼ ð−1Þn−1U2; ð16Þ
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we obtain

E0ðxÞ ¼

0
B@

1 0 0

0 cos x − sin x

0 sin x cos x

1
CA; ð17Þ

and

x ¼ 2πν0SFn ¼ 2πν0SFfrevt ð18Þ
is the SF phase with the SF tune

ν0SF ¼
1

4π
χWFje⃗s × w⃗j; ð19Þ

which defines the SF frequency fSF ¼ ν0SFfrev. The factor
je⃗s × w⃗j emerges for generic orientation of the WF axis w⃗
[9,37]. For instance, the so-called EDM mode corresponds
to w⃗ ≈ e⃗s ≈ e⃗y. The master equation (3) describes sequen-
tial rotations with preservation of the magnitude of the
polarization, and the matrix (17) preserves this unitarity
property.
Note that SFs proceed via rotation of the vertical

envelope to the tangential one with the frequency fSF,
while the radial envelope remains a spectator:

prðxÞ ¼ prð0Þ;
psðxÞ ¼ psð0Þ cos x − ptð0Þ sin x;
ptðxÞ ¼ psð0Þ sin x − ptð0Þ cos x: ð20Þ

It is convenient to define the initial spin precession phase
Φin such that

prð0Þ ¼ prtð0Þ cosΦin;

ptð0Þ ¼ prtð0Þ sinΦin: ð21Þ

where prt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r þ p2

t

p
denotes the modulus of the in-

plane polarization. These features of the rf driven polari-
zation are shown in Fig. 2. For pure in-plane initial
polarization psð0Þ ¼ 0, the envelope of the vertical polari-
zation evolves as psðxÞ ¼ − sinΦin sin x. The final polari-
zation is given by

S⃗ðnÞ ¼ RsðnθWFÞE0ðxÞS⃗ð0Þ; ð22Þ

and in the absence of spin decoherence mechanisms, S⃗ðnÞ
can be regarded as an average polarization of an ensemble
(bunch) of particles.
The BK averaging of the exact expression

sin χðnÞ cosðnθWFÞ, instead of the perturbative expression
χðnÞ cosðnθWFÞ, gives

hsin χðnÞ cosðnθWFÞi ¼ J1ðχWFÞ; ð23Þ

where J1ðzÞ is the familiar Bessel function of the first
kind. For conditions of the typical JEDI experiments with

deuterons, we have an extremely small argument in the
Bessel function:

χWF

2
¼ 2πν0SF ¼ 2π

fSF
frev

≈ 10−6 ð24Þ

and the correction to the linear approximation for the SF
tune amounts to ≈10−12. This time-independent correction
can safely be neglected, see the related discussion of
Eq. (107) in Sec. V C 2.

C. Off-resonance spin rotations

Two known parameters of the SF dynamics are the WF
frequency fWF and the Wien-filter strength χWF (spin kick).
We parameterize detuning of spin precession fromWF by a
small angle:

δ ¼ θs − θWF ¼ 2πðνs − νWFÞ ¼ 2π
Δfs
frev

: ð25Þ

Correspondingly, we keep defining the interaction repre-
sentation in terms of the knownWF frequency as in Eq. (9)
and cast the envelope evolution equation (11) in the form

p⃗ðnÞ ¼R−1
s ðnθWFÞRWFðnÞRsðδÞRsðnθWFÞp⃗ðn− 1Þ: ð26Þ

Repeating the derivation of Eq. (17), we find

U ¼

0
B@

0 0 cos ρ

0 0 − sin ρ

− cos ρ sin ρ 0

1
CA; ð27Þ

FIG. 2. Evolution of the spin envelope in the reference frame,
co-rotating in the regime of exact spin resonance at the idle spin-
precession frequency fs ¼ fWF. The initial polarization p⃗ð0Þ is in
the horizontal frtg spin-precession plane. The spectator radial
component prð0Þ ¼ pð0Þ cosΦin is immune to the rf WF and
continues to precess unchanged. The active tangential component
ptð0Þ ¼ pð0Þ sinΦin starts rotations driven by the WF in the
vertical fstg plane with the spin-flip frequency fSF ¼ νSFfrev. To
the observer in the co-rotating frame, the idly precessing unit
vectors u⃗rðnÞ and u⃗tðnÞ appear as being constant along the radial
and tangential directions.
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which satisfies the recursive relations [Eq. (16)]. The above derived U satisfies the recursive relations from Eq. (16) so that
application of the decomposition in Eq. (17) yields

EðxÞ ¼

0
B@

ErrðxÞ ErsðxÞ ErtðxÞ
EsrðxÞ EssðxÞ EstðxÞ
EtrðxÞ EtsðxÞ EttðxÞ

1
CA ¼

0
B@

sin2ρþ cos2ρ cos x cos ρ sin ρð1 − cos xÞ cos ρ sin x

cos ρ sin ρð1 − cos xÞ cos2ρþ sin2ρ cos x − sin ρ sin x

− cos ρ sin x sin ρ sin x cos x

1
CA; ð28Þ

which describes the envelope rotations about the axis (for
generic SO(3) rotations, see Ref. [41])

m⃗ ¼ sin ρe⃗r − cos ρe⃗s; ð29Þ

with the SF phase

x ¼ 2πνSFn ¼ 2πνSFfct ð30Þ

(for generic SO(3) rotations, see Ref. [41]) and the SF flip
tune

νSF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2WF þ 4δ2

p
4π

¼ ν0SF
sin ρ

: ð31Þ

The angle ρ is defined by

sin ρ ¼ χWF

4πνSF
; cos ρ ¼ 2δ

4πνSF
: ð32Þ

We reiterate that in the generic case the substitution χWF ⇒
je⃗s × w⃗jχWF is in order so that

ν2SF ¼
1

16π2
ðχ2WFje⃗s × w⃗j2 þ 4δ2Þ: ð33Þ

In all cases, t ¼ 0 and x ¼ 0 correspond to the instant when
the spin flipper is switched on.
Anearly derivationofEq. (28)within the spinor formalism

was published by JEDI in 2017 in Appendix A, Eq. (A20) of
Ref. [9], and an alternative treatment of the same problem
was reported in 2018 (Eqs. (4)–(7) in [25]). The SO(3)
formalism outlined above, in conjunction with the BK
technique, will play a central role in the subsequent inclusion
of spin decoherence and feedback effects, which are dis-
cussed in Secs. V and VI.

D. Radiofrequency solenoid as a spin rotator

The above formalism is fully applicable as well to the
orbit preserving rf solenoid as a spin rotator. In that case,
one needs to interchange e⃗t ⇒ e⃗r; e⃗r ⇒ −e⃗t and also the
corresponding indices r ⇔ t in the matrix elements of E.
The spin kick χWF in the WF must be swapped for the spin
kick in the solenoid χsol

χWF ⇒ χsol ¼ −
qð1þGÞ

mv

Z
dzBðzÞ; ð34Þ

where BðzÞ is the longitudinal magnetic field in the
solenoid. In the co-rotating frame of reference, the spin
envelope would precess about the axis

m⃗ ¼ − sin ρe⃗t þ cos ρe⃗s: ð35Þ

In the limit of vanishing detuning, cos ρ ¼ 0, the spectator
in-plane polarization will be directed along e⃗t. In addition,
the convention for the initial spin phase has to be modified
such that Φin → Φin þ π=2.

III. IMPACT OF DETUNING
ON THE VERTICAL POLARIZATION

A. Evolution of vertical polarization

We start with the beam polarization stored along the spin
stable axis e⃗s so that psð0Þ ¼ 1 and prð0Þ ¼ ptð0Þ ¼ 0.
With continuously operating rf spin-flipper, either WF or
solenoid, the vertical polarization will evolve as

psðxÞ ¼ EssðxÞpsð0Þ ¼ ðcos2ρþ sin2ρ cos xÞpsð0Þ: ð36Þ

This result nicely illustrates the interplay of the detuning
by δ [see Eqs. (25) and (32)] and the spin kick χWF in the
WF: (i) The envelope exhibits oscillations with amplitude
sin2 ρ ≤ 1 on top of the offset cos2 ρ. (ii) At large detuning,
cos2ρ > ½, the SF is incomplete: the offset term takes over
and the vertical polarization no longer passes through zero.
(iii) At small detuning, cos2ρ < ½, the pure horizontal
polarization is reached at the envelope phase

cos x0 ¼ −cot2ρ: ð37Þ

(iv) Conversely, to achieve the often-required π=2 rotation
from the vertical to the horizontal spin orientation, usually
performed on a time scale of approximately 1 s with the rf
solenoid [42], the detuning needs to satisfy only the very
liberal condition that

Δfs <
1ffiffiffi
2

p fSF: ð38Þ

(v) The detuning can be determined by a comparison of the
flipped, SsðπÞ, and initial, Ssð0Þ, vertical polarizations:

N. N. NIKOLAEV et al. PHYS. REV. ACCEL. BEAMS 27, 111002 (2024)

111002-8



2cos2ρ ¼ 1 −
SsðπÞ
Ssð0Þ

: ð39Þ

One caveat to such a comparison of two polarizations is that
the measured vertical polarizations may have an offset
caused by the instrumental asymmetries in the polarimeter.

B. Build-up of vertical polarization
from in-plane polarization

In this case, the starting point is prtð0Þ ¼ 1 and

psðxÞ ¼ EsrðxÞprð0Þ þ EstðxÞptð0Þ

¼ qðΦin; ρÞ sin ρ sin
�
x
2

�
sin

�
x
2
− ζ

�
; ð40Þ

where

qðΦin; ρÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2Φin þ cos2ρcos2Φin

q
;

sin ζ ¼ sinΦin

qðΦin; ρÞ
; cos ζ ¼ cos ρ cosΦin

qðΦin; ρÞ
: ð41Þ

In the case of ζ ¼ 0, the vertical polarization is invariant
under the interchange x ⇔ 2π − x within the symmetric
period interval ½0; 2π�, while for finite ζ the related
invariance under x − ζ ⇔ 2π − ðx − ζÞ persists in the
shifted symmetric interval ½ζ; 2π þ ζ�.
In the exceptional case of exact resonance, cos ρ ¼ 0:

psðxÞ ¼ −ptð0Þ sin x ¼ − sinΦin sin x; ð42Þ

and only the initial tangential in-plane polarization is the
active one, while the spectator radial component does not
contribute at all to the build-up of the vertical polarization.

IV. POLARIMETRY OF THE IN-PLANE
POLARIZATION

A. Amplitude and phase conventions

In the generic case, the polarization components are
given by Eq. (22). Because of parity conservation in strong
interactions, the tangential (longitudinal) polarization at the
polarimeter Stðx; nÞ is not measurable. The up-down
asymmetry in the polarimeter measures the radial (trans-
verse) polarization component SrðxÞ. This measurement
takes place stroboscopically once per revolution of the
beam. The polarimeter signal as a function of turn number
n is Fourier-analyzed bin by bin, with a bin duration
corresponding to about 106 turns in the machine, but still
sufficiently short so that the variation of the spin-flip phase
x and the walk of the in-plane-polarization envelopes prðxÞ
and ptðxÞ can be neglected.
A cartoon of the Fourier analysis boils down to the

evaluation of

prðxÞ ¼
2

N

XN
k¼1

Srðx; kÞ cos kξWF;

ptðxÞ ¼
2

N

XN
k¼1

Srðx; kÞ sin kξWF: ð43Þ

where k is the turn number of the corresponding event in
the polarimeter, and N is a total number of events in the
bin [18–20]. These definitions are supported by the least
squares analysis, and both prðxÞ and ptðxÞ take their
maximal magnitudes at ξWF ¼ �θWF. Because only one
component of the rotating spin vector S⃗ðx; kÞ is observed,
there is a nonessential sign ambiguity in ptðxÞ.
The orientation of p⃗rt is given by the phase

0 < ψðxÞ < 2π, specified in terms of

sinψðxÞ ¼ prðxÞ
prtðxÞ

; cosψðxÞ ¼ ptðxÞ
prtðxÞ

: ð44Þ

The full-fledged four-quadrant determination of ψðxÞ is
well possible, but without any loss of information, it is
convenient to map the phase ψðxÞ onto the band
0 < ϕðxÞ < π, where

ϕðxÞ ¼ arccos ½cosψðxÞ�: ð45Þ

In terms of the four-quadrant definition, this amounts to
assigning to the radial polarization its modulus:

jprðxÞj ¼ prtðxÞj sinψðxÞj ¼ prtðxÞ sinϕðxÞ: ð46Þ

With limited statistics, the magnitude prtðxÞ of the in-
plane component of the close-to-vertical polarization can
only be measured to a certain accuracy Δprt, and the
accuracy of determination of the phase of prtðxÞ deterio-
rates for small in-plane polarization, ΔϕðxÞ ∝ Δprt=prt.
We focus here on the analytical treatment of the spin-

decoherence-free case, however, Eqs. (44) and (45) for
the envelope phase in terms of pr;t of Eq. (43) are fully
applicable to scenarios involving spin decoherence, which
are discussed in Sec. V. The related early considerations on
phase motion in the spin-decoherence-free case with a
comparison to experimental data were reported in the JEDI
publication [25].

B. Continuous spin rotation by the WF: Build-up
of pure initial in-plane polarization

It is instructive to look at the continuous spin rotations
generated by the rf WF starting with the initial vertical
polarization, psð0Þ ¼ 1, and prð0Þ ¼ ptð0Þ ¼ 0. In terms
of the generic three-stage process, outlined in Sec. I, in
stage I, the spins are rotated by into the horizontal plane,
stage II is skipped altogether, and stage III begins at the
instant of vanishing vertical polarization reached in stage I.
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The detuning angle ρ is kept constant from stage I to
stage III on.
The envelope rotation phase x ¼ 0 corresponds to the

time at which the spin rotator is switched on. The radial and
tangential polarization envelopes are given by

prðxÞ ¼ ErsðxÞpsð0Þ ¼ cos ρ sin ρð1 − cos xÞ;
ptðxÞ ¼ EtsðxÞpsð0Þ ¼ sin ρ sin xpsð0Þ; ð47Þ

and

prtðxÞ ¼ 2j sin ρj·
��� sin x

2

���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2

x
2
þ cos2ρsin2

x
2

r
: ð48Þ

Although prðxÞ is zero at cos x ¼ 1, in this regime, it does
not change its sign at any value of x.

C. Interplay of vertical, tangential,
and radial polarizations

The mathematically exact resonance condition,
cos ρ ¼ 0, is an exceptional but still instructive case. In
this case, the envelope rotation axis m⃗ of Eq. (29) is a
purely radial one. Viewed in the co-rotating frame, the
vertical polarization cannot rotate into the radial direction
along the rotation axis [see Eq. (47)]. In other words, the
spectator radial polarization decouples from the vertical
polarization, while the active tangential envelope will
oscillate with the full amplitude psð0Þ. Similarly, the
tangential polarization cannot rotate into the radial one.
However, this decoupling of both the vertical and the active
in-plane spin components from the spectator in-plane is
lifted as soon as cos ρ ≠ 0. In the former case, this is clear
from Eq. (47). In the latter case, the cross talk of radial and
tangential polarizations is given by the matrix elements
ErtðxÞ ¼ −EtrðxÞ in Eq. (28). For instance, if psð0Þ ¼
prð0Þ ¼ 0 and ptð0Þ ¼ 1, then

prðxÞ ¼ cos ρ sin x ptð0Þ: ð49Þ

Vice versa, at psð0Þ ¼ ptð0Þ ¼ 0 and prð0Þ ¼ 1, we find

ptðxÞ ¼ − cos ρ sin xprð0Þ: ð50Þ

This cross talk derives from the vertical component cos ρe⃗s
of the rotation axis m⃗ of the envelope.

D. Continuous spin rotation by the WF and envelope
of in-plane polarization

The result for prtðxÞ has already been given in Eq. (48).
The predicted dependence of the spin envelope on the
detuning is depicted in Fig. 3 for cos ρ ≥ 0. As a function of
the phase x, the envelope prtðxÞ is a periodic function with a
period of 2π, but in order to better demonstrate the

periodicity properties of the in-plane polarization, we show
the results for x∈ ½0; 4π�.
For vanishing detuning, cos ρ ¼ 0, we recover the

second line of Eq. (47):

prtðxÞ ¼ 2

����psð0Þ sin
�
x
2

�
cos

�
x
2

�����: ð51Þ

In the interval ½0; 2π�, the envelope has two end-point zeros
at x1 ¼ 0 and x2 ¼ 2π, stemming from sinðx=2Þ ¼ 0.
There is still another zero crossing at midpoint x3 ¼ π,
stemming from cosðx=2Þ ¼ 0, which turns into minimum
as soon as cos ρ ≠ 0. For sin2 ρ > 1=2, a prominent double-
hump structure with prtðx4;5Þ ¼ 1 at

x4;5ðρÞ ¼ π � 2 arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

2sin2ρ

s
ð52Þ

remains in place until sin2 ρ ¼ 1=2, when the two humps
merge into one. From this point on the vertical spin flip
becomes incomplete, see (ii) in Sec. III A, and height of the
single bump prtðxÞ ¼ jpsð0Þ sin 2ρj < 1.

E. Continuous spin rotation by the WF and phase
of in-plane polarization

The expected phase motion for cos ρ > 0 is depicted in
Fig. 4 for several values of ρ. According to Eq. (47), in the
considered case, the radial envelope does not change its
sign at all, i.e., sgnðprðxÞÞ ¼ þ1, while ptðxÞ changes the
sign at x ¼ π. Still, at x ≠ π, the phase remains well
defined. Making use of ptðxÞ from Eq. (47) and prtðxÞ
from Eq. (48), we obtain

FIG. 3. Pattern of the time dependence of the envelope of the
horizontal polarization, which evolves from the pure vertical
initial polarization psð0Þ ¼ 1, under the rf-driven continuous full
or partial spin flips for different detuning, as given by Eq. (48).
Note that the central zero of prtðxÞ at x ¼ π and x ¼ 3π (full spin
flip) occurs exclusively at zero detuning, i.e., for δ ¼ 0 or
cos2 ρ ¼ 0. Within each period, the double hump structure with
hump height prt ¼ 1 persists for cos2ρ < ½. At even greater
detuning, for cos2ρ ≥ ½, prtðxÞ exhibits a single hump whose
height vanishes in the limit ρ → 0.
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ϕðxÞ ¼ arccos

0
B@sgnðsin xÞsgnðsin ρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos2ρtan2 x
2

q
1
CA: ð53Þ

Evidently, the change of the sign, sin ρ ⇔ − sin ρ, entails
the change of phase ϕðxÞ ⇔ π − ϕðxÞ. We predict
cosϕðxÞ ¼ 0 and ϕðxÞ ¼ π=2 at x → π, regardless of
the detuning angle ρ. One readily finds that at x ¼ π,
the derivative of the phase equals ϕ0ðxÞ ¼ 2= cos ρ, which
is singular at cos ρ → 0, thus the phase motion degenerates
into the step function. Still more singular is the case of
x ¼ 2π, when

cosϕðxÞ ¼ sgnðsin xÞsgnðsin ρÞ ð54Þ

and changes sign from −1 for x ¼ 2π − 0 to þ1 for
x ¼ 2π þ 0, i.e., the envelope phase has a phase jump
by −π irrespective of the detuning. Finally, Eq. (53)
predicts the slope at x ¼ þ0 and x ¼ 2π − 0:

ϕ0ðþ0Þ ¼ ϕ0ð2π − 0Þ ¼ ϕ0ð2π þ 0Þ ¼ 1

2
j cos ρj: ð55Þ

F. Interplay of detuning and initial phase
in the generic three-stage regime

In NMR-like storage ring experiments on the search
for charged particle, electric dipole moments (see
Refs. [24,26,27] and Sec. VIII) and axionlike particles
[43] of major interest are continuous spin flips or buildup of
partial vertical polarization during stage III, where we make
use of the rf WF starting with in-plane polarization, i.e.,
ps ¼ 0. Polarimetry of the idle spin precession during stage
II gives access to the spin precession frequency and the

orientation of the in-plane polarization at the activation of
the WF in stage III. The JEDI collaboration developed a
feedback to preserve the corresponding phase Φin to an
accuracy of 0.21 rad [20]. The generic solution for the
vertical polarization as a function of Φin is given
by Eq. (40).
In the evolution of the horizontal polarization, the

dependence on Φin is much more subtle and deserves a
dedicated analysis.

1. Envelope of in-plane polarization

By recourse to the envelope evolution matrix EðxÞ of
Eq. (28), we obtain

prðxÞ ¼ ErrðxÞ cosΦin þ ErtðxÞ sinΦin

¼ sin2ρ cosΦin þ qðΦin; ρÞ cos ρ cos y; and

ptðxÞ ¼ EtrðxÞ cosΦin þ EttðxÞ sinΦin

¼ −qðΦin; ρÞ sin y; ð56Þ

where y ¼ x − ζ [see also Eq. (41)]. The predicted depend-
ence of prtðxÞ on the initial spin-precession phase Φin is
shown in Fig. 5. For the exact resonance condition,
cos ρ ¼ 0, we have

prðxÞ ¼ cosΦin;

ptðxÞ ¼ sinΦin cos x; and

prtðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2Φin þ sin2Φincos2x

q
: ð57Þ

This is yet another illustration of the emergence of the
spectator radial polarization componentpr, which is immune
to the rf-driven spin rotations and of the appearance of the
active tangential polarization pt, which is the partner
component of the vertical polarization [see Eq. (42)].
The envelope prtðxÞ is a smooth function of x with

minima at x4 ¼ π=2 and x5 ¼ π=2þ π, and the maxima,
prt ¼ 1, at x3 ¼ π and at the end points x1 ¼ 0 and
x2 ¼ 2π. These features are evident from Fig. 3,
since prt ¼ ð1 − p2

s Þ1=2.
We recall that the result from Eq. (48) for the continuous

operation of the WF beginning with pure vertical polari-
zation, shown in Fig. 3, was symmetric with respect to the
substitution x ⇔ 2π − x. This symmetry is manifestly
broken for nonvanishing values of Φin and cos ρ [see
Eq. (40)], and we obtain

p2
rtðxÞ − p2

rtð2π − xÞ ¼ p2
s ð2π − xÞ − p2

s ðxÞ
¼ 4 sinΦin cosΦinsin2ρ cos ρ sin xð1 − cos xÞ: ð58Þ

For finite ζ, one rather has an invariance of prtðxÞ with
respect to the interchange x − ζ ⇔ 2π − ðx − ζÞ within the
shifted symmetric interval ½ζ; 2π þ ζ� [see the related
discussion of Eq. (40)].

FIG. 4. Phase motion of the horizontal polarization envelope
during the rf-driven continuous spin flips for different detuning,
as predicted by Eq. (53) for cos ρ∈ ½0; 1�. The phase exhibits a
jump by −π from x ¼ 2π − 0 to 2π þ 0, which repeats itself
periodically at any x ¼ 2πM, where M ¼ 0; 1; 2; ; 3;… In the
vicinity of the phase jump, the slope ϕ0ð2π − 0Þ ¼
ϕ0ð2π þ 0Þ ¼ 1

2
cos ρ. Yet another jump by þπ develops at

x ¼ π þ 2πM, where the slope, ϕ0ðx ¼ πÞ ¼ 2= cos ρ, of the
phase becomes singular for cos2 ρ → 0.
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2. Phase of in-plane polarization envelope for pure radial
and longitudinal initial polarizations

The motion of the phase ϕðxÞ of the envelope p⃗rt is quite
sensitive to the initial phaseΦin and the detuning angle ρ. It
is sufficient to treat the case cos ρ ≥ 0, an extension of the
results to cos ρ < 0 is straightforward.
We start from Eq. (56) with the pure radial initial

polarization case of Φin ¼ 0, when prðxÞ ¼ sin2ρ þ
cos2ρ cos x and ptðxÞ ¼ − cos ρ sin x. The results are
shown in Fig. 6. First of all, ϕðxÞ is antisymmetric with
respect to x ⇔ 2π − x. Second, for all detuning angles we
find ϕðxÞ ¼ π=2 at x ¼ 0; π; 2π;… Third, cosϕðx1Þ ¼
−sgnðcos ρ sin x1Þ ¼ �1, i.e., ϕ1 ¼ 0; π, can be reached
only if prðx1Þ ¼ 0, i.e., at

cos x1 ¼ −tan2ρ; ð59Þ

which is only possible for cos2ρ ≥ ½.

In the vicinity of pointed tips at j cosðx1Þ ¼ 1, we have
prðxÞ ¼ −cos2ρ sin x1 · ðx − x1Þ and

j cosϕðxÞj ¼ 1 −
1

2
½ϕðxÞ − ϕðx1Þ�2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2ρðx − x1Þ2

p
¼ 1 −

1

2
cos2ρðx − x1Þ2; ð60Þ

which yields the slope

ϕðxÞ − ϕ1 ¼ �j cos ρjjx − x1j: ð61Þ
Note that the magnitude of the slope at the tip, j cos ρj,
varies from 1=

ffiffiffi
2

p
to 1.

In the opposite case of cos2ρ < ½, we have
0 < ϕðxÞ < π. Locations of the extrema of ϕðxÞ are roots
of the equation ðcosψðxÞÞ0 ¼ 0, which takes the form

FIG. 5. Pattern of the x dependence of the horizontal polarization envelope prt, which evolves from the initial horizontal polarization
with different initial spin precession phases Φin. Within the interval ½0; 2π�, the left-right symmetry of the envelope polarization at
Φin ¼ 0; π is broken at 0 < Φin < π [see Eq. (58)]. However, the left-right symmetry is recovered within the symmetric period
½ζ; 2π þ ζ�, see the discussion of symmetry properties of Eq. (40).

FIG. 6. Phase motion of the horizontal polarization envelope for Φin ¼ 0 as predicted by Eq. (45). The full phase swing of ϕmax −
ϕmin ¼ π is reached only for cos2ρ ≥ ½, when ϕðxÞ exhibits a pointed tip with the slope �j cos ρj. The phase motion evolves into the
phase jump for the transition detuning, cos2ρ → ½.
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cos xþ sin2ρcos2ρð1 − cos xÞ2 ¼ 0 ð62Þ

and yields the root cos x ¼ − cot2 ρ. The resulting phase
span equals

ϕmax − ϕmin ¼ 2 arccos j cot ρj: ð63Þ
With approach to the boundary of the two regimes,
cos2ρ → ½, the phase motion evolves into the phase jump
at x ¼ π; 3π;…
The next interesting case is the pure tangential initial

polarization, when

cosϕðxÞ ¼ sgnðcos xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2ρtan2x

p : ð64Þ

The corresponding results are presented in Fig. 7. The
phase ϕðxÞ is symmetric with respect to x ⇔ 2π − x and the
phase swing ϕmax − ϕmin ¼ π for all ρ. It exhibits pointed
tips at x ¼ x1, when tan2 x1 ¼ 0, i.e., when ϕðx1Þ ¼ 0 for
x1 ¼ 0; 2π;… and when ϕðx1Þ ¼ π for x1 ¼ π; 3π;…. In
the vicinity of the pointed tip at x ¼ x1, the phase motion is
given by

ϕ1 − ϕðxÞ ¼ �j cos ρj · jx − x1j; ð65Þ

yielding exactly the same slope as in Eq. (61). The
only distinction to the case of Φin ¼ 0 is that here
j cos ρj ≤ 1=

ffiffiffi
2

p
. Note that ϕðπ=2Þ ¼ π=2 and at

j cos ρj ≪ 1, the phase ϕðxÞ passes π=2 steeply in the
narrow range of jx − π=2j < j cos ρj. This steep variation of
ϕðxÞ about x ¼ π=2 tends to a step function as j cos ρj → 0
in the fashion discussed in Sec. IV E.

3. Evolution of the phase of in-plane polarization
envelope for generic orientation of the initial polarization

The analysis is based on Eqs. (59) and (45). The salient
features of ϕðxÞ for generic Φin are illustrated in Fig. 8 for

the example that Φin ¼ π=4. To start with, at x ¼ 0 and
x ¼ 2π, Eq. (56) implies that

ϕð0Þ ¼ ϕð2πÞ ¼ π

2
−Φin ð66Þ

independent of the detuning parameter ρ.
The subsequent analytic discussion is most conveniently

performed in terms of the variables y ¼ x − ζðΦin; ρÞ and
qðΦin; ρÞ [see Eqs. (41) and (56)]. A major finding is that
the same universal slope at the tip, �j cos ρj, persists for all
Φin. Indeed, according to Eq. (56), we have prðxÞ ¼ 0 at

cos y1 ¼ −
sin2ρ cosΦin

qðΦin; ρÞ cos ρ
: ð67Þ

This solution is only possible if

cos2ρ ≥ cos2ρm ¼ cos2Φin

1þ cos2Φin
; ð68Þ

where ρm denotes the boundary detuning angle for which
the solution (67) does still exist.
In close similarity to the case Φin ¼ 0, shown in Fig. 6,

the phase ϕðxÞ exhibits pointed tips x1 ¼ y1 þ ζ. In the
vicinity of the tips, we have

prðxÞ ¼ −qðΦin; ρÞ cos ρ sin y1 · ðx − x1Þ
¼ ptðx1Þ cos ρ sin y1 · ðx − x1Þ; ð69Þ

which entails

cosϕðxÞ ¼ sgnðcos xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2ρðx − x1Þ2

p ; ð70Þ

and we recovered Eq. (60) and the familiar slope � cos ρ at
the pointed tips.
In the evaluation of the phase span at cos2ρ ≤ cos2ρm,

we follow the procedure developed for the case of Φin ¼ 0.

FIG. 7. Phase motion of the horizontal polarization envelope for Φin ¼ π=2 as predicted by Eq. (45). In the limit of cos ρ → 0, the
phase motion evolves into the phase jumps and the central bumps at x ¼ π and 3π exhibit a rectangular shape.
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Thephase extrema are roots of the equation ðcosϕðxmÞÞ0 ¼ 0,
which takes the form [here below q ¼ qðΦin; ρÞ]

cos2yþ 2w cos yþ 1 ¼ 0; ð71Þ
with the roots

cos y� ¼ w�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
; ð72Þ

where

w ¼ sin2ρðq2 þ cos2ρcos2ΦinÞ − 1

2q sin2ρ cos ρ cosΦin
: ð73Þ

Solutions of the above equation exist for w2 ≥ 1. It is easy to
check that the boundary case,w ¼ 1, corresponds to the exact
equality in the condition in Eq. (68). Subject to the constraint
j cos y�j ≤ 1, the admissible roots are cos y− at w ≥ 1, and
cos yþ at w ≤ −1, and the two branches are related
by cos y−ðwÞ ¼ − cos yþð−wÞ.
Now, we focus on the boundary case cos ρ ¼

cos ρm > 0. According to Eq. (56), ptðxÞ changes sign at
y ¼ π, and we encounter the by now familiar phase jump
depicted in Fig. 6. Upon some algebra, we find

cos ζðΦin; ρmÞ ¼ cos2Φin; ð74Þ

which in our case Φin ¼ π=4 entails ζðΦin; ρmÞ ¼ π=3, and
we predict

xm ¼ π þ arccos ðcos2ðΦinÞÞ ¼
4

3
π; ð75Þ

in perfect agreement with the numerical results shown
in Fig. 8.
As we observed in Sec. IV F, a finite initial phase Φin

introduces an asymmetry with respect to x ⇔ 2π − x. The
symmetry is restored in the exceptional case of cos ρ ¼ 0

[see Eq. (58)], when we predict ϕðx ¼ πÞ ¼ 3π=4 in
agreement with the numerical results shown in Fig. 8.
Finally, we consider the case of Φin ¼ −π=4. The

corresponding phase motion is shown in Fig. 9. First,
according to Eq. (66), we get

ϕð0Þ ¼ ϕð2πÞ ¼ π

2
−Φin ¼

3

4
π; ð76Þ

Second, according to Eq. (41), now we must take a branch
ζ ¼ − arccos ðcos2ðΦinÞÞ. As far as the x dependence of the
phase ϕðxÞ is concerned, a chain of substitutions

y ¼ x − ζjπ=2 ⇒ x − ζj−π=2 ¼ xþ ζjπ=2
⇒ ỹ ¼ −½ð−xÞ − ζjπ=2�; ð77Þ

amounts to the up-down and left-right reflections, i.e.,
inversion of the x axis accompanied by the shift by 2π, and
simultaneous phase inversion ϕðxÞ ⇒ π − ϕðxÞ.

4. Summary on the in-plane polarization phase

We found a very rich pattern of in-plane envelope
phase motion as a function of detuning and initial spin
phase. Still, there are certain universal features of the
graphs shown in Figs. 6–9, which are worth of emphasis.
Irrespective of Φin, in all graphs, the envelope phase
exhibits the phase jump by π with the known Φin
dependence of the location of the jump. The same is true
for the continuous spin rotation [see Fig. 4], although this
case has certain exceptional features to be discussed below.
For nonvanishing detuning, ϕðxÞ exhibits pointed tips with
a universal slope equal to � cos ρ at the tip, irrespective of
the initial spin phase, while in Fig. 4, the related slope
equals j cos ρj=2. Finally, the phase continuity condition
ϕðx ¼ 0Þ ¼ ϕðx ¼ 2πÞ holds for all Φin with the detuning-
independent ϕð0Þ, again with the exception of Fig. 4.

FIG. 8. Phase motion of the horizontal polarization envelope for Φin ¼ π=4, as predicted by Eq. (45). For cos2ρ ≥ cos2ρm ¼ 1=3 [see
Eq. (68)], the pattern of the phase motion resembles that forΦin ¼ 0 depicted in Fig. 6. The phase jump for cos2 ρ ¼ cos2 ρm is located at
x ¼ xm ¼ 4π=3, as predicted by Eq. (75). In contrast to the case of Φin ¼ 0 in Fig. 6, the phase motion for cos2 ρ < cos2 ρm has no
symmetry center.
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Regarding the pointed tips, according to Eq. (68), they
persist for a finite range of detuning, apart from the
exceptional cases Φin ¼ �π=2, when the tips for all ρ
share identical locations at x ¼ 0; π; 2π;…
The WF-driven continuous evolution from the pure

vertical initial polarization is distinct from the generic
three-stage evolution used in actual JEDI experiments. As
explained in Sec. IV B, here WF operates in the capacity of
the spin rotator in stage I and continuous on to stage III at
one and the same detuning angle ρ. Specifically, the
rotation of the polarization into the horizontal plane
happens at cos x0ðρÞ ¼ − cot2 ρ [see Eq. (37)]. In the spirit
of generic three-stage process, this instant can be viewed as
a start of stage III with the initial phase Φin defined by

cosΦin ¼ prðx0Þ ¼ cot ρ;

sinΦin ¼ ptðx0Þ ¼ sgnðsin ρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cot2ρ

q
: ð78Þ

Our convention for stage III is that the envelope evolu-
tion phase starts with x ¼ 0. Evidently, the further evolu-
tion of pr;tðxÞ will be still described by Eq. (47) subject to
the trivial substitution x → xþ x0ðρÞ. This way in Fig. 4,
we lumped together the detuning dependence of ϕðxÞ for a
very special subset of initial phases ΦinðρÞ as opposed to

the ρ-independent initial phase in other cases. This dis-
tinctive feature of continuous evolution is behind the
ρ-independent phase jump at 0, 2π, 4π;…, and the degen-
eracy of the tip and jump locations, and a phase slope at the
tip, 1

2
cos ρ, which is half of that in the generic case.

The above analysis suggests that the phase of the
envelope of the horizontal polarization has a great potential
for the diagnostics of the rf-driven spin dynamics (see also
early considerations in Ref. [25]). We demonstrated a
remarkably strong sensitivity of the phase motion to the
initial phase of the horizontal spins and to the detuning of
the spin precession frequency. This phase remained the as
yet poorly explored feature of the rf-driven spin dynamics
in storage rings, and we make a point that variations of the
dependence of this phase with respect to time may prove as
a good indicator of the stability of the detuning during the
cycle, or as an indicator for the lack or the presence of
unwanted phase walks.

V. SPIN DECOHERENCE INCORPORATED

A. Recovering the spectator polarization

As a prelude to further discussion of the spin
decoherence effects, we observe that the envelope evolution
matrix in Eq. (28) can be cast in the form

EðxÞ ¼

0
B@

sin2ρþ cos2ρ cos x cos ρ sin ρð1 − cos xÞ cos ρ sin x

cos ρ sin ρð1 − cos xÞ cos2ρþ sin2ρ cos x − sin ρ sin x

− cos ρ sin x sin ρ sin x cos x

1
CA

¼

0
B@

sin ρ − cos ρ 0

cos ρ sin ρ 0

0 0 1

1
CA ·

0
B@

1 0 0

0 cos x − sin x

0 sin x cos x

1
CA ·

0
B@

sin ρ cos ρ 0

− cos ρ sin ρ 0

0 0 1

1
CA; ð79Þ

FIG. 9. Phase motion for Φin ¼ −π=4 as predicted by Eq. (45). For cos2ρ ≥ cos2ρm ¼ 1=3 [see Eq. (68)], the pattern of the phase
motion resembles that forΦin ¼ 0 depicted in Fig. 6. The phase jump for cos2ρ ¼ cos2ρm is located at x ¼ xm ¼ 2π=3, and, as predicted
by Eq. (75), after reflections is described by Eq. (77).
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which amounts to the rotation of coordinates such that the
vector m⃗ of Eq. (29) plays now the role of e⃗s in the case of
idle precessions. In this new reference frame, the matrix in
Eq. (28) stems from the initial block-diagonal matrixE0ðxÞ
of Eq. (17), which features the spectator polarization. This
observation serves as a crucial guidance to link spin
evolution to decoherence effects.
As a matter of fact, the presence of the hidden spectator

component could have been directly guessed from the
original envelope rotation matrix of Eq. (28). Indeed,
besides the manifestly rf-driven terms ∝ sin x and ∝ cos x,
the four matrix elements of EðxÞ do components sin2 ρ in
ErrðxÞ, cos2 ρ in EssðxÞ, and cos ρ sin ρ in ErsðxÞ and EsrðxÞ,
which do not participate in the spin-flip process.

B. Ansatz of exponential decoherence
of the in-plane polarization

1. Damped spin rotations

The JEDI studies of spin decoherence have revealed [11]
an enhancement of the spin-coherence time by the fine
tuning of families of sextupole magnets to zero chroma-
ticity to reduce the spread of spin tunes in the beam caused
by orbit lengthening due to betatron oscillations [10]. In
the spirit of the Bloch approach to NMR [4], we present
here the ad hoc treatment of the residual spin decoherence
in terms of the exponential attenuation of the in-plane
polarization S⃗ðnÞ of an ensemble (bunch) of particles and
preservation of the vertical polarization in the idle pre-
cession regime, as suggested by the experimental obser-
vations [17]. Correspondingly, the master equation (3) will
be modified to yield

S⃗ðnÞ ¼ RWFðnÞRΓRsðθWFÞS⃗ðn − 1Þ; ð80Þ

where

RΓ ¼

0
B@

1 − Γ 0 0

0 1 0

0 0 1 − Γ

1
CA ¼ 1þWΓ ð81Þ

describes the attenuation per turn, where in terms of the
spin coherence time τSCT, Γ is given by

Γ ¼ 1

frevτSCT
: ð82Þ

We shall also use the small decoherence parameter

Q ¼ Γ
4πνSF

; ð83Þ

which is defined such that Γn ¼ 2Qx.

2. Sequential Bogoliubov-Krylov averaging

Anticipating the sequential BK averaging, we seek for a
solution of the master equation (80) of the form

S⃗ðnÞ ¼ RsðnθWFÞE0ðnÞg⃗ðnÞ; ð84Þ

so that g⃗ðnÞ will embody the impact of the spin decoherence
on the earlier defined spin envelope: p⃗ðnÞ ¼ E0ðnÞg⃗ðnÞ.
Then the master equation for g⃗ðnÞ reads

g⃗ðnÞ ¼ E−1
0 ðnÞR−1

s ðnθWFÞRWFðnÞRsðnθWFÞRΓE0ðn − 1Þg⃗ðn − 1Þ: ð85Þ
The first stage of the BK averaging over spin precession yields

hR−1
s ðnθWFÞRWFðnÞRsðnθWFÞi ¼ E0ð1Þ: ð86Þ

Next, we perform the BK averaging over spin flips that are fast compared to the spin damping:

UΓ ¼ hE−1
0 ðn − 1ÞWΓE0ðn − 1Þi ¼ Γ

*0
B@

1 0 0

0 sin2x 0

0 0 cos2x

1
CA
+

¼ −Γ

0
B@

1 0 0

0 1
2

0

0 0 1
2

1
CA: ð87Þ

The corresponding solution of Eq. (85) is given by

g⃗ðnÞ ¼ EΓðnÞp⃗ð0Þ ¼ expðUΓnÞp⃗ð0Þ; ð88Þ
with

EΓðxÞ ¼

0
B@

expð−2QxÞ 0 0

0 expð−QxÞ 0

0 0 expð−QxÞ

1
CA: ð89Þ
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While the idly precessing spectator component deco-
heres ∝ expð−2QxÞ, the vertical and the in-plane active
polarizations decohere at half this rate, ∝ expð−QxÞ.
Indeed, the polarization decoheres when it is in the rt-plane,

while the attenuation of the upward or downward polariza-
tion is negligibly weak on the time scale of τSCT [17]. The
corresponding damped envelope evolution reads p⃗ðxÞ ¼
EDðxÞp⃗ð0Þ with the SF matrix

EDðxÞ ¼ E0ðxÞEΓðxÞ ¼

0
B@

expð−2QxÞ 0 0

0 expð−QxÞ cos x − expð−QxÞ sin x
0 expð−QxÞ sin x expð−QxÞ cos x

1
CA; ð90Þ

which replaces E0ðxÞ in Eq. (79) with the result

EexpðxÞ ¼

0
B@

e−2Qxsin2ρþ e−Qxcos2ρ cos x cos ρ sin ρðe−2Qx − e−Qx cos xÞ e−Qx cos ρ sin x

− cos ρ sin ρðe−2Qx − e−Qx cos xÞ e−2Qxcos2ρþ e−Qxsin2ρ cos x −e−Qx sin ρ sin x

−e−Qx cos ρ sin x e−Qx sin ρ sin x e−Qx cos x

1
CA: ð91Þ

In this purely phenomenological approach, there is no
direct link between the attenuation and the SF tune [44].

C. Spin decoherence by synchrotron motion

1. Spread of synchrotron oscillation amplitudes

So far, we considered only central particles in the bunch.
The synchrotron oscillations (SO) with frequency fsy
modulate the particle momentum and the spin tune and
are endemic in storage rings. The emerging oscillating
detuning between WF and spin precession is a well-defined
dynamical mechanism of spin decoherence, and here
we treat it as the leading one, supposing that the betatron
oscillation effects have been taken care of by fine tuning of
the sextupole families. We follow the technique of an
earlier study [45] and extend these considerations.
Oscillations of particles around the center of the bunch

can be evaluated using the time distribution of the events
recorded in the polarimeter. Following Ref. [29], it is
convenient to represent the synchrotron motion and longi-
tudinal profile of the bunch in terms of a fractional phase of
the beam revolution, ϕrev,

ϕ ¼ ϕrev − 2πn; ϕ∈ ½0; 2π�: ð92Þ

In the further discussion, the synchrotron motion for an
individual particle is defined with respect to a center of the
bunch:

ϕ ¼ a cosð2πνsyfsytþ λÞ; ð93Þ

where νsy ¼ fsy=frev is the synchrotron tune, and
λ∈ ½0; 2π� is the individual particle’s random phase.
The one-particle contribution to the longitudinal density

of the bunch NðϕÞ, as determined from the time distribu-
tion of events in the polarimeter, is inversely proportional
to the modulus of the SO velocity vsy. For harmonic

oscillations as in Eq. (93), we can relate the velocity to
the phase ϕ via

vsy ¼ 2πfsyaj sinð2πνsyfrevtþ λÞj

¼ 2πfsy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ϕ2

q
; ð94Þ

so that the one-particle density of the bunch,NðϕÞ, receives
contributions only from particles with synchrotron ampli-
tudes a > ϕ and is related by the Abel equation (transform)
to the synchrotron amplitude distribution function FðaÞ
through

NðϕÞ ¼ 1

π

Z
∞

ϕ

daFðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ϕ2

p : ð95Þ

Taking advantage of the experimental knowledge of NðϕÞ,
we invoke the inverse Abel transform:

FðaÞ ¼ −2a
Z

∞

a

dϕN0ðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − a2

p ; ð96Þ

which relates the longitudinal SO velocity distribution to
the derivative of the longitudinal spatial density of the
bunch. For the Gaussian approximation

NðϕÞ ∝ expð−ϕ2=2σ2syÞ; ð97Þ

which represents well the experimentally observed longi-
tudinal profile of the bunch [29], the inverse Abel transform
in Eq. (96) yields analytic solutions in the form of the
Rayleigh distribution [46]:

FðaÞ ¼ a
σ2sy

exp

�
−

a2

2σ2sy

�
: ð98Þ
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The synchrotron modulation of the particle momentum
ΔpðnÞ and the revolution period ΔTðnÞ are related by the
slip factor η

ΔT
T

¼ ΔϕðnÞ
2π

¼ η ·
ΔpðnÞ

p
; ð99Þ

where η

η ¼ 1

γ2
−

1

γ2tr
; ð100Þ

and γtr is the transition gamma factor [47]. In Eq. (99),
we introduced ΔϕðnÞ, an angular advance (retardation)
of a particle per revolution n oscillating with time
∝ cosð2πνsyfrevtÞ. These one-turn synchrotron phase shifts
sumprecisely to theϕ defined abovewith an amplitude larger
by the large factor ð2πνsyÞ−1 than that of ΔϕðnÞ. Averaging
over the ensemble of particles yields the simple relationship

σsy ¼ hϕ2i1=2 ¼ η

νsy

�ðΔpÞ2
p2

�
1=2

: ð101Þ

The SOs generate a cumulative shift of the spin precession
phase,ΔθsðnÞ ¼ θsðnÞ − θsn, which is a sumof shifts δθsðnÞ
per turn:

δθsðnÞ ¼ 2πGδγ ¼ 2πGγβ2
ΔpðnÞ

p
;

ΔθsðnÞ ¼
Xn
k¼1

δθsðkÞ ¼ ξψ sy sinð2πνsynþ λÞ;

ψ sy ¼
ffiffiffi
2

p
Gγβ2

σsy
jηj ; ð102Þ

where ξ is a convenient phase-slip relative amplitudewith the
distribution function:

FðξÞ ¼ 2ξ expð−ξ2Þ; ð103Þ
and normalization hξ2i ¼ 1 [cf., Eq. (98)].
The modulation ΔT of the revolution time results in the

corresponding SO-driven slip of the WF phase:

ΔθWFðnÞ ¼
fWF

fs
·
η

β2
Δθs ¼ CWFΔθsðnÞ;

CWF ¼ 1þ K
Gγ

; ð104Þ

which will show up in the spin-flip dynamics [48].

2. Master equation for the spin envelope

It suffices to consider the case of the exact resonance
for the central particle, fWF ¼ fs, i.e., θs ¼ θWF [49]. The
SO-modified one-turn spin transfer will be given by

S⃗ðnÞ ¼ RWFðnÞRsðθs þ δθsðnÞÞS⃗ðn − 1Þ: ð105Þ

Bearing in mind the subsequent Fourier analysis of the
in-plane polarization, we stick to the definition of the
spin envelope via Eq. (9), i.e., we define the envelopes in
the reference frame co-rotating with the fixed angular
velocity ωWF.
The simple rotations in Eq. (105) preserve the magnitude

of the polarization of individual particles. However, exper-
imentally one measures the average polarization of an
ensemble of particles with a typical observation time that is
much longer than the SO period. This averaging over the
ensemble leads to spin decoherence and depolarization.
As an exercise, we first treat the simplest case of the

pure idle precession of the in-plane polarization. Here the
determination of the envelope prt by the Fourier analysis
amounts to the projection of the polarization on the unit
vector rotating with fixed frequency fWF. For an individual
particle, the average over the SO period equals

prtðξÞ ¼ hexpðiΔθsðnÞÞi
¼ hcosðξCWFψ sy sinð2πνsynþ λÞÞi
¼ J0ðξψ syÞ; ð106Þ

and the average of the Bessel function over the ensemble of
particles in the bunch is

prt ¼
Z

∞

0

2ξ expð−ξ2ÞJ0ðξψ syÞdξ

¼ exp

�
−
1

4
ψ2
sy

�
≈ 1 −

1

4
ψ2
sy: ð107Þ

This weak time-independent reduction of prt is of rather
academic relevance, because the instantaneous injection of
horizontal polarization into the ring is technically impos-
sible. Equally impossible is polarimetry with sufficiently
large statistics at times much shorter than the SO period.
Consequently, in practice, the suppression in Eq. (107) is
reabsorbed in the definition of the magnitude of the initial
in-plane polarization as determined experimentally by
polarimetry prior to switching on the rf spin rotator.
Now, we generalize the master equation (26) with

allowance for SOs:

p⃗ðnÞ ¼ Rsð−nθWFÞRWFðnÞRsðδθsðnÞÞRsðnθWFÞp⃗ðn − 1Þ:
ð108Þ

Here, SOs enter via the slip of the spin phase per turn,
δθsðnÞ, and the cumulative slip of the WF phase ΔθWFðnÞ
in RWFðnÞ. In the Fourier analysis, one is bound to sample
trains of turns much longer than the SO period so that the
detuning per se averages out to zero, hδθsðnÞi ¼ 0, but we
have already seen the nonvanishing SO effect even in the
case of idle precession, see Eq. (107).
In the BK averaging over rapid spin precessions of the

corresponding counterpart of the matrix in Eq. (13), we
encounter
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hcosðθWFnÞ cosðθWFnþ CWFΔθsðnÞÞi ⇒
1

2
cosðCWFΔθsðnÞÞ;

hsinðθWFnÞ cosðθWFnþ CWFΔθsðnÞÞi ⇒ −
1

2
sinðCWFΔθsðnÞÞ; ð109Þ

and obtain

USOðnÞ ¼

0
B@

0 − 1
2
χWF sinðCWFΔθsðnÞÞ δθsðnÞ

1
2
χWF sinðCWFΔθsðnÞÞ 0 − 1

2
χWF cosðCWFΔθsðnÞÞ

−δθsðnÞ 1
2
χWF cosðCWFΔθsðnÞÞ 0

1
CA: ð110Þ

The next stage is BK averaging over the period of SOs
that are much faster than the envelope rotations:

hcosðCWFΔθsðnÞÞi ¼ J0ðξCWFψ syÞ;
hsinðCWFΔθsðnÞÞi ¼ 0;

hδθsðnÞi ¼ 0; ð111Þ

so that

hUSOðnÞi ¼
1

2
χWFJ0ðξCWFψ syÞU; ð112Þ

with familiar matrix U of Eq. (13).
The emerging SO-driven reduction of the SF tune

νSF ⇒ νSFðξÞ ¼ νSFJ0ðξCWFψ syÞ ð113Þ

has a simple interpretation. Indeed,

δðnÞ ¼ CWFδsðnÞ ð114Þ

is merely a running detuning parameter which oscillates
slowly with the SO frequency. Considering Eqs. (32) and
(29), this leads to a jitter of the envelope rotation axis m⃗
over the SO period, which will influence the spin-flip rate.
In the case of weak to moderate SO effects, we can

approximate

1 − J0ðξCWFψ syÞ ≈Qsyξ
2; ð115Þ

where

Qsy ¼
1

4
C2
WFψ

2
sy ¼

1

2
ðK þ GγÞ2σ2sy: ð116Þ

For instance, the bunch length measured in the JEDI
pilot-bunch experiment [29] corresponds to Qsy ≈ 0.01.
Remarkably, the parameter Qsy is uniquely encoded in
terms of the squared angular length of the bunch. Deuterons
have a small magnetic anomaly, G ¼ −0.1416, and at
intermediate energies, Qsy exhibits a strong sensitivity on
the sideband K, which is a good signature of the SO

dominance model. For relativistic protons, the sensitivity
to the side band is less strong, and Qsy scales with
ðγσsyÞ2 [50].

3. Evaluation of synchrotron oscillation-driven spin
decoherence of the bunch polarization

The above defined Qsy is the principal parameter,
which defines the SO-driven spread of the spin-flip tune
in Eq. (113) and the spin-flip phase:

x ⇒ xðξÞ ¼ xJ0ðξCWFψ syÞ ≈ x −Qsyξ
2x; ð117Þ

where x is given by Eq. (30). The SO-driven decoherence is
quantified by the expectation value over the ensemble of
particles in the bunch, hEðxðξÞÞiξ, with the weight function
FðξÞ of Eq. (103). We need to evaluate

hexpðixðξÞÞiξ ¼ expðixÞ
Z

∞

0

dξFðξÞ expð−iQsyξ
2xÞ:

ð118Þ

With the approximation in Eq. (115), we obtain

hexpðixðξÞÞiξ ¼
expðixÞ
1þ iQsyx

¼ DðxÞ expðixsyÞ: ð119Þ

where the damping (depolarization) factor of the ensemble
polarization equals

DðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

syx2
q : ð120Þ

The spin-flip phase xsy acquires a damping-related non-
linear walk:

xsy ¼ x − φsyðxÞ; with

φsyðxÞ ¼ arctanðQsyxÞ: ð121Þ

The experimental results on the bunch length suggest
Qsy ≪ 1 [29].
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The resulting counterpart of the envelope rotation matrix
of Eq. (90) is given by

EðsyÞ
D ðxÞ ¼

0
B@

1 0 0

0 DðxÞ cos xsy −DðxÞ sin xsy
0 DðxÞ sin xsy DðxÞ cos xsy

1
CA: ð122Þ

In the above derivation, the exact spin resonance was
assumed for the central particles in the bunch.
Now, with reference to the representation from Eq. (79),

a counterpart of the spin-flip matrix Eq. (91) for SO-driven
detuning takes the form:

EsyðxÞ ¼

0
B@

sin2ρþDðxÞcos2ρ cos xsy cos ρ sin ρð1 −DðxÞ cos xsyÞ DðxÞ cos ρ sin xsy
cos ρ sin ρð1 −DðxÞ cos xsyÞ cos2ρþDðxÞsin2ρ cos xsy −DðxÞ sin ρ sin xsy

−DðxÞ cos ρ sin xsy DðxÞ sin ρ sin xsy DðxÞ cos xsy

1
CA: ð123Þ

The SO damping factor starts as DðxÞ ≈ 1 − 1
2
Q2

syx2 at
Qsyx ≪ 1, in contrast to expð−QxÞ ≈ 1 −Qx for the
exponential Ansatz, while for large evolution times, the
attenuationDðxÞ ≈ 1=ðQsyxÞ is slower than the exponential
one. With the bunch and WF parameters of the pilot bunch
experiment, the SO driven depolarization turned out to be
still at the level of the experimental error bars [29].
A signature of the SO-dominated spin coherence time is

that its scale is set by Qsyx ∼ 1 and exhibits strong
dependence on the SF frequency:

τSCT ∼
1

2πfSFQsy
: ð124Þ

Finally, the synchrotron oscillations entail a nonlinear
spin-flip phase walk φsyðxÞ. It is an indispensable feature of
the SO mechanism of spin decoherence, and it cannot be
eliminated by the feedback process targeting the vanishing
detuning. This phasewalkφsyðxÞ entails the runningSF tune:

νðsyÞSF ðxÞ ¼ νðsyÞSF

dxsyðxÞ
dx

¼ νðsyÞSF

�
1 −

Qsy

1þQ2
syx2

�
; ð125Þ

where νðsyÞSF is the constant spin-flip tune, which defines the
principal spin-flip phase x and is given by Eqs. (31) and (33)
(see further Sec. VIII).
The SO-mediated spin-flip matrix EsyðxsyÞ differs in

several aspects from the matrix of the exponential model
EexpðxÞ. In the SO mechanism, the time-dependent spin
decoherence only takes place in the spin-flip process.
In both scenarios, the magnitude of the polarization is
not conserved, but in contrast to the exponential Bloch
damping approach of Sec. V B [see Eq. (90)], the radial
polarization of the precessing spectator does not decohere
in the SO mechanism. Consequently, the interplay of
vertical and horizontal polarizations, the evolution of the
envelope and the motion of the phase of the horizontal
polarization are different from those of the Bloch Ansatz
and the spin-coherence-free case. We postpone the
lengthy analysis of these changes to a future systematic

investigation of the available experimental JEDI data on the
evolution of the horizontal polarization.

D. Excursion on not compensated betatron
oscillation effects

A strong enhancement of the spin coherence time by
tuning the chromaticity, which suppresses orbit lengthening
effects caused by betatron oscillations (BO), is well dem-
onstrated experimentally [10–12]. Here, we comment on the
possibility that the residual spin decoherence is an artifact of
undercompensated BO effects. BO tunes are large, for
example in COSY νx;y ≈ 3.6, some four orders of magnitude
larger than the SO tune, yet the above treatment of SO effects
can be extended to BOs as well. In fact, the prolongation of
the orbit by BOs can be considered as a time-independent
feature of individual particles. Its effect on the spin tune is
proportional to the square of the BO amplitude:

νsðξÞ ¼ ð1 −Qβξ
2Þνs; ð126Þ

which is equivalent to a finite detuning of

δðξÞ ¼ 2πνWFQβξ
2; ð127Þ

where ξ is the relative amplitude of the BOs with the
distribution function FðξÞ of Eq. (103). According to
Refs. [10–12], by fine tuning the chromaticity, the BO
parameter Qsy could ideally be brought to zero.
We abstract from the dynamical considerations and

comment here on the phenomenological consequences of
the undercompensated BO effects. The most important
point is a BO-dependent spread of the detuning, which
results in a spread of SF tune. The small-δ expansion of the
SF tune of Eq. (31) gives

νSFðξÞ ¼ ν0SF

�
1þ 1

2
Qβξ

4

�
; where

Qβ ¼ Q2
sy

�
νWF

ν0SF

�
2

: ð128Þ
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The BO correction to the SF tune starts with a term ∝ ξ4

compared to the ∝ ξ2 term in the SO Eq. (113), while the
qualitative features are preserved.
Indeed, for the average over the ensemble, the BO-driven

spread of the SF phase factor yields

Z
∞

0

dξFðξÞ exp
�
i
x
2
Qβξ

4

	
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − i2QβxρβðxÞ
p

¼ DβðxÞ expðiφβðxÞÞ; ð129Þ

with

DβðxÞ ¼ f1þ 4Q2
βx

2ρ2βðxÞg1=4;

φβðxÞ ¼
1

2
arctan ½2QβxρβðxÞ�;

ρβðxÞ ≈
1þ π−1Q2

βx
2

1þQ2
βx

2
; ð130Þ

where ρβðxÞ interpolates the damping factor from DβðxÞ ≈
1 for Qβx < 1 to

DβðxÞ ≈
ffiffiffiffiffiffiffiffiffiffiffi
π

2Qβx

r
ð131Þ

for Qβx ≫ 1.
ForQβx ≫ 1, the phase ϕβðxÞ saturates at π=4 compared

to π=2 in the case of ϕsolðxÞ. ForQβx < 1, the interpolation
function ρβðxÞ ≈ 1, while for Qβx ≫ 1, it only controls
small details of saturation at π=4 so that the corresponding
running spin tune can be approximated by

νβSFðxÞ ≈ νSF

�
1 −

Qβ

1þ 4Q2
βx

2

�
: ð132Þ

Here, νSF is the SF tune defined by Eqs. (31) and (33). In
summary, despite the very different hierarchy of frequen-
cies involved, the synchrotron and betatron oscillations
have quite a similar impact on the SF dynamics.

VI. IMPACT OF THE FEEDBACK
TO COMPENSATE FOR THE SPIN

PRECESSION WALK DURING SPIN FLIP

So far, the spin phase walk has only been studied by the
JEDI collaboration in the idle precession experiment
(Fig. 1, [20]). In the regime of idle precessions, the spin
phase walk measured in the time interval tfb was compen-
sated by varying the spin-precession frequency fs ¼
Gγfrev via a change of the beam revolution frequency
frev. In the regime of multiple spin flips, one has to invoke
the pilot-bunch comagnetometry [29] and match the WF
frequency fWF to fs, correspondingly. In the actual experi-
ment [20], the phase walk was measured about every

second and the feedback was applied at somewhat irregular
time intervals of the order of tfb ≈ 3 s. In a simplified
pattern, the phase walk σfbðnÞ in the first feedback interval
tfb is compensated by a judicious preemptive correction to
fWF in the next interval tfb, so that on average, the feedback
corrected σfbðnÞ ¼ θsðnÞ − θWFðnÞ averages to zero over
one feedback period t∈ ½0; 2tfb�

hσfbðnÞi ¼ 0; ð133Þ

thereby producing a vanishing time-averaged detun-
ing δ ¼ 0.
As such, σfbðnÞ is analogous to the SO-driven mismatch

of spin precession and WF phases, apart from one dis-
tinction. Individual particles in the bunch have different SO
amplitudes and correspondingly different time dependen-
cies of the SF phases. In contrast to that, the spin-precession
frequency walk, mediated by instabilities of the ring
elements, is a collective effect, identical for all particles
in the bunch. With a typical feedback interval time of
tfb ≈ 3 s, the feedback frequency ffb ≈ 0.17 Hz is larger
than the typical SF frequency fSF ¼ 0.08 Hz in the pilot-
bunch experiment [29]. In the important case of searching
for a signal of the EDM of deuterons in the JEDI storage
ring experiment, even smaller fSF is of particular impor-
tance, see Ref. [37] and Sec. VIII.
Allowance for the feedback adds still another level in the

hierarchy of frequencies. The action of a fast feedback on
slow spin flips will be described by the spin envelope
transfer matrix UfbðnÞ, given in Eq. (110), subject to the
substitution CWFΔθsðnÞ → σfb. In the application of the
BK-averaging over the feedback phase, we make use of

hσfbðnÞi ¼ 0; ð134Þ

and obtain

UfbðnÞ ¼
1

2
χWFhcos σfbðnÞiU; ð135Þ

where U is given by Eq. (13). The net result amounts to a
feedback-induced reduction of the SF tune:

νðfbÞSF ¼ ν0SFhcos σfbðnÞi: ð136Þ

Supposing a Gaussian distribution of the spin-phase walk,
we obtain the reduction factor of the SF tune

Cfb ¼ hcos σfbðnÞi ≈ exp

�
−
1

2
hσ2fbi

�
: ð137Þ

The above toy model estimate in Eq. (137) holds for
ffb ≫ fSF. We expect a similar spin-precession phase walk
for the regimes of idle spin precession and continuous spin
flips. Taking as a guidance, the experimental idle spin
precession result σfb ¼ hσ2fbðnÞi1=2 ¼ 0.2 [18], we expect a
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reduction of Cfb from 1 by a few %. One can test this
conclusion by confronting the measured spin-flip fre-
quency fSF to an expectation from field maps of the spin
flipper. Besides that, one can resort to numerical simu-
lations based on the recorded feedback history.

VII. SPIN TOMOGRAPHY OF SYNCHROTRON
OSCILLATIONS

The remarkable feature of the SF tune, given in Eq. (113),
is its dependence on the SO amplitude, which can be tested
experimentally tagging events in the polarimeter by their
angular coordinate ϕ. The first look at this effect was
undertaken in the pilot bunch experiment [29], where the
full data sample of ϕ∈ ½−ξmax;ξmax�σsy¼½−2;2�σsy was
split into the central set I (with ϕ∈ ½−ξmed; ξmed�σsy ¼
½−0.6; 0.6�σsy) and set II (with ξ∈ ½ξmed; ξmax�), to be
referred to as the head and tail set. The median ξmed ¼ 0.6
was chosen to have about the samenumber of recorded events
in the sets I and II.
Particles in the bunch do perpetually oscillate from the

head to tail and vice versa, crossing back and forth the
central region ξ ≤ ξmedj, and a fraction of the time they
spend at jϕmedj < jϕj < jϕmaxj is given by the duty cycle

Dðξmax; ξmed; ξ2Þ ¼
2

π

�
arccos

�
ξmed

ξ

�
− arccos

�
ξmax

ξ

�	
:

ð138Þ
For arbitrary domain R, the expectation value of the phase
factor is given by

hexpðixðξÞÞiξ ¼
R
R dξFðξÞDðR; ξ2Þ expðixðξÞÞR

R dξFðξÞDðR; ξ2Þ : ð139Þ

The integrand in Eq. (139) has remarkable factorization
properties. Consider the set R of ξ ≥ ξm. In terms of the
convenient new variable ζsy ¼ ξ2 − ξ2m, the expansion of
Eq. (115) gives J0ðξCWFψ syÞ ≈ J0ðξmCWFψ syÞ −Qsyζsy so
that the phase factor in the integrand factorizes. A similar
factorization works for the Gaussian factor in FðξÞ, and we
obtain

hexpðixðξÞÞiξ
¼ expðixðξmÞÞ

×

R
R dζDðR; ξ2m þ ζsyÞ expð−ð1þ iQsyxÞζsyÞR

R dζDðR; ξ2m þ ζsyÞ expð−ζsyÞ
: ð140Þ

In the generic case, the duty cycle prevents an analytic
integration. For the sake of illustration, consider the domain
R ¼ ½∞; ξm�. For sufficiently large ξm > 1, one can use the

approximation Dð∞; ξm; ξ2Þ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζsy=ξ2m

q
. Then the inte-

grals in Eq. (140) reduce to the Euler gamma functions
with the result:

hexpðixðξÞÞiξ ≈
expðixðξmÞÞ
1þ iQsyðξmÞx

; ð141Þ

where QsyðξmÞ ¼ CðξmÞQsyðξmÞ, and Cðξm ≫ 1Þ ¼ 3=2,
while for ξm ¼ 0, Eq. (120) corresponds to Cð0Þ ¼ 1.
Hence, we predict a more rapid depolarization of the head
and tale portions of the bunch:

Ssð∞; ξmÞ
Ssð∞; 0Þ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

syx2

1þ C2ðξmÞQ2
syx2

s
: ð142Þ

As another case of spin-flip tomography, we comment
on the thought experiment with incomplete masking
(gating-out) of the pilot bunch, in which the head and
tail particles of the pilot bunch are subjected to spin-flips
by the rf field of the WF, while the central body of the
bunch is shielded from the rf field of the WF. The interplay
between the finite time duration of the gate and the bunch
length is as follows. At each turn, the head of the bunch
with ϕ > ξmσ crosses the WF still in operation, and the
spins in the bunch are subjected to the spin-flip kicks. The
main part of the bunch traverses the already switched-off
WF. In terms of SF, this masking can be considered as an
operation of the WF with χWF ¼ 0. Since these particles
spend part of the time in the central region of the bunch,
their depolarization will mimic a partial depolarization of
the central part of the bunch.
Equally important would be an analysis of the exper-

imental data on the revolution-phase tagged oscillation
amplitude, which would amount to a spin tomography of
the longitudinal polarization profile in a static bunch.
As emphasized in Sec. I, the knowledge about the non-
uniformity of the longitudinal polarization profile of
colliding bunches is relevant for a quantitative interpreta-
tion of double polarization observables in collider experi-
ments (see Ref. [39] for a related discussion of the
impact of transverse bunch polarization profile observed
at RHIC [38]).
The above discussion can also be extended to transverse

spin tomography of beam bunches. The transverse profile
of the polarization was previously studied at RHIC, where a
significant variation of the transverse polarization from the
core to the skin particles in the beam was observed [38]. In
this case, the skin is populated by particles having large
betatron amplitudes, while alongside the particles with
small betatron amplitudes also large-amplitude particles
spend part of their time in the core region.

VIII. IMPLICATIONS FOR SPIN-FLIP
TUNE MAPPING

Here, we explore implications of detuning and spin
decoherence on the search for the EDM of charged particles
in all magnetic storage rings with emphasis on the activity
of the JEDI collaboration.
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The signal for an EDM is the spin precession of particles
spin in an electric field. In the comoving frame in a magnetic
field, the spins of charged particles are subjected to the
electric field generated by the Lorentz transformation.

The familiar Frenkel-Thomas-BMT result for the angular
velocity of the idle spin precession with respect to the
particle momentum in a homogeneous magnetic field
reads [22,23,51–54]:

Ω⃗ ¼ −
q
m

�
GB⃗þ

�
1

β2
− 1 −G

�
β⃗ × E⃗þ 1

2
ηEDMðE⃗þ ½β⃗ × B⃗�Þ

	
; ð143Þ

where ηEDM defines the EDM in units of the nuclear
magneton via d ¼ ηEDMq=ð2mÞ.
Of major concern in this section will be the imperfection

magnetic fields and we invoke the momentum frame
fe⃗x; e⃗y; e⃗zg of Fig. 1. In an ideal purely magnetic ring,

B⃗ is normal to the ring plane and the EDM tilts the spin
stable axis e⃗s according to

ξEDM ¼ arctan

�
ηEDM
2Gβ

�
;

e⃗s ¼ sin ξEDMe⃗r þ cos ξEDMe⃗y: ð144Þ
If the WF axis was aligned perpendicular to the momentum
plane [55], w⃗ ¼ e⃗y, Eq. (19) would yield

je⃗s × w⃗j ¼ sin ξEDM and νSF ¼
1

4π
νWF sin ξEDM; ð145Þ

and the experimental measurement of the SF tune νSF
would amount to the measurement of the EDM of the
particle [9,56]. However, imperfection magnetic fields are
endemic in realistic all-magnetic rings like COSY and tilt
the spin stable axis which acquires tangential aMDM

z and
radial aMDM

x components so that

e⃗s ⇒ e⃗y þ sin ξEDMe⃗x þ aMDM
x e⃗r þ aMDM

z e⃗z: ð146Þ

The interaction of the magnetic dipole moment (MDM) of
the stored particles with imperfection fields may over-
whelm the EDM effect in the SF tune νSF [9].
Nevertheless, one can resort to an active compensation

of the intrinsic imperfections by two artificial imperfec-
tions (AI). Specifically, what matters for the SF rate is
contained in the cross product je⃗s × w⃗j. For the first time,
this approach with two cooler solenoids in two straight
sections acting as two AIs was experimentally studied at
COSY [9] (see also [37]). When transferred to the spin
flipper location, the local longitudinal AI fields acquire
radial components as well. In the recent experiment with
stored deuterons in the COSY ring, one of the solenoids
was substituted by rotating the transverse magnetic field
axis of the rf WF around the longitudinal axis [57]. The
stable spin axis e⃗s in the ring is tilted by the static
magnetic field of the Siberian snake in the straight
section opposite the WF, which rotates the spins around
the z axis by an angle χsol, while the magnetic field axis
w⃗ of the WF is tilted by a rotation of WF itself around
the z axis by an angle ϕWF. Since the solenoid fields
affect the spin precession tune [9], the WF frequency has
to be corrected accordingly.
For small WF rotation angles, we have w⃗ ≈ e⃗x þ ϕWFe⃗y

and, in the case of the exact resonance, one finds

νSF ¼
CfbχWF

4π
je⃗s × w⃗j ¼ χWF

4π

�
ðξMDM þ aMDM

x − ϕWFÞ2 þ
�
aMDM
z þ 1

2 sin πνs
χsol

�
2
	
1=2

: ð147Þ

The search for the deuteron EDM was carried out with spin phase feedback switched on, and in the above equation, the
feedback correction factor Cfb is included. As a function of the artificial imperfection parameters, ϕWF and χsol, the SF tune
νSF describes an elliptic cone. The corresponding numerical simulations of the strosocopic spin evolution were reported in
Fig. 20(a) of [37]. The accuracy with which the location of the vertex of the cone at νSF ¼ 0 can be determined defines the
best accuracy with which ξEDM can be determined using the described technique [57]. Barring accidental cancellations, one
can reinterpret this accuracy as a tentative upper bound for ξEDM.
At finite detuning, the observed SF tune will be modified according to Eq. (33), yielding

νSF ¼
Cfb

4π



χ2WF

�
ðξMDM þ aMDM

x − ϕWFÞ2 þ
�
aMDM
z þ 1

2 sin πνs
χsol

�
2
	
þ 1

4
δ2
�

1=2
: ð148Þ

The feedback is expected to produce a vanishing permanent detuning such that δ ¼ 0. Varying the feedback factor Cfb

from fill to fill would not affect the location of the vertex of the cone, but would degrade the fit quality with respect to the χ2

if Cfb were constant and equal to unity.
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In the absence of comagnetometry, one could try to
extract the SF tune νSF from the time dependence of the SF
phase in the small-x corner of the first quadrant:

dpsðxÞ
dt

����
t¼0

¼ − sinΦin
dx
dt

¼ −2πfrev sin ΦinνSF: ð149Þ

To go beyond the first quarter of the spin-flip period and
exploit the full statistical accuracy of the cycle, one needs to
invoke pilot-bunch comagnetometry [29].
Once the SOs come into play, the nonlinear phase walk

φsyðxÞ, which drives the spin-flip due to spin decoherence,
must be considered [see Eq. (125)]. As far as the JEDI
experimental data were taken in the regime of Qsyx < 1, as
suggested by the above cited evaluations of Qsy from
Eq. (116), the major effect will be a minor correction to the
visible spin-flip tune:

νðexpÞSF ≈ ð1 −QsyÞνSF; ð150Þ

which is extra to the feedback-driven renormalization in
Eq. (148). However, where Qsyx ∼ 1, then it would have
been necessary to directly use the nonlinear φsyðxÞ in the
extraction of νSF from the experimental spin-flip data. The
same point refers to the spin decoherence controlled by
betatron oscillations.

IX. SUMMARY AND CONCLUSIONS

Inspired by the JEDI studies of high-precision spin
dynamics aiming at the search for the EDM of charged
particles using storage rings and the recently developed
pilot-bunch approach to comagnetometry and manipulation
of polarization of selected bunches in storage rings, we
have developed a theoretical description of rf-driven spin
rotations that account for spin decoherence effects and
detuning away from the exact spin resonance. The fully
analytical description of the multiple spin flips, comprising
the polarimetry of in-plane polarization components and
various spin decoherence mechanisms, is essential for the
data analysis of the EDM experiments carried out at COSY.
The experiments exhibit a level of precision that requires a
thorough understanding of the polarization evolution in the
ring in the presence of an rf WF, a solenoid magnet, and
non-negligible ring imperfections.
In the framework of Bogoliubov-Krylov approach to rf-

driven spin rotations, based on the frequency hierarchy in
the problem, we have presented results for the Bloch
phenomenology of depolarization and more dynamical
models of spin decoherence, mediated by synchrotron
oscillations and noncompensated orbit lengthening by
betatron oscillations. We found substantial similarities
between synchrotron oscillations and betatron oscillations
as driving sources of spin decoherence, with nonexponen-
tial depolarization to rf-driven spin rotations detuned spin

precession being a common denominator. Interestingly, in
the presence of ring instabilities, the feedback mechanism
invoked to maintain the most accurate phase locking
between the rf WF and the spin precession is shown to
reduce the spin-flip frequency. This effect is of importance
for the interpretation of searches for the EDM of charged
particles in storage rings.
It has been shown that different spin-decoherence

models result in different patterns of depolarization of
different components of the continuously flipping polari-
zation. We emphasized the importance of a concurrent
analysis of vertical and in-plane precessing polarization
components, in particular, the previously unexplored phase
of the in-plane polarization envelope, as an additional
insight into the dynamics of rf-driven spin oscillations in
storage rings.
The synchrotron oscillation mechanism of decoherence

is shown to be governed by the bunch length, which is a
function of the SO amplitude, and we suggest a spin-flip-
based tomography of the SO-driven spin dynamics. The
latter provides access to the hitherto unexplored longi-
tudinal profile of the beam polarization in a bunch, which is
important to quantify the polarization-dependent luminos-
ity in collider experiments. Within the statistical accuracy
currently achieved, the main results of the pilot bunch
experiment are consistent with the quantitative expectations
of the synchrotron oscillation model.
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