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We investigated coherent betatron oscillations of a deuteron beam in the storage ring cooler synchrotron
and storage ring, excited by a detuned rf Wien filter (WF). The beam oscillations were detected by
conventional beam position monitors. With the currently available apparatus, we show that oscillation
amplitudes down to 1 μm can be detected. The interpretation of the response of the stored beam to the
detuned rf WF is based on simulations of the beam evolution in the lattice of the ring and realistic time-
dependent 3D field maps of the WF. Future measurements of the electric dipole moment of protons will,
however, require control of the relative position of counter-propagating beams in the sub-picometer range.
Since here the stored beam can be considered as a rarefied gas of uncorrelated particles, we moreover
demonstrate that the amplitudes of the zero-point (ground state) betatron oscillations of individual particles
are only a factor of about 10 larger than the Heisenberg uncertainty limit. As a consequence of this, we
conclude that quantum mechanics does not preclude the control of the beam centroids to sub-picometer
accuracy. The smallest Lorentz force exerted on a single particle that we have been able to determine is 10 aN.

DOI: 10.1103/PhysRevAccelBeams.24.124601

I. INTRODUCTION

The approach to the quantum ground state, the obser-
vation of quantum effects in macroscopic systems, and
the possibility to detect displacements of macroscopic
bodies on the nanometer scale, are the subject of intense
theoretical and experimental efforts [1–5]. A notable
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example is the detection of gravitational waves using
an interferometric detector with mirrors in the kilogram
range [6]. In all-electric proton storage rings, coherent
beam displacements down to the picometer range that are
caused by Earth’s gravity pull are in principle accessible
using the spin rotations of the proton as a detector [7]. We
also mention here the ongoing discussions of the possibility
to detect gravitational waves via perturbations of the beam
orbit in high-energy storage rings [8]. Here, we report the
first detection of collective oscillations of an intense beam
of deuterons in a storage ring with an amplitude close to the
quantum limit. The present study is part of an international
effort to prepare for the search for the permanent electric
dipole moment (EDM) of charged particles. The focus of
these studies has been on systematic effects, e.g., imper-
fection magnetic fields in storage rings [9], and orbit
improvements in a machine using beam-based alignment
[10], thereby advancing the high-precision frontier in spin
dynamics in storage rings. A comprehensive description of
this activity and of the proposed stepwise approach leading to
a dedicated proton EDM storage ring is presented in Ref. [7].
Experiments searching for EDMs of charged particles

usingstorageringsareat theforefrontof the incessantquest to
find new physics beyond the Standard Model of particle
physics. These investigations bear the potential to shed light
on the origin of the anomalously large matter-antimatter
asymmetry in the Universe [11], for which the combined
predictions of the StandardModels of particle physics and of
cosmology fall short of the experimentally observed asym-
metry by about seven to eight orders of magnitude [12].
The signal for an EDM is the spin precession in electric

fields, where it should be noted that the spins of charged
particles can be subjected to large electric fields only in
storage rings. The need to eliminate the overwhelmingly
stronger spin rotations driven by the magnetic moment in
magnetic fields brings to the front an all-electric, so-called
frozen spin proton storage ring [7,13]. An important
advantage of such a machine is the ability to simulta-
neously store two counter-propagating proton beams. The
concurrent measurement of the EDM-driven spin rotations
of the counter-propagating beams would allow to cancel
major systematic effects. To this end, to reach an ambitious
sensitivity to the proton EDM of dp ≈ 10−29 e cm, it is
imperative to control the relative vertical displacement of
the centers of gravity of the two beams to an accuracy of
about 5 pm [7]. One may wonder whether such an
enormously demanding accuracy is not prohibited by the
Heisenberg uncertainty principle. Toward an ultimate
precision search for EDMs of charged particles, this
particular aspect of the systematics of such measurements
had not been investigated so far, and our experiment
constitutes the first step in this direction.
Here, we report on the measurement of the amplitude of

collectively excited vertical oscillations of a deuteron beam
orbiting in the magnetic storage ring cooler synchrotron

(COSY) at a momentum of about 970 MeV=c [14]. The
data were taken in 2018 in the course of a dedicated
experiment in the framework of systematic beam and spin
dynamics studies for the deuteron EDM experiment
(so-called precursor experiment), presently carried out by
the JEDI collaboration1 at COSY [15–17]. One of the
central devices in the precursor experiment is the rf Wien
filter (WF), shown in Fig. 1, which was designed to provide
a cancellation of the electric and magnetic forces acting on
the particle. In this operation mode, the WF affects only the
particle spins, but does not perturb the beam orbit [18–20].
A slightly detuned WF, however, exerts a nonvanishing
Lorentz force on the orbiting beam particles. It is shown
collective beam oscillation excited by the WF with ampli-
tudes down to 1 μm can be detected with the currently
available equipment. Our approach to measuring ultrasmall
displacements complements other measurements of ultra-
small forces using different techniques [1–5].
In our experiment, the measurement cycles were much

shorter than the intrabeam interaction time, and the beam
attenuation rate was negligibly weak (see discussion in
Ref. [21]), therefore we treat the beam as a rarefied gas of
uncorrelated particles. Individual particles undergo stable
betatron oscillations around the equilibrium orbit in the
horizontal and vertical planes, driven by focusing magnetic
fields. Apart from their conventional individual betatron
motions, all the particles in a bunch participate in one and
the same collective and coherent oscillation that is driven
by the WF. Therefore, the upper bound of the amplitude of
the collective oscillation of the entire beam corresponds to
the upper bound of the oscillation amplitude of a single
particle. In our approach, access to ultrasmall oscillation
amplitudes results from the fact that the measured signal
corresponds to a collective response of the electric charge
of about N ¼ 109 deuterons in the bunch.
The beam tracking simulations were carried out to

predict the response of the stored beam to the detuned
rf WF. The simulations use the elements of the ring lattice
and realistic time-dependent 3D field maps of the WF.
These field maps describe the spatial variation of complex
electric and magnetic fields, including the fringe field areas.
Furthermore, the tolerances of the elements of the circuit
driving the WF are also taken into consideration.
As a reference value for the Heisenberg uncertainty

relation, we take an estimate of the amplitude of the single-
particle zero-point betatron oscillation amplitude Q. Then,
our result for the smallest measured amplitude of the WF-
driven single-particle oscillation is only about a factor of
ten larger than the quantum limit of Heisenberg’s uncer-
tainty relation for vertical single-particle betatron oscilla-
tions. The smallest detected oscillation amplitude is by
three orders of magnitude smaller than the beam size.

1JEDI collaboration (Jülich Electric Dipole moment
Investigations).
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We demonstrate for the first time that the accuracy
with which periodic beam oscillation amplitudes can be
measured is vastly higher compared to that of static beam
displacements generated by steerers using the same BPM.
In a broad context, any new precision tool is of interest
per se, and the latter point has important implications, for
instance, for all-electric frozen-spin EDM storage rings.
Here, one aims to control the interfering radial magnetic
fields by measuring the vertical spacing of the counter-
propagating beams. Our result complements the potential
of using beam oscillations to measure this distance, as
discussed in Ref. [22].
One must distinguish the rf-driven collective oscillations

above the quantum limitQ from the quantum uncertainty of
the center of mass of the bunch circulating in a static ring.
Specifically, for a rarefied-gas of N uncorrelated particles,
the quantum limit of the centroid of the bunch, detected by
the BPMs, amounts to Q=

ffiffiffiffi
N

p
.

The paper is organized as follows. In Sec. II, the
measurement principle is introduced, followed by a descrip-
tion of the operation of the rf WF in Sec. III. The method to
determine the beam oscillations is discussed in Sec. IV and
the evolution of the beam to the combined effect of the ring
lattice and the WF fields are presented in Sec. V. The time-
dependent fieldmaps of theWFare discussed in Sec.VAand
the evaluation of the uncertainties is elaborated in Sec. V B.
Experimental results are presented in Sec. VI, followed by
conclusion and outlook in Sec. VII.

II. MEASUREMENT PRINCIPLE

The COSY [14,23] at Forschungszentrum Jülich is a
storage ring with a circumference of approximately 184 m.
Its principal elements used for the experiments are indi-
cated in Fig. 2. For the investigations presented here, the
two key devices are the rf WF, based on a parallel-plates
waveguide [18], and a conventional electrostatic beam
position monitor (BPM) that is used to monitor the beam
oscillations [24]. The WF generates orthogonal and highly
homogeneous electric and magnetic fields. In the present
experiment, the WF was operated in the mode with the elec-
tric field pointing vertically upward (y direction), whereas
the magnetic field points radially outward (x direction), and
the beam moves in z direction (see coordinate system in
Fig. 2). The effective length of the WF is l ¼ 1.16 m (see
Refs. [18,19] for further technical details).
As a spin rotator for the forthcoming deuteron EDM

(precursor) experiment [15–17], the WF is designed
to operate in resonance with the spin precession of the
orbiting deuterons [18–20,31], and at a vanishing Lorentz
force, given by

F⃗ ¼ qðE⃗þ v⃗ × B⃗Þ; ð1Þ
where q denotes the elementary charge and v⃗ represents the
velocity of the beam particles. Unlike in conventional dc
WFs, the crossed electric field and magnetic fields (E⃗ and
B⃗) of the rf WF are generated simultaneously by exciting

(a) (b)

FIG. 1. The waveguide rf Wien filter is mounted inside a cylindrical vessel. The effective length of the device amounts to
l ¼ 1.16 m.The technical details are described in Refs. [18,19]. (a) CAD drawing of the design of the RF Wien filter. 1: RF feed,
2: beam pipe, 3: inner mounting cylinder, 4: inner support structure, 5: lower electrode, 6: insulator, 7: RF connector, and 8: vacuum
vessel. (b) Photograph with a view along the beam axis showing the gold-plated copper electrodes, which have a length of 808.8 mm.
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the transverse electromagnetic (TEM) mode. The spin
resonance tune mapping technique, developed for the
WF operation in the deuteron EDM experiment at
COSY, is described in Ref. [17].
When the electric and magnetic fields in the WF are

mismatched, i.e., when the electric and magnetic forces no
longer cancel each other, the rf fields excite collective beam
oscillations at the frequency at which theWF is operated. In
the present experimental setup, a mismatch between
electric and magnetic fields provides a vertically mis-
matched Lorentz force (see coordinate system in Fig. 2).
With a vanishing Lorentz force, the beam performs idle

vertical (and horizontal) betatron oscillations

yðtÞ ¼ yð0Þ
ffiffiffiffiffiffiffiffiffiffiffi
βyðtÞ
βyð0Þ

s
cos ½ψyðtÞ�; ð2Þ

where βyðtÞ is the betatron amplitude function. With the
beam revolution period of T ¼ 2π=ωrev, the betatron
phase advance ψyðtÞ satisfies ψyðtþ TÞ − ψyðtÞ ¼ ωyT ¼
2πνy, where νy is the vertical betatron tune given by
νy ¼ ωy=ωrev.
On the other hand, a mismatched WF exerts strobo-

scopically, i.e., once per turn, a vertical force FyðnÞ ¼
Fy cosðnωWFTÞ on the stored particle, where n is the turn
number and ωWF denotes the angular velocity of the rf in

the WF (see discussion of Fig. 12 in Sec. VI). The change
of the vertical velocity of the stored particle, accumulated
during the time interval Δt ¼ l=vz the particle spends per
turn n inside the WF, is given by

ΔvyðnTÞ ¼
FyðnÞΔt

γm
¼ −ζωy cosðnωWFTÞ; ð3Þ

where γ and m are the Lorentz-factor and the mass of the
particle, respectively. The change Δy of the vertical
position y in the WF can be neglected. The coupling of
vertical and radial beam oscillations is negligible (see
Sec. IV) and it is sufficient here to treat driven oscillations
in a one-dimensional approximation. Due to the very strong
disparity of synchrotron and fractional WF frequencies,
synchro-betatron coupling can be neglected (see discussion
in Ref. [32]). Furthermore, beam attenuation either by
intrabeam scattering or by interaction with residual gas
during the data acquisition cycle is very small (see the
Appendix B), justifying the rarefied gas approximation.
According to Eq. (2), the stroboscopic signal of the

betatron motion observed at any point in the ring, follows
the harmonic law with angular velocity ωy, and we invoke
the familiar description of the oscillatory motion in terms of
the complex variable z ¼ y − ivy=ωy. With the initial
condition zð0Þ ¼ 0, summing ΔvyðkTÞ after n turns, the
solution for zðnÞ behind the WF reads

FIG. 2. Schematic diagram of the cooler synchrotron and storage ring (COSY) with the main components, especially the focusing or
defocusing magnets (quadrupoles) and the bending magnets (dipoles). Indicated are the position of the rf WF and the location of the
beam position monitor [25] (BPM 17), used to observe the beam oscillations. Further components such as the 2 MeV electron cooler
[26], the WASA [27], and the JEPO [28,29] polarimeters, and the Siberian snake [30] are also shown. The coordinate system used is
indicated.
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zðnÞ ¼ iζ
2
×

�
expðinωyTÞ − expðinωWFTÞ

expðiðωy − ωWFÞTÞ − 1

þ expðinωyTÞ − expð−inωWFTÞ
expðiðωy þ ωWFÞTÞ − 1

�
: ð4Þ

This expression serves as the initial condition for the idle
betatron motion during the subsequent (nþ 1) turn and so
forth. A similar analytic result holds also for generic AC
dipole-driven betatron oscillations, discussed in a very
different context of machine diagnostics in Ref. [33]
(see also references therein).
Driven by the mismatched WF, all beam particles

participate in one and the same collective and coherent
oscillation, and according to Eq. (4), the beam as a whole
exhibits oscillations at the WF frequency ωWF. A lock-in
amplifier may be used to selectively measure the corre-
sponding Fourier component of the beam oscillation y ¼
ξy cosðnωWFTÞ from the output of a BPM. Its amplitude is
given by

ξy ¼
ζ

2
·

sinð2πνyÞ
cosð2πνWFÞ − cosð2πνyÞ

; ð5Þ

where the vertical betatron tune νy, and the WF tune νWF,
are given by νy ¼ ωy=ωrev and νWF ¼ ωWF=ωrev, respec-
tively. When the WF tune is close to the vertical betatron
tune, a resonant enhancement of the beam oscillation
amplitude ξy occurs. Equation (5) describes Hooke’s
law, Fy ¼ kHξy, and Hooke’s constant is given by

kH ¼
���� 2γmωy

Δt
·
cosð2πνWFÞ − cosð2πνyÞ

sinð2πνyÞ
����: ð6Þ

We invoke an approximate description of the betatron
motion by a harmonic oscillator with constant betatron
function and evaluate the Heisenberg uncertainty limit Q
for the betatron oscillation amplitude ξy in terms of the
zero-point oscillator energy 1

2
ℏωy, which yields

Q2 ¼ ℏ
mγωy

: ð7Þ

For the present experiment, we obtain

Q ¼ 82ffiffiffiffiffiffiffi
γνy

p nm: ð8Þ

With the actual COSY values for the betatron tune νy and
the Lorentz-factor γ of the beam (see Table I, Appendix A),
the quantum limit of the vertical betatron oscillations
amounts to

Q ≈ 41 nm: ð9Þ

The interpretation of the measured oscillation amplitudes
in terms of the WF parameters requires numerical simu-
lations of the performance of the WF as an element of the
storage ring [18]. The details relevant to the present study
are described below; the corresponding beam simulations
carried out are consistent with the available experimental
results on the properties of COSY [21].

III. WF OPERATION

The control of the Lorentz force of the waveguide rf WF
is based on the wave-mismatch principle [20]. An imped-
ance mismatch is introduced at the load part of the device to
deliberately create reflections that generate a standing wave
pattern inside the WF [31]. These standing waves can be
represented by the complex-valued field quotient Zq,
defined as the ratio of the total electric to the total magnetic
field strength,

Zq ¼
Etotal

Htotal ¼
Eþ þ E−

Hþ −H− ¼ Eþ þ Γ · Eþ

Hþ − Γ ·Hþ

¼ Zw
1þ Γ
1 − Γ

¼ Z0

d
W

1þ Γ
1 − Γ

; ð10Þ

where the superscripts ‘þ’ and ‘−’ refer to the forward and
backward direction of propagation, Zw is the wave imped-
ance, Z0 ≈ 377 Ω is the vacuum wave impedance,
d ¼ 100 mm is the distance between the electrodes,
W ¼ 182 mm is their width [18], and Γ is the reflection
coefficient that controls the amplitude and phase of the
reflected wave. During the measurements described here,
the WF was typically operated at a net input rf power
of 600 W.
The field quotient Zq is controlled via a specially

designed rf circuit [31]. By altering Γ via two variable
vacuum capacitors, called CL and CT, a wide range of Zq

values can be covered, and the matching point correspond-
ing to the minimum induced vertical beam oscillation
amplitude may be determined.

IV. BEAM OSCILLATIONS

In this experiment, the electric field of the WF is oriented
vertically and the magnetic field horizontally. This implies
that the oscillations mainly take place along the y axis [see
Eq. (1)]. For the detection of the vertical beam oscillations,
a conventional BPM has been employed. In order to be
most sensitive, BPM 17 located in the straight section
opposite to the WF (see Fig. 2) with a large vertical β
function was used, βBPMy ≈ 15.3049 m, while at the WF
location, βWF

y ≈ 2.6784 m, as shown in Fig. 3. The argu-
ments to pick BPM 17 are further discussed below
in Sec. V.
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In order to measure small beam oscillations, a technique
based on lock-in amplifiers2 was developed [34]. These
devices operate in the frequency domain and lock onto a
signal whose frequency is set as a reference, which is
particularly useful in an electromagnetically noisy envi-
ronment. Each measurement consisted of two subsequent
machine cycles of 3 min duration, as depicted in Fig. 14 in
Appendix B.
A stored beam bunch circulating at a revolution fre-

quency of frev that passes through a BPM induces a voltage
signal on all its four electrodes, as indicated in the readout
scheme of the BPM, shown in Fig. 4.3 For the detection of
vertical beam oscillations, only the voltage signals Ut;b

from the top (t) and bottom (b) electrodes are considered.
These signals are trains of short pulses with the repetition
frequency frev. In view of Eq. (2) and as far as the Fourier
spectrum of the beam oscillations is concerned, without
loss of generality, the BPM can be considered to be located
right behind the WF, and the induced voltages can be
represented by

Ut;b ¼ ½U0 � ΔUðΔyÞ� cosðωrevtÞ; ð11Þ

where the index ‘t’ refers to the þ sign and the index ‘b’ to
the − sign, respectively. The harmonic factor cosðωrevtÞ
emphasizes the pulse repetition frequency, although
cosðωrevtÞ ¼ 1 for t ¼ nT. The voltage Ut;b is nonzero
only at the time the beam passes through the BPM. Here,
U0 denotes the voltage proportional to the beam current
that is induced when the beam passes exactly through the
center of the BPM, and ΔUðΔyÞ represents the voltage
variation induced by a beam that is vertically displaced
by Δy.

For small beam displacements, the BPM operates in its
linear regime, which implies that the induced voltages take
the form

ΔUðΔyÞ ¼ κ × Δy ×U0; ð12Þ

where κ is a calibration factor that needs to be determined.
At a momentum of 970 MeV=c, the revolution frequency
of deuterons orbiting in COSY is frev ≈ 750 kHz. The WF
is operated at the kth sideband of the spin-precession
frequency fs, given by

fWF ¼
ωWF

2π
¼ ðkþ νsÞfrev ¼ k × frev þ fs: ð13Þ

Here νs ¼ Gγ denotes the spin tune, i.e., the number of spin
precessions per revolution, G ≈ −0.1430 is the magnetic
anomaly of the deuteron, and the spin precession frequency
fs ¼ νsfrev [18]. It should be noted that in view of
ωrevT ¼ 2π, trains of beam oscillation pulses do not depend
on the actual choice of the sideband. In the present
experiment, the WF was operated at k ¼ −1 which corre-
sponds to fWF ≈ 871 kHz.4

0 50 100 150
0
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10

15

20

25

FIG. 3. Vertical and horizontal beta-functions along the circum-
ference of COSY [21]. The vertical dashed lines mark the
location of the Wien filter and of the beam position monitor
used during the measurement of the beam oscillations.
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FIG. 4. Readout scheme of the COSY BPM 17. The signals of
the four electrodes are fed into lock-in amplifiers. The differential
signal of each electrode is analyzed at the two reference
frequencies given by the COSY rf and the Wien filter frequency.
The resulting Fourier amplitudes of the signals are recorded in the
EPICS, archiving system of COSY.

2HF2LI 50 MHz Lock-in Amplifier, Zurich Instruments AG,
8005 Zurich, Switzerland, https://www.zhinst.com/others/
products/hf2li-lock-amplifier.

3Experimental Physics and Industrial Control System, https://
epics.anl.gov/index.php.

4For the considerations presented in this paper, negative and
positive frequencies are considered equivalent.
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The induced oscillations of amplitude ξy contribute to
Eq. (11) the harmonic voltage variation ΔUðyðtÞÞ. The
BPM in conjunction with the lock-in amplifiers is used to
measure at times t ¼ nT the beam positions at the reference

frequencies, i.e., at fWF and at frev. Given that yðtÞ can
be evaluated at the spin precession frequency, the BPM
signals of the upper and lower electrodes can be written as
follows

Ut;bðtÞ ¼ ½U0 � ΔUðΔyÞ � ΔUðyðtÞÞ� cos ðωrevtÞ ¼ ½U0 � ΔUðΔyÞ � κξyU0 cos ðωstÞ� cos ðωrevtÞ

¼ ½U0 � κΔyU0� cos ðωrevtÞ �
1

2
κξyU0 cos ðωΔtÞ �

1

2
κξyU0 cos ðωΣtÞ: ð14Þ

Here ωΔ and ωΣ represent sidebands of the WF fre-
quency at

ωΔ ¼ ωrev − ωs ¼ ωWFjk¼1 and

ωΣ ¼ ωrev þ ωs ¼ ωWFjk¼−1: ð15Þ
In order to measure the beam oscillations, four lock-in

amplifiers [34] were used, two for the horizontal and two
for the vertical direction. For each direction, one lock-in
amplifier detects the Fourier amplitudes at frev ≈ 750 kHz
and a second one at fΣ ¼ frev þ fs ≈ 871 kHz. The lock-in
amplifiers receive reference frequencies from the signal
generator of the WF and from the master oscillator of
COSY. The four Fourier amplitudes of the top and bottom
electrodes are determined practically in real time, yielding

Arev
t;b ¼ U0 � κΔyU0 and AΣ

t;b ¼ ∓ 1

2
κξyU0: ð16Þ

The amplitude of the vertical oscillation ξy can then be
determined from

AΣ
t − AΣ

b

Arev
t þ Arev

b
¼ ξ̂y ¼ κ

U0

2U0

ξy ¼
1

2
κξy: ð17Þ

The uncalibrated raw asymmetry of the four Fourier
amplitudes is denoted by ξ̂y.
The readout scheme, shown in Fig. 4, was used to

concurrently record radial beam oscillations, and the
above analysis has been repeated for the corresponding
ξ̂x. The main result is that the coupling of vertical
and radial betatron oscillations is negligibly weak,
jξ̂x=ξ̂yj < 2 × 10−2, which justifies treating the rf-driven
beam oscillations as one dimensional.
The determination of the calibration constant κ, required

to calibrate the vertical oscillation amplitude, is described
in detail in Appendix B. It amounts to

κ ¼ ð5.82� 0.43Þ × 10−6 μm−1: ð18Þ
During the experiments, the vertical betatron tune of the

machine amounted to about νy ≈ 3.6040.5 The frequency

fΣ ≈ 871 kHz, at which the WF is operated, is well
separated from the lowest intrinsic spin resonances6 at
297, 453, 1048, and 1204 kHz.
The two variable and highly accurate capacitors, CL

and CT, are driven by stepper motors. They constitute the
main dynamical elements of the driving circuit. Each pair
of capacitor values yields a well-defined field quotient jZqj,
as shown in Fig. 5(a). Away from the matching point, a
phase shift ∠Zq occurs between electric and magnetic
fields, as shown in Fig. 5(b). The corresponding Lorentz
force leads to the measured beam oscillations, i.e., the
function ξy ¼ fðCL; CTÞ, which can be visualized in the
form of a 2D map, as shown in Fig. 6. The experimental
data were taken on a grid of ð7 × 6Þ points of CL and CT,
with corresponding grid spacings of ð94.5� 1.0Þ pF forCL
and ð95.8� 1.0Þ pF for CT. Each grid spacing corres-
ponds to 1000 steps of the corresponding stepper motors.
The calibration of the capacitances CL and CT as a
function of step number is discussed in detail in [31].
The grid spans over CL ∈ ½318.88; 885.58� pF and
CT ∈ ½428.99; 907.79� pF. The uncertainties of the grid
spacings are systematic ones.7

The map of the measured and calibrated vertical beam
oscillations ξy is shown in Fig. 6. The parameters of the
matching point are given by

CL ¼ ð697.1� 1.0Þ pF and

CT ¼ ð503.0� 1.0Þ pF; ð19Þ
and the corresponding minimal detected beam oscillation
amplitude at the location of BPM 17 amounts to

ξmin
y jBPM ¼ ð1.08� 0.52Þ μm: ð20Þ

5The numerical values used for the simulation calculations are
listed in Table I of Appendix A.

6An intrinsic depolarizing resonance is encountered, when the
betatron motion of the particles is in sync with the spin motion,
hence, when the condition fs ¼ νsfrev ¼ fy ¼ ðnP� ν0yÞfrev is
fulfilled [35], where n ∈ N, P denotes the superperiodicity of the
lattice, and ν0y the fractional tune. During the experiments
described here, P ¼ 1 (see also Fig. 3).

7The individually measured uncertainties of the capacitors are
actually much smaller than the stated uncertainty of 1.0 pF.
However, other factors, such as the capacitances and inductances
of the connectors and cables and their power dependencies, also
contribute to the aforementioned uncertainties.
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The above accuracy of δξmin
y jBPM ¼ 0.52 μm can be

compared to the accuracy of measurements of static
distortions of the beam orbit, which is about 20 μm (see
Table II). As expected, the accuracy of the beam oscillation
amplitudes is better by a factor of about 40 compared to the
static amplitudes measured using the same BPM.
Upon rescaling the oscillation amplitudes using Eq. (2)

with β functions listed in Table I to the WF location, we
obtain

ξmin
y jWF ¼ ð0.45� 0.22Þ μm; ð21Þ

which should be compared to the value of Q ≈ 41 nm,
given in Eq. (9). The largest measured amplitude of driven

beam oscillations at a strongly mismatched point with
600 W of input rf power amounts to

ξmax
y jBPM ¼ ð66.2� 3.1Þ μm: ð22Þ

Here, one must bear in mind that the sensitivity to a
periodic signal scales inversely with the square root of the
observation time.8 The frozen-spin proton EDM experi-
ment aims at the accumulation of the EDM signal for a
duration of about 107 s [7]. The accuracy δξmin

y jBPM ¼
0.52 μm [Eq. (20)] corresponds to an averaging time of 96 s
[see Fig. (14) in Appendix (B)]. With the currently used
BPMs and their readout electronics, together with an
extension of the averaging time to 107 s, there would be
a factor of 320 improvement in sensitivity to coherent beam
oscillations, leading to an accuracy of 1.6 nm.
In Fig. 7(a), the data measured at the matching point

[Eq. (19)] are shown. Each sample was recorded by the
lock-in amplifiers with an integration time set to 0.5 s,
corresponding to an average of 5000 measurements. A
Monte Carlo error propagation model was applied to treat
the uncertainties of the still uncalibrated raw position
asymmetries ξ̂y and the calibration coefficient κ [37].
The results are fitted with a normal distribution, as shown
in Fig. 7(b), from which the mean value μξy and the error of
the measured beam oscillations σξy are estimated. The latter
represents the systematic error of the measurement. It
should be noted that the map shown in Fig. 6 is actually
a function of all the circuit elements. The uncertainties of ξy

FIG. 5. Simulated integral magnitude (a) and phase of the field quotient Zq (b) at each point of the CL and CT grid, indicated by
the blue points, l denotes the effective length of the Wien filter. Besides the matching point [see Eq. (19)], ð7 × 6Þ grid points
were investigated. (a) Magnitude of the field quotient jZqj, evaluated integrally, where jZqjint ¼

R jZqjⅆl. Ideally, with jZqj close
to 176Ω, the electric and magnetic forces are equal. (b) Phase of the field quotient ∠Zq evaluated integrally, where ∠Zint

q ¼ R ∠Zqⅆl.
A non-vanishing ∠Zq implies a phase shift between the electric and magnetic fields.

FIG. 6. Measured amplitudes of beam oscillations ξexpy at BMP
17, plotted on a grid as a function of the variable capacitor values
CL and CT. To avoid crowding up the map, the error bars of the
data points were omitted, these are shown in Fig. 13 instead. The
parameters of the matching point are given in Eq. (19).

8The relevant discussion is found in Ref. [36]. See also the
observation of white noise suppression by two orders in magni-
tude when using 5 h signal averaging in a test bench experiment
with SQUID BPMs [22].
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are influenced by the uncertainties of all circuit elements
and also by the ones of the BPM itself, which include its
readout electronics, i.e., the lock-in amplifiers.
To appreciate the result given in Eq. (20), one can

compare the oscillation amplitude to the 1σ vertical beam
size. The latter has been deduced from the 1σ beam
emittance ϵy and the amplitude of the β function at the
position of the BPM, yielding

σBPMy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βBPMy ϵy

q
≈ 1.4 mm: ð23Þ

In the present experiment, the beam emittance was not
monitored. The above numerical estimate of σBPMy is based
on rescaling the experimental result for the 2σ beam
emittance of 49.3 MeV protons in COSY of ϵy ¼ ð0.92�
0.15Þ μm [21] to the conditions of the present experiment.
It is noteworthy that with the present equipment it is
possible to access coherent beam oscillations with ampli-
tudes that are more than three orders of magnitude smaller
than the beam size.

V. BEAM DYNAMICS SIMULATIONS

To improve our understanding of the measured results, a
computer code was developed to model the beam dynamics
in the COSY storage ring. The modeled storage ring
consists of a sequence of drift regions, quadrupole and
dipole magnets, the WF, and BPMs. These elements are
represented by transfer matrices, which are well understood
and documented in the literature [38]. In the model of the
ring, the actual settings of the beam optics elements of
COSY were those used at the time when the experiment

took place. Simulations are based on the Hamiltonian
formulation as presented in Ref. [38]. The WF is modeled
by a time-dependent matrix that also takes into account the
arrival time of the particles.

A. Time-dependent WF field maps

In order to be able to perform reliable beam simulations,
we have placed great emphasis on good spatial resolution
and the accuracy of the 3D field maps inside the WF,9

computed using a 3D electromagnetic simulation tool.10

The fringe fields of the WF are included, because they are
of particular importance for the beam oscillations, as will
be discussed later. An example of the computed 3D fields
of the WF at the experimentally determined matching point
is shown in Fig. 8. The beam-tracking simulations use the
three vector components of the electric and magnetic fields.
The WF is implemented as an rf kicker, as described
by Eq. (3).
Inside COSY, there are 32 BPMs available to control the

horizontal and vertical beam position during operation. In
order to select one of them with a good sensitivity to
determine the beam oscillations induced by the WF, a
number of particles were tracked, as described above, and
the orbit response induced by a field change at the location

(a) (b)

FIG. 7. Measured beam oscillations at the matching point [Eq. (19)] of the map shown in Fig. 6. The samples shown in panel (a) were
acquired during a data taking period of 108 min, using 36 machine fills (cycles). (a) Measured oscillation amplitudes ξy using data
samples of 0.5 s duration, each sample reflects the average of 5000 measurements of the lock-in amplifiers. (b) Probability density
distribution fξy of the measured data, fitted with a Gaussian to determine mean and standard deviation.

9Each field map consists of 2 × 106 points, 200 points along the
x axis ðx ∈ ½−5 mm; 5 mm�Þ, 200 points along the y axis
ðy ∈ ½−5 mm; 5 mm�Þ, and 50 points along the z (Wien filter)
axis ðz ∈ ½−l=2;þl=2�Þ, where l ¼ 1.16 m is the effective
length of the Wien filter.

10Electromagnetic and circuit simulations were performed
using CST, from Dassault Systèmes, Vélizy-Villacoublay, France,
https://www.3ds.com.
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of the WF was calculated at each BPM location.11 As a
result, BPM 17, located about 70 m downstream of the WF
(see Fig. 2), was chosen because it offered good sensitivity
to both radial and vertical beam oscillations.
Figure 8 shows the main field components Ey and Bx.

When mismatched, the WF generates periodic transverse
perturbations of the trajectory. Switching off the WF
eliminates such oscillations. The maximum amplitude of
the observed oscillations in the simulation is then taken for
ξy. The two simulated vertical beam oscillation amplitudes
of BPM 17 and WF read

ξBPMy ¼ ð1.086� 0.082Þ μm and

ξWF
y ¼ ð0.435� 0.031Þ μm; ð24Þ

which agree well with the experimentally measured results,
given in Eqs. (20) and (21). A detailed description of the
determination of the uncertainties of the beam simulations
is discussed in uncertainty evaluation.
For each and every measured point on the CL versus CT

grid, a beam dynamics simulation was carried out. For each
of these points, a 3D field map of the WF was generated
and then used for the beam tracking simulations. The
results of these simulations are shown in Fig. 9 and are later
compared with the results of the measurements.

B. Uncertainty evaluation

The accuracy with which the Lorentz force and the
resulting amplitudes of the beam oscillations can be tuned
depends on the accuracy with which the field quotient Zq

can be integrally set to the desired value. Zq depends on the
hardware elements in the driving circuit. In order to evaluate
the effects of uncertainties of these elements, extensive
coupled circuit electromagnetic simulations have been con-
ducted, as discussed in Ref. [31]. The uncertainties involved
are listed in Table 6 and shown in Fig. 16 of Ref. [31]. As far
as the Lorentz force is concerned, most important are the
uncertainties of the fixed inductance Lf and the fixed resis-
tance Rf . Once these uncertainties are known, one can
compute the electric andmagnetic fields and the correspond-
ing Lorentz force, including their corresponding errors.
Figure 10 shows a few examples of the main components
of the electric and magnetic fields, computed with the above
mentioned circuit uncertainties. As will be explained below,
these 3D fields, together with their uncertainties, are sub-
sequently used as input to the beam simulations.

FIG. 8. Examples of the main electric and magnetic field components inside the waveguide rf Wien filter at the matching point [see
Eq. (19)] with an input rf power of 600 W. The electric field component in (a) points vertically upward (y direction), while the
component of the magnetic flux density in (b) points radially outward (x direction). (a) 3D electric field distribution of the component
Ey. (b) 3D magnetic field distribution of the flux density component Bx.

FIG. 9. Simulated amplitudes of beam oscillations ξsimy as a
function of the variable capacitor values CL and CT. To avoid
overcrowding the map, the error bars of the data points were
omitted here and are shown in Fig. 13.

11In the preparatory stage, simulations were carried out using
the Software Toolkit for Charged-Particle and X-Ray Simulations
BMAD [39].
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The algorithm used to compute the uncertainties of
the beam simulations is the polynomial chaos expansion
(PCE), as explained in Refs. [19,31] and in Appendix C.
The PCE has been proven in many applications in science
and engineering to be just as accurate as the computation-
ally much more expensive Monte-Carlo counterpart
[19,40–42].
To compute the uncertainties σξy , the PCE algorithm

requires a random set of the simulated ξy, alongside a set of
randomized input parameters according to their uncertain-
ties to generate the output. The set of ξy is produced using a
number of beam-tracking simulations, where for each
instance, a 3D field map of the WF is generated, according
to the randomized input parameters. An example of the

electric and magnetic fields evaluated at the center of the
WF for the matching case [see Eq. (19)] is shown in Fig. 10.
The magnitudes of the fields vary as a function of the
uncertainties of the driving circuit [31]. The numerical
tracking of the particles through these fields generates a
collection of different ξy values that the PCE algorithm can
use to project the output onto orthogonal polynomial
functions. These functions serve as basis functions, from
which the expansion coefficients are determined that are
used to generate a large sample of outputs to compute the
uncertainties of the beam simulations.
In Fig. 11(a), the simulated values of ξy are shown for the

matching case. The detailed steps to achieve this result are
discussed in Appendix C. As shown in Fig. 11(b), fitting

FIG. 10. 200 examples of the electric and magnetic fields as a function of z along the beam axis under the circuit uncertainties,
specified in the list of uncertainties in Table 6 of Ref. [31]. (a) Electric field component EyðzÞ under circuit uncertainties. (b) Magnetic
field component BxðzÞ under circuit uncertainties.

(a) (b)

FIG. 11. Results of the sparce PCE algorithm to compute the uncertainties of the simulated vertical beam oscillations at BPM 17.
(a) Simulated oscillation amplitudes under uncertainties at the matching point [Eq. (19)]. Of the 106 simulations that were carried out,
only 104 are shown here. (b) Probability density distribution fξy of the 106 simulations from panel (a), fitted by a Gaussian to determine
mean and standard deviation.
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these data to a Gaussian yields a standard deviation of
σξy ¼ 0.082 μm. This number is of considerable impor-
tance, because, given the uncertainties of the driving
circuit, it sets the lower limit that can be achieved by
minimizing the amplitude of the vertical beam oscillations
when more sharply tuning the driving circuit of the WF.
The same procedure is performed on each point of the map
shown in Fig. 9.

VI. COMPARISON OF SIMULATION AND
EXPERIMENTAL RESULTS

The simulations yield the net Lorentz force exerted by
the WF on beam particles and the corresponding oscillation
amplitudes for each measured point of the CL vs CT map,
shown in Fig. 6. The only variables in this case are the field
maps of the WF itself. After 1000 turns, the beam position
is computed at the same location in the ring, where the
measurement using BPM 17 took place (see Fig. 2). The net
Lorentz force is a result of local cancellations between the
electric and magnetic field components, as illustrated in
Fig. 12 for the matching point given in Eq. (19) with the
minimal measured oscillation amplitude.
In Fig. 12(a), the local Lorentz force is shown along the

trajectory for five randomly chosen passes though the WF.
The trajectory of the same particle changes from pass to
pass, thereby different WF fields and consequently differ-
ent values of the Lorentz force Fy will be picked up. As
shown in Fig. 12, even at the matching point, the matching
is still imperfect, and the largest local Fy contributions are
caused by the fringe fields at the entrance and exit of
the WF. Despite the different location of the particle in the
vertical and horizontal phase space at the entrance of the

WF upon subsequent passes, the integration of these local
forces along the particle trajectories exhibits nevertheless a
perfectly harmonic time dependence with the frequency fs,
as shown in Fig. 12(b). The points encircled in blue
correspond to the randomly selected passes through the
WF, shown in Fig. 12(a).
In the left panel of Fig. 13, the amplitude of the simulated

Lorentz force Fsim
y is plotted vs the simulated oscilla-

tion amplitude ξsimy at the WF position. As expected, it
exactly follows Hooke’s law with a spring constant of
kH ¼ ð151.2� 0.2Þ MeV=m2. In Fig. 13(b), the measured
amplitudes are compared with the ones simulated for the
location of BPM 17. The two sets ξexpy and ξsimy are in very
good agreement with each other. The horizontal and
vertical error bars are derived from the uncertainties of
the measurements and simulations, represented by the
width of the distributions, as shown in Figs. 7(b) and
11(b). It is important to note that the error bars refer to
systematic uncertainties and should not be confused with
statistical ones. This implies that repetitions of either the
measurements or the simulations will neither reduce the
systematic error of the readout electronics of BPM 17, nor
will it affect the uncertainties of the elements of the driving
circuit.
The fit shown in Fig. 13 yields χ2=ndf ¼ 45.5=41, very

close to unity [43]. The linear fit yields a slope of
0.999� 0.018, which is perfectly consistent with unity.
The intercept parameter of the fit yields ð−0.93� 0.31Þ μm,
and within three standard deviations, it agrees with zero.
The very good agreement between measurements and

simulations reflects our good understanding of both the
electromagnetic fields generated in the WF and of the
underlying beam dynamics in the machine. This point is
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FIG. 12. Simulation of the local and integrated Lorentz force in the Wien filter at the matching point of Eq. (19). Depending on the
initial coordinates in the vertical and horizontal phase space, the particle travels along different trajectories, and therefore picks up
different field components Fy. (a) Local Lorentz force FyðzÞ exerted on a single deuteron for different passes though the Wien filter.
The turn numbers used here were randomly selected between 1 to 100. The fields were evaluated at the crosses and the interconnecting
lines are to guide the eye. (b) Integral Lorentz force FyðnÞ evaluated along the trajectory. Each point represents an overall kick exerted
per turn n. The points marked in blue correspond to the integrated local Lorentz force of the individual turns shown in panel (a).
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further substantiated by comparing the simulated ampli-
tudes at the WF and at the positions of the BPMs with the
estimated amplitudes expected from rescaling based on
the β functions,12 taking into account the numerical values,
listed in Table I of Appendix A,

ξWF
y jsim ¼ ð0.435� 0.031Þ μm andffiffiffiffiffiffiffiffiffiffi

βWF
y

βBPMy

s
ξBPMy jsim ¼ ξWF

y jest ¼ ð0.435� 0.039Þ μm: ð25Þ

The good agreement between these two numerical values in
Eq. (25) indicates that the observation of the oscillation
amplitude at one location in the ring can be reliably
transferred to some other place in the ring by use of
Eq. (2). The above quoted value of ξWF

y jsim ¼ 0.435 μm is
about a factor of 10 larger than the quantum limit of the
vertical oscillation amplitude Q, given in Eq. (9).
In searches for EDMs in dedicated all-electric storage

rings, a continuous monitoring of the orbits of the
two counter-rotating beams is mandatory during data

acquisition within the horizontal spin-coherence time [7].
When intrabeam scattering can be neglected [21], which is
arguably justified within the horizontal spin-coherence
time, the beam can be described as a rarefied gas of
particles, i.e., the zero-point oscillations of individual
particles are uncorrelated. We repeat the point from the
introduction that in a static regime, the quantum limit of the
center of mass of a bunch with N particles can be estimated
via Qbunch ¼ Q=

ffiffiffiffi
N

p
. For a bunch of N ¼ 1010 stored

particles, one obtains Qbunch ≃ 0.4 pm. It follows that
Heisenberg’s uncertainty relation does not present an
obstacle to achieving a sensitivity of 5 pm for the vertical
separation of clockwise and counter-clockwise beams—the
real challenge is to develop compact BPMs with a
sensitivity improved by a factor of about 300 compared
to those used here [25].
Finally, a satisfactory agreement has been achieved

between Hooke’s constant, simulated using the electro-
magnetic fields in the WF and the β functions of the COSY
lattice, and the theoretical approximation of the no-lattice
model assuming constant β functions of Eq. (6), yielding

ksimH ¼ ð151.2� 0.2Þ MeVm−2 and

kthH ¼ 207 MeVm−2: ð26Þ

(a) (b)

FIG. 13. (a) Simulated amplitude of the Lorentz force at the Wien filter location as function of the simulated beam oscillation
amplitudes ξsimy . (b) Simulated vs measured vertical beam oscillation amplitudes at the location of BPM 17. The horizontal error bars of
the measured amplitudes ξexpy originate from the readout electronics of BPM 17 and the calibration factor κ (see Appendix B), whereas
the vertical ones are determined by the circuit uncertainties using the PCE method, as described in Appendix C. (a) Simulated Lorentz
force Fsim

y at the Wien filter location as function of the oscillation amplitude ξsimy , fitted with the function Fsim
y ¼ a ⋅ ξsimy þ b.

(b) Simulated beam oscillation amplitude ξsimy versus the measured oscillation amplitude ξexpy at the BPM, fitted with the function
ξsimy ¼ c ⋅ ξexpy þ d.

12The uncertainty of the β functions amounts to about 10%, as
discussed in Ref. [21].
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The theoretical estimate of kthH, calculated using the
numerical values listed in Table I of Appendix A, is about
a factor of 1.4 larger than the simulated one. The given
uncertainty of ksimH does not include the systematic scale
uncertainty of the BPM calibration factor κ [see Eq. (B2) in
Appendix A]. At the matching point [see Eq. (19)], the
Lorentz force amounts to

FWF
y ¼ ksimH × ξWF

y jsim ≈ 66 eVm−1 ¼ 10.6 aN; ð27Þ

where the intercept parameter has been ignored because of
its smallness.

VII. CONCLUSION AND OUTLOOK

As part of several studies to investigate the perfor-
mance of the waveguide rf WF, exploratory data were
taken to provide a benchmark on the sensitivity to very
weak collective vertical beam oscillations of deuterons
stored in the COSY ring. To a good approximation, the
beam can be viewed as a rarefied gas of uncorrelated
particles, and the sensitivity limit is applicable to the
classical motion of individual particles, propagating
along the ring circumference in the confining oscillatory
potential. Simulations of the beam dynamics in the
COSY ring equipped with an rf WF suggest that with
the present apparatus, the sensitivity to collective beam
oscillations on the sub-micron level is only a factor of
about 10 larger than the amplitude of single-particle
zero-point quantum oscillations of the stored deuterons.
From the perspective of future EDM experiments, our
finding confirms that, as far as the Heisenberg uncer-
tainty relation is concerned, a separation of the centroids
of two counter-propagating beams may be determined to
sub-picometer accuracy.
The reported excellent agreement between simulated

and experimentally observed vertical beam oscillations at
COSY suggests that a further increase in sensitivity to
collective beam oscillations is possible. Specifically,
the simulation on finer capacitor grids indicates that
by further optimization of the WF settings to CL ¼
ð692.76� 1.00Þ pF and CT ¼ ð495.77� 1.00Þ pF, an
oscillation amplitude at the WF location of ξy ¼
ð0.077� 0.032Þ μm may be achieved. Thus in that case,
the vertical oscillation amplitude would only be about a
factor of 2 away from the quantum limit, with a corre-
sponding Lorentz force of Fy ∼ 3 aN.
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APPENDIX A: QUANTITIES USED IN
BEAM SIMULATIONS

In order to provide a consistent calculation of all
effects in the storage ring, the beam simulations were
carried out using the set of quantities given in Table I as
an input. The vertical machine tune νy is a result of
simulations with the known COSY lattice, reflecting
the actual currents of the magnetic elements in the
machine at the time when the experiment was conducted.
The simulations provide the uncalibrated parameters of
the vertical beam oscillations to about per mill accuracy,
and giving the kinematic, ring, and Wien filter para-
meters to four digits appears therefore sufficient. It
should be noted that within the simulation calculations
carried out in the context of the present work, all
quantities have been computed to double precision
(machine epsilon of 1.11 × 10−16). Of the physical
quantities, the highest sensitivity to the vertical betatron
tune is exhibited by the theoretical estimate for Hooke’s
constant, dkthH=dνy ≈ 2 × 103 MeV=m2. The largest uncer-
tainty contributing to the error of the detected oscillation
amplitudes arises from the calibration factor κ of the
BPM, given in Eq. (B2). It amounts to about 7.3% and is
considered a systematic scale-factor uncertainty (see
Appendix B).

TABLE I. Numerical values used for the beam simulations. The
genuinely independent input parameters are listed in bold face.
The derived quantities are displayed in normal font and are
truncated to four decimal places.

Quantity Symbol Value

Deuteron beam momentum p 970.0000 MeV=c
Deuteron mass m 1875.6128 MeV=c2

Deuteron G factor G −0.1430
Lorentz factor β 0.4594
Lorentz factor γ 1.1258

COSY circumference LCOSY 183.4728 m
Revolution frequency frev 750603.7600 Hz
Vertical machine tune νy 3.6040
Vertical β function at BPM 17 βBPMy 15.3049 m
Vertical β function at WF βWF

y 2.6784 m

Effective length WF l 1.1600 m
Frequency WF fWF 871000.0000 Hz
Tune WF νWF 1.1604
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APPENDIX B: CALIBRATION OF BPM

The complex amplitudes measured by the lock-in
amplifiers describe the magnitude and phase of each signal,
and are here expressed by the corresponding real and
imaginary components, denoted by X and Y, respectively,
i.e., A ¼ X þ iY. Examples of the data recorded at the sum
frequency fΣ and at the revolution frequency frev are
shown in Fig. 14. The observed weak attenuation of the
beam current during a measurement cycle by less than 7%
clearly indicates a weak beam loss by intrabeam or residual
gas interactions, thus justifying our treatment of the beam
as a rarefied gas. The effect of switching on the power
amplifiers of the Wien filter at t ¼ 60 s is clearly visible. In
both panels, one observes a separation of the quantities
recorded by the top and bottom electrodes in the μV range
for both frequencies after the Wien filter is switched on.
This separation is much more pronounced at the Wien filter
frequency than at the revolution frequency.
The quantities Arev

t and Arev
b , given in Eqs. (16), are

related to a vertical beam displacement Δy in the following
way,

R ¼ Arev
t − Arev

b

Arev
t þ Arev

b
¼ κ

2U0Δy
2U0

¼ κΔy: ðB1Þ

The calibration constant κ is experimentally determined by
introducing local vertical beam bumps in the ring at the

location of BPM 17. The orbit positions y and the orbit
displacements Δy, listed in Table II, differ by the position
of the unperturbed orbit, and are generated by altering the
current of a set of vertical steerers.
The steerer magnets have well-known conversion factors

from current to magnetic field. The calibration factor κ is
obtained by fitting the ratio R from Eq. (B1) as a function of
the vertical orbit variation Δy, exhibiting the nearly linear
relationship shown in Fig. 15. The slope corresponds to

TABLE II. Current I (in % of the maximum admissible current)
in the vertical steerers to generate bumps and the corresponding
position change of the vertical orbit y by Δy at the location of
BPM 17.

I (steerer) [%] y [mm] Δy [mm]

−5 −7.756� 0.030 −7.466� 0.030
−4 −6.684� 0.038 −6.395� 0.038
−3 −5.629� 0.016 −5.339� 0.016
−2 −4.518� 0.020 −4.229� 0.020
−1 −3.489� 0.018 −3.119� 0.018
0 −2.439� 0.029 −2.150� 0.029
þ1 −1.429� 0.020 −1.140� 0.020
þ2 −0.288� 0.028 0.000� 0.000
þ3 þ0.798� 0.044 þ1.085� 0.044
þ4 þ1.872� 0.014 þ2.160� 0.014
þ5 þ2.928� 0.069 þ3.211� 0.069

(a) (b)

FIG. 14. Fourier amplitudes A ¼ X þ iY for the top and bottom electrodes of BPM 17 recorded by the lock-in amplifier as a function
of time in the cycle at a strongly mismatched point (CL ¼ 907.79 pF and CT ¼ 885.58 pF), at the Wien filter frequency (a), and at the
revolution frequency (b). In both panels, the stored beam current is shown in black, it exhibits a beam lifetime of about 1550 s. The cycle
starts right after injection is completed at t ¼ 0 s, beam preparation continues until t ¼ 55 s, and the Wien filter is switched on and data
acquisition starts at t ¼ 60 s. At t ¼ 156 s, the Wien filter is switched off and data acquisition stops. (a) Real ðXΣÞ and imaginary part
ðYΣÞ of the complex Fourier amplitudes AΣ at the Wien filter frequency. (b) Real ðXrevÞ and imaginary part ðYrevÞ of the complex Fourier
amplitudes Arev at the revolution frequency.
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κ ¼ ð5.82� 0.43Þ × 10−6 μm−1: ðB2Þ

APPENDIX C: SIMULATION UNCERTAINTIES

The uncertainties of the simulated amplitudes of the
beam oscillations are computed using the PCE algorithm.
The functionality of the algorithm is explained below for
one of the simulated data points of the map shown in Fig. 9.
The PCE algorithm offers an alternative to the well-

known Monte-Carlo (MC) method without compromising
the intended accuracy. It uses orthogonal polynomials to
represent randomly changing variables to describe observ-
ables by means of a finite (truncated) series (for more
details, see, e.g., Ref. [19]). When the defined criteria of
convergence are met, the expansion coefficients can be
used to generate an arbitrarily large sample of observables,
from which the uncertainties can be computed to the
desired statistical accuracy.
The PCE algorithm has been compared with the MC

method in many applications and has been shown to
provide very reliable results [40]. The PCE requires much
fewer simulations to converge compared to the MC
method. For instance, for the present case, 200 beam
tracking simulations per point in the 2D the map of beam
oscillations, shown in Fig. 9 were sufficient to reach
convergence. In cases where the number of random input
variables m is larger than 10, the PCE method offers clear
advantages over the MC method. The reason is that the
number of basis functions in the PCE method increases
enormously as a consequence of the tensor product of the
involved polynomials. Therefore, the algorithm has been
improved further to allow for a reduction of the number of
simulations required. Such an approach is also adopted
here, as described in Algorithm 1. The hyperbolic trunca-
tion scheme together with the Least-Angle Regression
(LAR) method form a sparse version of the original
algorithm.

An m-dimensional set is first created, representing N
combinations of simultaneous random variables. Many
methods can be used to generate such sets, and here the
Latin-hypercube sample scheme is adopted [31].
Subsequently, the set is standardized for convergence
reasons. Depending on the distribution of the data, the
basis functions, here Hermite polynomials, are determined.
The number of basis functions restricts the lower limit of
the number of simulations (full-wave and tracking) which
are usually computationally expensive. As a rule of thumb,
with N basis functions, the PCE algorithm requires at least
1.5 × N (in this case, full-wave) simulations to converge.
The number of basis functions itself can, however, be
reduced by the hyperbolic truncation scheme that elimi-
nates higher-order terms that do not have a significant
impact on the observation objects [44,45]. Furthermore, by
applying the LAR algorithm, the number of remaining
basis functions can be further reduced substantially,
whereby the problem becomes computationally solvable
in a very efficient fashion.
The matching point, specified in Eq. (19), yields the

minimum measurable beam oscillations, as given by
Eq. (20). This experimental result can be estimated using
the beam-tracking calculations. Subsequently, the concrete
steps of the application of the PCE algorithm are discussed.
All the reasonable sources of uncertainties of the circuit

are represented by 15 random parameters that are allowed

Algorithm 1: Sparse polynomial chaos expansion [19].

Data: Generates Gaussian-distributed ensemble of uncertain
circuit parameters using the Latin hypercube sampling
(LHS) scheme Xi

Result: Compute uncertainty of ξy
Given Xi, run full wave simulations;
Generate 3D electric and magnetic fields;
Run beam tracking simulations to compute ξyi;
Standardize input data Xi → X̃i;
Guess hyperbolic truncation norm, q-norm;
Start with lowest possible expansion order p;
Generate basis functions HpðX̃iÞ (pth-order Hermite
polynomials);

Generate hyperbolically truncated set of basis functions Hq
pðX̃iÞ;

Apply least-angle regression (LAR) algorithm;
Estimate optimum sparse set of basis functions Hq�

p ðX̃iÞ;
Compute expansion coefficients Cj, given ξyi ¼

P
j CjH

q�
p ðX̃iÞ;

Compute leave-one-out error LOOerr;
Check convergence condition (LOOerr < 10−2);
while not convergent do

Enhance model (vary p and q)
if convergent then
Generate large sample of ξy;
Estimate statistical parameters;
Terminate algorithm;

else
Enrich input samples Xi;
Repeat algorithm;

FIG. 15. Calibration curve of BPM 17. The ratio R, defined in
Eq. (B1), depends on the introduced vertical beam displacement
Δy at the beam position monitor.
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to vary simultaneously. At first, a sample of (200 × 15)
entries is generated using the Latin-hypercube sampling
scheme. As an example of this sample, the variation of the
three circuit elements CL, CT, and the load resistor Rf is
shown in Fig. 16(a).
All the uncertain parameters in the electromagnetic

circuit simulations are used to generate the electric and
magnetic fields shown in Fig. 10. These are subsequently
used in the beam-tracking calculations. For the matching
point of the map [Eq. (19)], N ¼ 200 full-wave simulations
were conducted. The import of these field maps into the
beam-tracking calculations resulted in a set of N ¼ 200
values of ξy. This set is not directly used to conduct the
statistical analysis. Instead, in conjunction with the input
samples, these data are used as input to the sparse PCE
algorithm.
The optimum set of basis function is determined using

the LAR algorithm, as shown in Fig. 16(b). With an
expansion order of p ¼ 6 and a truncation norm
q ¼ 0.35, executing the PCE algorithm required 91 basis
functions to converge, reflected by the low value of the

leave-one-out error LOOerr ¼ 1.7 × 10−4. Subsequently,
the expansion coefficients are computed, qualitatively
depicted in Fig. 16(c). It is shown in Fig. 16(d) that the
PCE algorithm perfectly reproduces the tracking results
using these expansion coefficients. Finally, these coeffi-
cients are used to reconstruct a larger sample of ξy to
estimate the error σξy. Figure 11 shows 104 of the 106

reconstructed samples. The PCE parameters used are
summarized in Table III.

0 1 2 3 4 5

0

1

2

3

4

5
standard truncation
hyperbolic truncation
LAR

(a) (b)

(c) (d)

FIG. 16. Intermediate results of the PCE algorithm applied at the matching point [see Eq. (19)]. Quantitative results of the PCE
algorithm are summarized in Table III. (a) Sample ofCL, CT and Rf used in the PCE calculations showing a subset of the 15-dimensional
input of random circuit uncertainties. (b) Truncation schemes of the PCE algorithm. (c) Expansion coefficients on a semi-log scale.
91 coefficients have been selected after applying the LAR algorithm to the matching point. (d) Comparison between the tracking results
and the PCE with respect to the oscillation amplitude, determined using the expansion coefficients of (c).

TABLE III. PCE simulation parameters of the matching point
in Eq. (19).

Parameter Value

Order of expansion p 6
Dimension m 15
Hyperbolic truncation q 0.35
Leave-one-out error LOOerr 1.71 × 10−4
Number of used basis functions PLAR 91
Number of used full-wave simulations N 200
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The fitting of these results with a Gaussian, as depicted
in panel (b) of Fig. 11, yields a standard deviation of
σξy ¼ 0.082 μm. The same technique is repeated for each
point in the map.
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