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BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χEFT à la Weinberg (1990)

• Power counting: systematic improvement by going to higher order

• Possibility to derive two- and three-baryon forces and external current operators in a
consistent way

• degrees of freedom: octet baryons (N, Λ, Σ, Ξ), pseudoscalar mesons (π, K , η)

• meson-exchange: fixed by the underlying chiral symmetry of QCD + SU(3)

• short-distance dynamics remains unresolved – represented by contact terms
(involve low-energy constants (LECs) that need to be determined from data)

V CT
B1B2→B′1B′2

= C̃α + Cα(p′2 + p2) (Cβp′2, Cγp′p)

α = 1S0,
3S1; β = 3S1 − 3D1; γ = 3P0,

1P1,
3P1,

3P2

ΛN-ΣN interaction:
LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244
NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24
NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

N2LO: J.H. et al., in preparation, arXiv:2208.13542
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Spin dependence of the ΛN interaction
Experiments: only integrated cross sections (G. Alexander et al.; B. Sechi-Zorn et al.)

(angular distribution of events)
No information on spin dependence (singlet, triplet)
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s-shell hypernuclei (Herndon & Tang, PR 153 (1967) 1091):
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1

2
V s

ΛN +
1

2
V t

ΛN

4
ΛHe (1+) : ṼΛN ≈
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Jülich-Bonn group:

• use σΛp and 3
ΛH separation energy (130± 50 keV) to fix relative strength

of singlet/triplet interaction

Three-body forces?
• estimate of 3BF contribution (e.g. from power counting): ∆BΛ < 50 keV
• experimental uncertainty ≥ 50 keV

⇒ direct experimental information on strength of ΛN singlet/triplet interaction is needed
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3- and many-body forces in chiral EFT (E. Epelbaum)4 E. EpelbaumNuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung
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Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

(short-range loop contribu-
tions still to be worked out)

have not been worked 
out yet

Nuclear χEFT in the Precision Era Evgeny Epelbaum

Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

N4LO (Q5)

Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
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It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
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Figure 2: Chiral expansion of the nuclear forces. Solid and dashed lines refer to
nucleons and pions. Solid dots, filled circles, filled squares, crossed squares and open
squares denotes vertices from the effective chiral Lagrangian of dimension ∆ = 0, 1,
2, 3 and 4, respectively.

and nucleons as the only explicit degrees of freedom and utilizing the rules of naive
dimensional analysis for few-nucleon contact operators, see [31–33] for alternative pro-
posals. We remind the reader that all diagrams shown in this and following figures
correspond to irreducible parts of the scattering amplitude and to be understood as
series of all possible time-ordered-like graphs for a given topology. As already ex-
plained before, the precise meaning of these diagrams and the resulting contributions
to the nuclear forces are scheme dependent.

The nucleon-nucleon potential has been calculated to fifth order (N4LO) in the
chiral expansion using dimensional regularization [24,34–41]. The expressions for the
leading and subleading 3NF can be found in Refs. [42–46] and [26, 27], respectively.
Apart from the contributions involving NN contact interactions, which still have to
be worked out, the N4LO terms in the 3NF can be found in Refs. [29, 47, 48]. The
leading contribution to the four-nucleon force (4NF) appears at N3LO and has been
derived in Refs. [26,27]. It is important to emphasize that the long-range parts of the
nuclear forces are completely determined by the spontaneously broken approximate
chiral symmetry of QCD along with the experimental and/or empirical information
on the pion-nucleon system needed to determined the relevant LECs in the effective
Lagrangian. In this sense, the long-range contributions to the nuclear forces and cur-
rents can be regarded as parameter-free predictions. Given that the chiral expansion
of the NN contact operators in the isospin limit contains only contributions at orders
Q2n, n = 0, 1, 2, . . ., the N2LO and the isospin-invariant N4LO corrections to the NN
potential are parameter-free. This also holds true for the N3LO contributions to the
3NF and 4NF. For calculations utilizing a formulation of chiral EFT with explicit

number of independent LECs in the three-body force:

NNN: one-pion exchange 3NF (cD), contact term (cE )

ΛNN: one-pion exchange 3BF (2 LECs), contact term (3 LECs)
(decuplet saturation (NLO): 1 (ΛNN) + 1 (ΣNN) LECs)

(two-pion exchange 3BF is fixed from chiral symmetry + SU(3))
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Hypernuclei within the NCSM
ab initio no-core shell model (NCSM)

Basic idea: use harmonic oscillator states and soft interactions
m-scheme uses single particle states (center-of-mass motion not separated)

antisymmetrization for nucleons easily performed (Slater determinant)

larger dimensions (applications to p-shell hypernuclei by Wirth & Roth)

Jacobi-NCSM
uses relative (Jacobi) coordinates (Hoai Le et al., EPJA 56 (2020) 301)

explicit separation of center-of-mass motion possible

antisymmetrization for nucleons difficult but feasible for A ≤ 9

small dimensions

Soft interactions: Similarity renormalization group (SRG) (unitary transformation)

dH(s)

ds
= [[T ,H(s)],H(s)] H(s) = T + V (s) V (s) : V NN (s), V YN (s)

Flow equations are solved in momentum space

parameter (cutoff) λ =
(

4µ2
BN/s

)1/4
is a measure of the width of the interaction in momentum space

V (s) is phase equivalent to original interaction

transformation leads to induced 3BFs, 4BFs, ...

(induced 3BFs included in the work of Wirth & Roth and in our recent studies)
(induced 4BFs are most likely very small)
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A=3-5 Λ hypernuclei with SRG-induced YNN force

Hoai Le, arXiv:2210.02860 (HYP2022)
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A=3-5 hypernuclei with SRG-induced YNN

4
ΛH(0+,1/2) 5

ΛHe(1/2+,0)

contributions of SRG-induced YNNN forces to  are negligible BΛ(4
ΛH, 5

ΛHe)

NN:SMS +(450)N4LO
3N: (450)N2LO

3
ΛH(1/2+,0) 3

ΛH(1/2+,0)

(R. Wirth, R. Roth PRL117 (2016), PRC100 (2019))

⇒ contributions of SRG-induced YNNN forces are negligible
(R. Wirth, R. Roth, PRL 117 (2016); PRC 100 (2019))
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Separation energies for A=3-8 Λ hypernuclei (MeV)
• NLO13 and NLO19 are practically phase equivalent (χ2 ≈ 16 for 36 YN data points)
• NLO13 characterized by a stronger ΛN-ΣN coupling potential (3S1-3D1)

3
ΛH [Faddeev] 4

ΛH(0+) 4
ΛH(1+) 5

ΛHe 7
ΛLi 8

ΛLi

NLO13 0.135 1.55± 0.01 0.82± 0.01 2.22± 0.06 5.28± 0.68 5.75± 1.08

NLO19 0.100 1.51± 0.01 1.27± 0.01 3.32± 0.03 6.04± 0.30 7.33± 1.15

Exp. 0.13± 0.05 2.16± 0.08 1.07± 0.08 3.12± 0.02 5.85± 0.13 6.80± 0.03

0.41± 0.12 [S] 5.58± 0.03

0.072± 0.063 [A]

NN: SMS N4LO+(450) + 3NF: N2LO(450) + SRG-induced YNN force
[S] ... STAR Collaboration, [A] ... ALICE Collaboration

NLO19 (500): 4
ΛH(1+), 5

ΛHe, 7
ΛLi fairly well described

NLO13 (500) underestimates the separation energies

clear signal for (missing) chiral YNN forces:
in (standard) chiral EFT 3BFs appear at N2LO
with decuplet saturation at NLO (LECs: 1 ΛNN + 1 ΣNN)
→ could be fixed from separation energies of, e.g.,
4
ΛH (0+, 1+) or 4

ΛH (0+, 1+), 5
ΛHe
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Charge symmetry breaking in the ΛN interaction

π0

δM

Λ

Σ0

Λ N

N

u
u

u
π0

δM

Λ

Σ0

Λ N

N

u
u u

η π0

δm2

Λ

Λ N

N

u u u

CSB due to Λ− Σ0 mixing leads to a long-ranged contribution to the ΛN interaction
(R.H. Dalitz & F. von Hippel, PL 10 (1964) 153)

Strength can be estimated from the electromagnetic mass matrix:
〈Σ0|δM|Λ〉 = [MΣ0 −MΣ+ + Mp −Mn]/

√
3

〈π0|δm2|η〉 = [m2
π0 −m2

π+ + m2
K + −m2

K 0 ]/
√

3

fΛΛπ = [−2 〈Σ
0|δM|Λ〉

M
Σ0−MΛ

+ 〈π0|δm2|η〉
m2
η−m2

π0
] fΛΣπ

latest PDG mass values ⇒

fΛΛπ ≈ (−0.0297− 0.0106) fΛΣπ ≈ −0.0403 fΛΣπ
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CSB in chiral EFT

CSB (CIB) in χEFT: worked out for pp, nn (and np) scattering
Walzl, Meißner, Epelbaum, NPA 693 (2001) 663; Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362
J. Friar et al., PRC 68 (2003) 024003
LØ: Coulomb interaction, m

π0 -m
π± in OPE NLØ: isospin breaking in fNNπ , leading-order contact terms

p Λ

Λ p

K+✉ ✉
n Λ

Λ n

K0✉ ✉

✉
✉

✉
✉Λ p

Λ p

Σ+ n

π−

π− ✉ ✉
✉ ✉

Λ n

Λ n

Σ− p

π+

π+ ✉
✉ ✉

✉Λ p

Λ p

Σ− n

π+

π+ ✉ ✉
✉ ✉

Λ n

Λ n

Σ+ p

π−

π−

✉ ✉✉
Λ N

Λ N

ω ρ0

δm2
· · · ✉

Λ p

Λ p

✉
Λ n

Λ n

NN 1S0: app − ann ≈ 1.5 fm
mostly due to short-range forces (ρ0-ω mixing, a0

1-f1 mixing)

Faddeev-Yakubovsky calculation for NLO13 and NLO19 interactions
with CSB forces including contact terms:
(J.H., U.-G. Meißner, A. Nogga, FBS 62 (2021) 105)
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Charge symmetry breaking in 4
ΛH-4

ΛHe
• ∆B(0+) = B0+

Λ (4
ΛHe)− B0+

Λ (4
ΛH)

= 233± 92 keV
• ∆B(1+) = B1+

Λ (4
ΛHe)− B1+

Λ (4
ΛH)

= −83± 94 keV

adjust CSB contact terms to ∆B’s

Nov 16th, 2021


CSB contributions in ￼4ΛHe

￼11

• perturbative calculations of CSB 

• breakdown in kinetic energy, YN and NN interaction

• kinetic energy less important for chiral interactions

Title Suppressed Due to Excessive Length 13

Table 6 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the 0+

state based on 4
⇤He wave functions for scenario CSB1. The SMS N4LO+ (450) NN interaction

[40] was used in all cases. The contributions of the kinetic energy hT iCSB, the Y N interaction
hVY N iCSB and the contribution of the nuclear core V CSB

NN = hVNN iCSB � E(3He) + E(3H)

are separated and combined to the total CSB �Epert
⇤ . The direct comparison of separation

energies for full calculations of 4
⇤He and 4

⇤H, �E⇤, is also given. All energies are in keV.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 44 200 16 261 265

NLO13(550) 46 191 20 257 261

NLO13(600) 44 187 20 252 256

NLO13(650) 38 189 18 245 249

NLO19(500) 14 224 5 243 249

NLO19(550) 14 226 7 247 252

NLO19(600) 22 204 12 238 243

NLO19(650) 26 207 12 245 250

Table 7 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the

1+ state based on 4
⇤He wave functions for scenario CSB1. Same interactions and notations as

in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53

NLO13(650) 3 -80 17 -59 -55

NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E⇤

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

⇤He wave functions for the evaluation of the expectation
values. Results for 4

⇤H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the ⇤p and ⇤n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.
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Table 7 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the

1+ state based on 4
⇤He wave functions for scenario CSB1. Same interactions and notations as

in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53
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NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E⇤

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

⇤He wave functions for the evaluation of the expectation
values. Results for 4

⇤H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the ⇤p and ⇤n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.

How model-dependent are predictions for the ￼  scattering length?Λn

A1 Collaboration / Nuclear Physics A 954 (2016) 149–160 159

Fig. 6. Level schemes of the mirror hypernuclei 4!H and 4!He in terms of ! binding energy. For the ground state binding 
energy of 4!H the MAMI data were used, for that of 4!He data from past emulsion experiments [3] with a systematic 
error estimate of 40 keV [22]. The B! values for the excited states were obtained from the 1+

exc → 0+
g.s. γ -ray transition 

energies [4].

6. Conclusions

The ! separation energy of 4
!H has been measured for the second time by high-precision 

decay-pion spectroscopy at MAMI. The pions were observed in two independent spectrometers 
using two targets of different thicknesses, confirming the previous results in a consistent analysis 
of both experiments. Moreover, the results proved to be consistent after further calibration of the 
absolute momentum as well as in systematic studies of the used cut conditions.

When compared to the 4
!He binding energy measured with the emulsion technique and 

adding the information from γ -ray spectroscopy the MAMI data of 4
!H lead to the level 

schemes of 4
!H and 4

!He as shown in Fig. 6. Here, the systematic error estimate of 40 keV 
from Ref. [22] for the emulsion value was used. While the ground state binding energy dif-
ference of #B 4

!(0+
g.s.) = B!(4

!He(0+
g.s.)) − B!(4

!H(0+
g.s.)) = 233 ± 92 keV is smaller as mea-

sured by the emulsion technique it still supports a sizable CSB effect in the !N interaction. 
Furthermore, it suggests a negative binding energy difference between the excited states of 
#B 4

!(1+
exc) = B!(4

!He(1+
exc)) − B!(4

!H(1+
exc)) = −83 ± 94 keV.

Most calculations performed so far resulted in much smaller binding energy differences than 
observed. Gazda and Gal have recently reported on ab initio no-core shell model calculations 
of the mirror pair using the charge-symmetric Bonn–Jülich leading-order chiral effective field 
theory hyperon–nucleon potentials plus a charge symmetry breaking !–$0 mixing vertex [13]. 
These calculations predict a large CSB ground state splitting and a CSB splitting of opposite sign 
for the excited states.

During the last years the MAMI accelerator was the only place worldwide where a precise and 
intense continuous electron beam was available for hypernuclear physics. While the total error 
of the MAMI binding energy data is of the same order than that of the compiled results from the 
emulsion technique, it is currently dominated by the systematic uncertainty of the absolute mo-
mentum calibration, which can be improved further. Current developments at MAMI are aiming 
at a higher accuracy of the calibration, which could reduce the error on the binding energy by a 
factor of four.

Together with prospects for a precise measurement of the γ transition energy of 4
!H at 

J-PARC [23], the 4
!H level scheme could become the most accurate among hypernuclei and 

provide further guidance for theory and for investigating the origin of CSB in the !N interac-
tion.

(Schulz et al.,2016; Yamamoto, 2015)

0+

1+

0+

(Schulz et al., 2016; Yamamoto et al., 2015)

(fm // keV) aΛp
s aΛn

s aΛp
t aΛn

t ∆B(0+) ∆B(1+)

NLO19(500) -2.649 -3.202 -1.580 -1.467 249 -75
NLO19(550) -2.640 -3.205 -1.524 -1.407 252 -72
NLO19(600) -2.632 -3.227 -1.473 -1.362 243 -67
NLO19(650) -2.620 -3.225 -1.464 -1.365 250 -69

CSB in singlet (1S0) much larger than in triplet (3S1)
practically independent of cutoff; same results for NLO13
without CSB interaction: aΛp

s ≈ aΛn
s ≈ −2.9 fm

with CSB interaction: ∆as = aΛp
s − aΛn

s ≈ 0.62± 0.08 fm; ∆at ≈ −0.10± 0.02 fm
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Charge symmetry breaking in A=7-8 Λ-hypernuclei
Hoai Le, J.H., U.-G. Meißner, A. Nogga, arXiv:2210.03387

(in keV) ∆T ∆VNN ∆VYN ∆B
1S0

3S1 total

7
ΛBe-7ΛLi∗ NLO13 8 -24 -49 26 -24 -40 (30)

NLO19 6 -41 -43 42 9 -35 (30)

Hiyama -70 200 150

Gal 3 -70 50 -17

experiment −100± 90

7
ΛLi∗-7ΛHe NLO13 7 -14 -49 26 -24 -31 (30)

NLO19 5 -21 -38 37 -1 -16 (30)

Hiyama -80 200 130

Gal 2 -80 50 -28

experiment −20± 230

8
ΛBe-8ΛLi NLO13 12 7 100 56 159 178 (50)

NLO19 6 -11 62 79 147 143 (50)

Hiyama 40 160

Gal 11 -81 119 49

experiment 40± 60

experimental results are taken from E. Botta et al., NPA 960 (2017) 165
A. Gal, PLB 744 (2015) 352 (shell model); E. Hiyama et al., PRC 80 (2009) 054321 (cluster model)

CSB: A = 7 results are comparable with experiment; A = 8 too large
Johann Haidenbauer Hyperon-nucleon interaction



Λd scattering

Λd scattering experiments are practically impossible
however, one can study the Λd system as final-state interaction:

Heavy ion collisions
Λd correlations measured in Ni+Ni collisions
FOPI Collaboration (Norbert Herrmann, 2012)

K− A→ A′ Λd
Λd invariant mass spectrum
FINUDA Collaboration, 2007
K− 4He→ n Λd :
KEK-PS E549 Collaboration, 2007
AMADEUS Collaboration (C. Curceanu, O. Vazquez Doce, 2012-14)

pd → K +Λd
Λd invariant mass spectrum
COSY, Jülich, 2012 – but not yet analyzed

Λd two-particle momentum correlations in pp collisions
ALICE Collaboration

Johann Haidenbauer Hyperon-nucleon interaction



Heavy ion collisions

N.Herrmann, Univ. Heidelberg 1350. International Winter Meeting on Nuclear Physics, Bormio, 23-Jan-12

Λd – correlations
K. Wisniewski

N. Herrmann, EXA2005 Ni+Ni at 1.91 AGeV (S325e data)

FOPI 2003 and 2008 data are consistent,
Inconsistent with cusp (Σ – d – threshold) and FINUDA.

Improvement (2003→2008): PID

p
d

t

C
ou

nt
s

Mass (GeV)

3He

α

Norbert Herrmann (FOPI), 2012
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K− 4He (Oton Vazquez Doce (KLOE), 2014)

Oton Vazquez Doce Strangeness in medium with KLOE 39 

KLOE data: Ld, Lt  events 

Lt sample 
in 4He 
 
134 events 

Ld sample 
in 4He 
 
572 events 
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Information on Λd scattering

Faddeev calculations by Hetherington and Schick, PR 139 (1965) B 1164
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σΛd = 1
3σ1/2 + 2

3σ3/2

⇒ doublet Λd S-wave dominates near threshold
hypertriton: BE = 2.354± 50 MeV [Λpn] 0.130± 50 MeV [Λd ]
/πEFT (H.-W. Hammer, NPA 705 (2002) 173) ⇒ a1/2 = 16.8 +4.4

−2.4 fm, r3/2 = 1.3± 0.3 fm

however, H & S: aΛN
s = −2.0 fm, aΛN

t = −0.52 fm

⇒ nowadays: aΛN
s = −(2.5 ∼ 2.9) fm, aΛN

t = −(1.5 ∼ 1.7) fm
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Λd scattering lengths
in the spin-doublet S-wave:

Cobis et al., JPG 23 (1997) 401 H.-W. Hammer, NPA 705 (2002) 173 (/πEFT)

a1/2 = 16.3+4.0
−2.1 fm r1/2 = 3.2 fm a1/2 = 16.8+4.4

−2.4 fm r1/2 = 2.3± 0.3 fm

(see also Hildenbrand/Hammer, PRC 100 (2019) 034002 + Erratum: a1/2 = 15.4+4.3
−2.2 fm)

Bethe formula:

1

a1/2
= γ −

1

2
r1/2 γ

2
, BΛ =

γ2

2µΛd
, BΛ = 0.13± 0.05 MeV

in the spin-quartet S-wave:

M. Schäfer et al., PLB 808 (2020) 135614 (/πEFT)

aΛN
s aΛN

t a3/2 (fm) r3/2

Alexander B -1.80 fm -1.60 fm −17.3 fm 3.6 fm

NSC97f -2.60 fm -1.71 fm −10.8 fm 3.8 fm

χEFT (NLO) -2.91 fm -1.54 fm −7.5 fm 3.6 fm

3BF: 3 ΛNN LECs fitted to 3
ΛH, 4

ΛH (0+, 1+)
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Two-particle correlation function C(k)

• Koonin-Pratt formalism

C(k) ' 1 +

∫ ∞
0

4πr2 dr S12(r)
[
|ψ(k , r)|2 − |j0(kr)|2

]
(spherical Gaussian source with radius R: S12(r) = exp(−r2/4R2)/(2

√
πR)3)

• Lednicky-Lyuboshitz model

replace full wave function by its asymptotic form: ψ(k , r) ≈ j0(kr) + f (k) exp (ikr)
r∫ ∞

0
4πr2dr S12(r)

[
|ψ(k , r)|2 − |j0(kr)|2

]
≈ |f (k)|2

2R2
F (r0) +

2Ref (k)√
πR

F1(x)− Imf (k)

R
F2(x)

f (k) = (S(k)− 1)/2ik ... scattering amplitude (S ... S-matrix)

⇒ replace by effective-range expansion: f (k) ≈ 1/(− 1
a + r0k2/2− ik)

F (r0) = 1− r0/(2
√
πR) ... correction to wave function

F1(x) =
∫ x

0 dt et2−x2
/x , F2(x) = (1− e−x2

)/x , x = 2kR

? valid when the range of the interaction is smaller than the source size
? if f (k) (scattering length a) is large, the first term dominates
→ result depends strongly on (the corrections to) the wave function

Johann Haidenbauer Hyperon-nucleon interaction



Results with Lednicky-Lyuboshitz formula
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R = 5.0 fm

spin-doublet S-wave (2S) fixed from A. Cobis (left) or H.-W. Hammer (right)
spin-quartet S-wave (4S) fixed from /πEFT results based on χEFT, NSC97f or Alexander ΛN scattering lengths

bands represent the uncertainty in the 3
ΛH separation energy (Jurič et al., 1973)

(J.H., PRC 102 (2020) 034001)
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Square well potential versus Lednicky-Lyuboshitz (LL)
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• R = 1.2 fm: large difference between LL and wave-function calculation
• R = 5 fm (not shown): difference between results from LL and for a square well
potential is small

• Λd : strongly attractive (large scattering lengths in both spin channels)
→ LL formula is unreliable for a quantitative analysis

also for effective Λd potentials further tests are required
investigations based on three-body calculations of Λd are desirable
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Strange dibaryons

C. Pigor ef al. / Dibaryon production 173 

MASSES (GeV/c2) 

1.876 

2.129 

2.382 2.355 

Hi H”3 Hi 2.635 2.561 
z-x- E-p EOCO EOE:+ 

pz- z-z:+ 

I I I I I I I 
-1 0 1 

12 

Fig. 1. The {o) representation for dibaryonic states as predicted by Oakes in 1963 [3]. The first (second) 
column corresponds to a linear (quadratic) formula for the masses. 

The H: interpreted as a dynamical effect can be considered either as a partner 
of the deuteron or as a six-quark bag. 

In SU(3) flavour symmetry the deuteron can be included in a multiplet obtained 
by reducing the product of the baryon octet by itself. The antidecuplet is the only 
representation which contains such an isospin singlet with strangeness zero. Then 
the H: with isospin f is a candidate for a strange partner of the deuteron. Such an 
hypothesis (fig. 1) was made by Oakes already in 1963 [3]. 

Later in 1977, Jaffe [4], in the MIT quark bag model, introducing colour degrees 
of freedom, predicted an octet of dibaryons (fig. 2) with masses slightly above those 
given by Oakes for the multiplets with the corresponding hypercharge. In this octet 
the dibaryon is considered as a six-quark bag. This model predicted also a singlet 
(AA) bound state which motivated and experiment at BNL [5], but such a state has 
not been found. 

In both cases there appears an isospin doublet S = - 1 with H: as a possible 
member and no negatively charged partner is expected. Furthermore the S = -2 
partner is expected (figs. 1 and 2) at a mass around 2.36-2.46 GeV/c’. 

In our experimental program we have searched for several possible strange 
dibaryonic states. In addition to the study presented here, we have also investigated 

174 C. Pigot et al. / Dibaryon production 

0 J'=o+ AA 
MASSES (GeV/c’) 

2.150 
--------- 

Y 
H I’ HI+ 

H3 H3” 

AN, EN 

XE.EA 

2.220- 
2.230 

2.480- 
2.500 

I I I 
-1 0 1 

12 

Fig. 2. The Ravour singlet and octet representations for dibaryonic states as predicted by Jaffe [4]. 

for the existence of an S = -1, Q = - 1 state in the reactions K-d + r+X- and 
r-d + K+X-, and an S = -2, Q = - 1 state in the reaction K-d + K+X+. In both 
cases no new state was found, and upper limits for the production cross sections 
were established [6, 71. 

2. The spectrometer 

The experimental set-up (fig. 3) together with the characteristics of the separated 
beam have been already fully described [8]. 

The momenta of the incident and the trigger particles are measured in two 
spectrometers with multiwire proportional chambers. They are identified by a time- 
of-flight measurement and by aerogel and water Cerenkov counters. 

The missing mass resolution is calculated from the experimental momenta errors; 
it has been checked in the reaction n’+p+ K+E+ at 1.4 GeV/c; the experimental 
value is a=3.5 MeV/c’ for the expected missing Z+. The resolutions computed at 
the H: (2130) mass are respectively: 9.1, 5.6 and 4.4 MeV/c” for reaction (1) at 1.4, 
1.06 and 0.92 GeV/c; 5.5, 3.4 and 3.2 MeV/c’ for reaction (2) at 1.4, 1.2 and 
1.06 GeV/ c. 

Since we can expect, from previous experiments [l], that the H: production is 
favoured at low momentum transfer, the acceptance of our apparatus is optimized 
for mesons produced in the very forward direction. The acceptance of the apparatus 
has been evaluated by Monte Carlo simulations. It is almost independent of the 
dibaryon mass in the range 2.0-2.3 GeV/c’. For an isotropical dibaryon production 

R.J. Oakes, PR 131 (1963) 2239 R.L. Jaffe, PRL 38 (1977) 195

SU(3) flavor symmetry {10∗} MIT quark bag model
strange partners of the deuteron

Johann Haidenbauer Hyperon-nucleon interaction



Experimental evidence for threshold structure

MΣ+ + Mn = 2128.97 MeV MΣ0 + Mp = 2130.87 MeV
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Figure 4: The missing mass spectra for the constrained data (see text) from [6]
(upper panel) and [4] (lower panel). The solid curves show fits to the data where
the peak region has been excluded.
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4 Matthias Röder et al.: Final-State Interactions in the Process ~pp→ pK+Λ

where

L(θ∗K , φ) =
√
N+(φ) ·N−(φ+ π)

and R(θ∗K , φ) =
√
N−(φ) ·N+(φ+ π) .

(13)

Here, N±(φ) is the number of events with spin up (+) and
spin down(−) projectiles at the azimuthal angle φ. The spin
direction was flipped after every extraction cycle (120 s).
By multiplying the number of events on the opposite sides
of the detector and opposite spin states, systematic effects
from asymmetries in the detector acceptance are canceled
to first order. The data has been divided into eight bins in
the K+ azimuthal angle φ.

The beam polarization was determined with the known
analyzing power and the measured asymmetry in ~pp→ pp
elastic scattering. As a result we obtain P = (61.0±1.7) %.
For that the pp analyzing power was taken from the SAID
partial wave analysis [1]. The polar angular dependence
is in good agreement with SAID and with a previous
measurement by EDDA [9].

Possible systematic effects from different magnitudes
of the + and - beam polarization were investigated by
measuring both quantities independently. Within the ex-
perimental precision the two results, P+ = (66± 4)% and
P− = (57± 4)%, are compatible. An analysis of AN using
P± separately for the corresponding data samples yields
a systematic deviation to the analyis with Eq. (11) of
less than 30% of the statistical precision. Therefore, the
difference is neglected in the following analysis.

4 Results

4.1 Dalitz Plot

The Dalitz plot of the selected event sample is shown in
Fig. 3. It is corrected for the detector acceptance with
MC generated events. The complete kinematic acceptance
of the COSY-TOF detector is evident. The Dalitz plot
density is strongly enhanced at m2

pΛ = 4.53 GeV2/c4, i.e.

the NΣ threshold. This has been observed before [10,11]
and is usually interpreted as an NΣ–pΛ coupled channel
effect. The high resolution available in this measurement
makes an analysis of the shape, position and strength of
this structure interesting; however that is beyond the scope
of this report. It is analyzed in more detail in Refs. [12,13].

The enhancement of the production cross section close
to threshold from pΛ interactions, as discussed in Sec. 2, is
clearly visible at low mpΛ values. The increasing differential
cross section for decreasing mKΛ (see Fig. 3) can be ex-
plained by the influence of the resonances N(1710) and/or
N(1720) [3, 4]. In the Dalitz plot these are located around
m2
KΛ ≈ 2.93 GeV2/c4. However, due to their width of more

than 100 MeV/c2 they do not appear as narrow structures.
For a theoretical description see, e.g., Refs. [14, 15].

4.2 Effective Scattering Length

In Fig. 4 the pΛ invariant mass spectrum is shown. Since
the time integrated luminosity of the event sample is not
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Fig. 3. The Dalitz plot of the reaction. Lighter colors indicate
higher yield densities. The thresholds of the NΣ and KΣ chan-
nels are indicated by arrows, respectively. The region of the
N(1710) and N(1720) resonances is indicated by a solid line.
The dashed line marks the partition of the spectrum applied
for the analysis discussed in Sec. 4.2
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Fig. 4. The spectrum of mpΛ corrected for acceptance (A) as
it is given on the bottom. The two vertical lines indicate the
NΣ thresholds. An arbitrarily scaled phase space distribution
(dashed line) is shown to guide the eye. The solid line is a fit
to the data as described in the text.

needed for this analysis, only the number of measured
events (N) scaled with the detector acceptance times re-
construction efficiency (A) is given. The quantity A has
been determined with Monte Carlo studies and is included
at the bottom of the figure. It is noteworthy, that the
detector acceptance is nearly constant over a wide mpΛ

range but varies between 27 % and 10% close to threshold.

For comparison, an arbitrarily scaled three-body S-
wave phase-space distribution is shown with a solid line.

ALICE Collaboration Physics Letters B 833 (2022) 137272

Fig. 1. Upper panels: p� correlation function (circles) with statistical (vertical bars) and systematic (grey boxes) uncertainties. Middle panels: zoom on the cusp-like signal
at k∗ = 289 MeV/c. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit is performed using NLO13 (red) χEFT potentials with 
cut-off � =600 MeV [2,3] and using a cubic baseline (dark grey). The residual p
− ⊕ p
0 (pink) and p�0 (royal blue) correlations are modelled using, respectively, a lattice 
potential from the HAL QCD collaboration [33,55] and a χEFT potential [2]. Both contributions are plotted relative to the baseline, while in panel b) the strong interaction of
p�0 is neglected. The reduced χ2, for k∗ < 300 MeV/c, amounts to 2.2 in case a) and to 1.9 in case b).

Fig. 2. Similar representation as in Fig. 1, where the p� interaction is modelled using NLO19 (cyan) χEFT potentials with cut-off � =600 MeV [2,3]. This leads to an improved
description of the low momentum region. The reduced χ2, for k∗ < 300 MeV/c, equals 2.0 in case the p�0 is modelled by χEFT (panel a) and 1.8 in case the p�0 final state 
interaction is ignored (panel b).

tering data which cover the region k∗ >60 MeV/c. The preci-
sion achieved for k∗ <110 MeV/c is better than 1%, which cor-
responds to an improvement of factor up to 25 compared to 
previous scattering data [9–11]. The theoretical correlation func-
tions in Eq. (3) were evaluated using the CATS framework [60]. 
The size of the emitting source employed in the calculation was 
fixed from independent studies of proton pairs [30], which demon-
strate a common primordial (core) Gaussian source for pp and p�

pairs when the contribution of strongly decaying resonances is ex-
plicitly accounted for [30]. This source exhibits a pronounced mT
dependence and considering the average transverse mass 〈mT〉 =
1.55 GeV of the measured p� pairs a corresponding core source 
radius of rcore(〈mT〉) = 1.02 ± 0.04 fm is obtained. The total source 
function can be approximated by an effective Gaussian emission 
source of size 1.23 fm. The genuine p� correlation function is 
modelled by χEFT hyperon-nucleon potentials, considering the 
leading-order (LO) interaction [1] and two NLO versions (NLO13 [2]

and NLO19 [3]). For the NLO interactions the variation with the 
underlying cut-off parameter � (cf. Ref. [2]) is explored, while 
� =600 MeV is chosen as a default value. Both NLO versions
provide an excellent description of the available scattering data,
having a χ2 ≈ 16 for the considered 36 data points [3].

Figs. 1 and 2 show the total fit functions (red and cyan) to the 
present data. The non-FSI baseline B(k∗) is depicted as a dark grey 
line, while the individual contributions related to feed-down from 
F = {�0,
} are drawn as royal blue and pink lines, corresponding 
to B(k∗) 

[
λp(F)Cp(F)(k∗) + 1 − λp(F)

]
. The latter relation is derived 

by setting all Ci terms within Eq. (3), apart from Cp(F) , equal to 
unity. The upper panels in Figs. 1 and 2 present the correlation 
function in the whole k∗ range, while the middle panels show the 
region where the N� channels open, clearly visible as a cusp struc-
ture occurring at k∗ = 289 MeV/c. The deviation between data and 
prediction, expressed in terms of number of standard deviations 
nσ , is shown in the bottom panels. The discrepancy between the-

4

K−d → π−Λp pp → K +Λp Λp corr. in pp coll.
T.T. Tan, PRL 7 (1969) 395 M. Röder et al., EPJA 49 (2013) 157 S. Acharya [ALICE Coll.],
O. Braun et al., NPB 124 (1977) 45 PLB 833 (2022) 137272

“ordinary” threshold effect? bound state? virtual state (np 1S0) ?
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χ2 for Σ−p and Σ+p data

ΛN result near ΣN threshold is primarily constrained by
(20) near-threshold Σ−p data

reaction NLO13 NLO19 Jülich ’04 NSC97f (ND)

500 550 600 650 500 550 600 650

Σ−p → Λn 3.7 3.9 4.1 4.4 4.7 4.7 4.0 4.4 8.3 3.9 (4.3)
Σ−p → Σ0n 6.1 5.8 5.8 5.7 5.5 5.5 6.0 5.7 6.4 6.0 (5.5)
Σ−p → Σ−p 2.0 1.8 1.9 1.9 3.0 2.9 2.2 1.9 1.6 2.3 (3.6)
Σ+p → Σ+p 0.3 0.4 0.5 0.3 0.3 0.4 0.4 0.3 0.1 0.2 (0.1)

rR 0.1 0.2 0.1 0.2 1.1 0.7 0.1 0.5 53.6 0.0 (0.9)

total χ2 12.2 12.0 12.3 12.5 14.6 14.2 12.7 12.8 70 [16.4] 12.4 (14.4)

(
rR =

1

4

σs(Σ−p → Σ0n)

σs(Σ−p → Λn) + σs(Σ−p → Σ0n)
+

3

4

σt (Σ−p → Σ0n)

σt (Σ−p → Λn) + σt (Σ−p → Σ0n)

)

best description of near-threshold ΣN data: NLO13, NLO19 (600,650), NSC97a-f
⇒ χ2 = 12− 13

J.H., U.-G. Meißner, Chin. Ph. C 45 (2021) 9⇒ search for ΣN poles in complex plane

Johann Haidenbauer Hyperon-nucleon interaction



Poles in the complex qΣN plane

• 2nd quadrant (sheet II, bt): unstable bound state • 3rd quadrant (sheet IV, tb): inelastic virtual state
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• NLO13 � NLO19 N Nijmegen NSC97b-f H Jülich ’04 × Nijmegen ND (1977)

NLO13: E = 2131.90− i1.39 · · · 2131.25− i3.01 MeV
NLO19: E = 2131.73− i1.11 · · · 2131.35− i0.00 MeV
NSC97: E = 2133.04− i3.80 · · · 2133.79− i3.53 MeV

Thresholds: Σ+n (2128.97) Σ0p (2130.87)

⇒ bound state (dibaryon) – but above threshold!

Johann Haidenbauer Hyperon-nucleon interaction



Hadronic level shifts in Σ−p

Deser-Trueman formula:

∆ES + i
ΓS

2
= − 2

µΣp r3
B

asc
S

(
1− asc

S

rB
β

)

rB ... Bohr radius ... 51.4 fm; β = 2(1−Ψ(1)) ≈ 3.1544
µΣp ... Σ−p reduced mass
asc ... Coulomb-distorted Σ−p scattering length

Carbonell, Richard, Wycech, ZPA 343 (1992) 343 (p̄p):
works well once Coulomb and p-n mass difference is taken into account

NOTE:

different sign conventions for scattering lengths in ΣN (N̄N) and K̄ N!

∆E < 0⇔ repulsive shift

Johann Haidenbauer Hyperon-nucleon interaction



Hadronic level shifts in Σ−p (in eV)

NLO13 NLO19 Jülich ’04 NSC97f
Λ (MeV) 500 550 600 650 500 550 600 650

E1S0
−248 -231 -146 −106 −249 -234 -146 −107 −130 −498

Γ1S0
1401 1391 1357 1317 1471 1455 1381 1309 1788 1809

E3S1
−1286 -1256 -1211 −1159 −944 -942 -1210 −1141 +884 −825

Γ3S1
2338 2514 2657 2865 3506 3406 2620 2975 4782 2605

E1S −1026 -1000 -945 −896 −770 -765 -944 −882 +630 −743
Γ1S 2104 2233 2332 2478 2997 2918 2310 2558 4034 2406

antiprotonic atoms: E1S ≈ −720 eV, Γ1S ≈ 1100 eV
K− atoms: E1S ≈ −280 eV, Γ1S ≈ 540 eV

⇒ width Γ noticeably larger for Σ−p
threshold of the neutral “partner” channel (Σ0n) is slightly below the one of
Σ−p
p̄p and K−p: corresponding channels (n̄n and K̄ 0n) are slightly above

Johann Haidenbauer Hyperon-nucleon interaction



Summary
Hyperon-nucleon interaction constructed within chiral EFT

Approach is based on a modified Weinberg power counting, analogous to
applications for NN scattering
The potential (contact terms, pseudoscalar-meson exchanges) is derived
imposing SU(3)f constraints

S = −1 dibaryon: strong evidence for its existence
– but not as ideal textbook (Breit-Wigner type) resonance

Hypernuclei

three-body forces: should be small for (3
ΛH) or moderate (4

ΛH, 4
ΛHe, 5

ΛHe)
needs to be quantified/confirmed by explicit inclusion of 3BFs

charge-symmetry breaking in 4
ΛH – 4

ΛHe
can be reproduced when taking into account the full leading CSB potential within
chiral EFT

charge-symmetry breaking in A = 7− 8 Λ-hypernuclei
predicted CSB splitting for 7

ΛBe, 7
ΛLi∗, 7

ΛHe is in line with experiments
CSB splitting for 8

ΛBe, 8
ΛLi is overestimated

Λd momentum correlation function
Could provide more insight into the spin dependence of the ΛN interaction
however, elaborate (Faddeev-type) calculations might be needed

Johann Haidenbauer Hyperon-nucleon interaction
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Contact terms for YN – partial-wave projected

spin-momentum structure up to NLO

V (1S0) = C̃1S0
+ C1S0

(p2 + p′2)

V (3S1) = C̃3S1
+ C3S1

(p2 + p′2)

V (α) = Cα p p′ α =̂ 1P1,
3P0,

3P1,
3P2

V (3D1 − 3S1) = C3S1− 3D1
p′2

V (1P1 − 3P1) = C1P1− 3P1
p p′

V (3P1 − 1P1) = C3P1− 1P1
p p′

(antisymmetric spin-orbit force: (~σ1 − ~σ2) · (~q × ~k))

• C̃α, Cα ... low-energy constants (LECs)
• need to be fixed by a fit to (NN, YN, ...) data

Johann Haidenbauer Hyperon-nucleon interaction



SU(3) structure of contact terms for BB
SU(3) structure for scattering of two octet baryons→
8 ⊗ 8 = 1 ⊕ 8a ⊕ 8s ⊕ 10∗ ⊕ 10 ⊕ 27

BB interaction can be given in terms of LECs corresponding to the SU(3)f irreducible
representations: C1, C8a , C8s , C10∗ , C10, C27

Channel I Vα Vβ Vβ→α
S = 0 NN → NN 0 – C10∗

β –

NN → NN 1 C27
α – –

S = −1 ΛN → ΛN 1
2

1
10

(
9C27

α + C8s
α

)
1
2

(
C8a
β + C10∗

β

)
−C8sa

ΛN → ΣN 1
2

3
10

(
−C27

α + C8s
α

)
1
2

(
−C8a

β + C10∗
β

)
−3C8sa

C8sa

ΣN → ΣN 1
2

1
10

(
C27
α + 9C8s

α

)
1
2

(
C8a
β + C10∗

β

)
3C8sa

ΣN → ΣN 3
2 C27

α C10
β –

α = 1S0,
3 P0,

3 P1,
3 P2, β = 3S1,

3 S1 −3 D1,
1 P1

No. of contact terms: LO: 2 (NN) + 3 (YN) + 1 (YY )
NLO: 7 (NN) + 11 (YN) + 4 (YY )

(No. of spin-isospin channels in NN+YN: 10 S = −2,−3,−4: 27)

Johann Haidenbauer Hyperon-nucleon interaction



ΛN scattering lengths versus Hypertriton (3
ΛH)

-3 -2 -1 0
a

t
 (fm)

-3

-2

-1

0

a
s
 (

fm
)

3

ΛH ?

no 
3

ΛH

Jülich ’04
NLO EFT
NSC97e,f
Ueda (no ΣN)

Fujiwara fss2

Salamanca

G. Alexander et al.

(1968) -->

G. Alexander et al., PR 173 (1968) 1452: as = −1.8+2.3
−4.2 fm, at = −1.6+1.1

−0.8 fm
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3-body forces strongly scheme dependent!
21

pionless chiral chiral+∆

LO — —

NLO — —

N2LO

FIG. 23 Order of 3NF contributions in pionless and chiral EFT and in EFT with explicit ∆ degrees of freedom (chiral+∆).
Open vertices in the last column indicate the differences of the low-energy constants in chiral and chiral+∆ EFT.

lengths, subleading three-body forces are suppressed by
two orders and enter only at N2LO. Some higher-order
calculations of few-nucleon observables exist but much
remains to be investigated in this sector. Particularly
interesting are the application of pionless EFT to halo
nuclei and low-energy electroweak reactions. Halo nuclei
are the most promising candidates for observing Efimov
physics in nuclei, while precise calculations of low-energy
reactions are relevant for nuclear astrophysics and neu-
trino physics. In particular, 3NFs play a prominent role
in two-neutron halo nuclei and larger halo systems. Pio-
nless EFT also predicts universal three-body correlations
that can be explored in nuclear reactions in this regime
and to test the consistency of different theoretical calcu-
lations (similar to the Tjon line/band).

In chiral EFT discussed in Sections IV, V and VI,
3NFs are suppressed compared to NN interactions. This
explains the phenomenological success of weaker three-
body forces of the Fujita-Miyazawa type. As summarized
in Fig. 23, 3NFs enter at N2LO, and their relative contri-
butions to observables can be understood based on the
power counting. Because the operator structure of the
leading 3NFs is strongly constrained, a global analysis
of few-body scattering and bound-state data with theo-
retical uncertainties appears feasible in the framework of
chiral EFT. This would allow for a determination of the
long-range ci couplings in the three-body sector. In addi-
tion, a consistent determination of two- and three-body
forces from such an analysis may help to resolve the Ay

puzzle in few-body scattering.
For applications of chiral EFT interactions to nuclear

structure, 3NFs play a central role, as discussed for light
and medium-mass nuclei and for nuclear matter. For
these many-body calculations, the RG/SRG evolution
leads to greatly improved convergence. A consistent evo-
lution of chiral 3NFs has been achieved in a harmonic-
oscillator basis and recently in momentum space. Impor-
tant open problems are an understanding of the 3NFs
induced by the SRG and to control higher-body forces,

which is necessary for the desired accuracy in nuclear
structure.

If ∆(1232) degrees of freedom are included, part of
the physics contained in the low-energy constants in chi-
ral EFT is made explicit in lower orders. As a conse-
quence, a 3NF of the Fujita-Miyazawa type appears al-
ready at NLO as shown in Fig. 23. Improved convergence
of the chiral expansion with explicit ∆ degrees of free-
dom is expected, but a full analysis of few-nucleon data
remains to be carried out. In addition, a chiral EFT
with explicit ∆’s would naturally explain why the con-
tributions from the long-range two-pion-exchange parts
of 3NFs dominate over the shorter-range parts in appli-
cations to neutron-rich nuclei and nuclear matter.

Three-nucleon forces are a frontier in the physics of nu-
clei that connects the systematic development of nuclear
forces in chiral EFT with the exploration of neutron-rich
nuclei at rare isotope beam facilities. The subleading
3NFs at N3LO are predicted in chiral EFT, without free
parameters, as is the case for N3LO 4N forces. In many
present calculations, the uncertainty of the leading 3NFs
likely dominates the theoretical uncertainties of the pre-
dicted observables. The derivation of N3LO 3NFs has
only been completed recently, and no calculation exists
with N3LO 3N or 4N forces beyond few-body systems.
Therefore, there is a window of opportunity to make key
discoveries and predictions. In addition to advancing mi-
croscopic calculations with 3NFs to larger and neutron-
rich nuclei, an important problem is to understand the
impact of 3NFs on global nuclear structure predictions,
e.g., for key regions in the r-process path where system-
atic theoretical predictions of extreme nuclei, often not
accessible in the laboratory, are needed.

Electroweak interaction processes are unique probes of
the physics of nuclei and fundamental symmetries, and
play a central role in astrophysics. Chiral EFT provides
a systematic basis for nuclear forces and consistent elec-
troweak currents, where pion couplings contribute both
to electroweak currents and to 3NFs. This opens up

different degrees of freedom in the effective field theory

• different counting schemes
• different hierarchy of 3BFs

(Hammer, Nogga, Schwenk, Rev. Mod. Phys. 85 (2013) 197)
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Estimation of 3BFs based on NLO results
3
Λ H
(a) cutoff variation: ∆EΛ (3BF) ≤ 50 keV
(b) “3BF” from ΛN-ΣN coupling:

switch off ΛN-ΣN coupling
in Faddeev-Yakubovsky equations:
∆EΛ (3BF) ≈ 10 keV
expect similar ∆EΛ from Σ∗(1385) excitation

N Λ N

N Λ N

Λ✉ ✉
✉ ✉

N Λ N

N Λ N

Σ✉ ✉
✉ ✉

(a) (b)

N Λ N

N Λ N

Σ✉ ✉
✉✉

N Λ N

N Λ N

Σ∗✉ ✉
✉ ✉

(c) (d)

(c) 3H: 3NF ∼ Q3 |〈VNN〉|3H ∼ 650 keV
( |〈VNN〉|3H ∼ 50 MeV; Q ∼ mπ/Λb ; Λb ' 600 MeV )

3
Λ H: |〈VΛN〉|3

Λ
H ∼ 3 MeV→ ∆EΛ (3BF) ≈ Q3 |〈VΛN〉|3

Λ
H ' 40 keV

Note: root-mean-square radius of 3
Λ H:

√
〈r2〉 ≈ 5 fm

(deuteron:
√
〈r2〉 ≈ 2 fm)

⇒ most of the time Λ and two Ns are outside of the range of a standard 3BF!

4
Λ H, 4

Λ He
(a) cutoff variation: ∆EΛ (3BF) ≈ 200 keV (0+) and ≈ 300 keV (1+)
(b) “3BF” from ΛN-ΣN coupling:
∆EΛ (3BF) ≈ 230− 340 keV (0+), ≈ 150− 180 keV (1+)

3
Λ H and 4

Λ H(He) calculations with explicit inclusion of 3BFs are planned for the future

Johann Haidenbauer Hyperon-nucleon interaction



Hypernuclei studies based on chiral EFT potentials

Goal: perform few- and many-body calculations that take into account
the full complexity of the underlying YN interaction (tensor coupling,
ΛN-ΣN coupling, ...) in a consistent framework

Faddeev-Yakubovsky calculations:
feasible only up to A = 4: 3

ΛH, 4
ΛH (0+), 4

ΛH (1+)
enough hypernuclei to fix 3BF LEC up to NLO (decuplet saturation)
not enough hypernuclei to fix 3BF LECs up to N2LO
so far no (explicit) 3BFs included
(Andreas Nogga, Jülich)

No-core shell model (NCSM)
calculations for LO interaction
hypernuclei up to 13

Λ C have been considered
(Wirth & Roth, PRL 117 (2016) 182501, PRC 100 (2019) 044313)

so far no (explicit) 3BFs included
calculations for NLO interaction
hypernuclei up to 7

ΛLi have been considered
(Hoai Le, PhD thesis, Jülich 2020)

so far no 3BFs included

... other potentials, other groups, other methods

Johann Haidenbauer Hyperon-nucleon interaction



SRG applied to the YN interaction

Hoai Le, PhD thesis, University of Bonn 2020
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1S0, NLO19 (Λ = 650 MeV)
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CSB in A=7 iso-triplet 7
ΛHe, 7

ΛLi∗, 7
ΛBe
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CSB in A=7 isotriplet: 7ΛHe, 7
ΛLi*, 7

ΛBe

• NLO19(500) predicts rather accurately separation energies in  A=7 isotriplet   

(HL, J. Haidenbauer, U-G. Meißner and A. Nogga in preparation)

NN:SMS +(450)N4LO

+3N: (450)N2LO

+SRG-induced YNN 

Separation energies in A=7 isotriplet 

• NLO13 & NLO19 CSB results for A=7 are comparable to experiment    

A. Gal PLB 744 (2015)
(1)

E. Botta et al., NPA 960 (2017)(2)

(2)

Title Suppressed Due to Excessive Length 9

Table 10 Contributions of CSB for the A = 7 isospin multiplet, based on the YN potentials
NLO13 and NLO19 (with 3NFs and SRG-induced YNN forces) with cuto↵ ⇤ = 500 MeV. The
results are for the original potentials (without CSB force) and for the scenarios CSB1, see text.

YN �T �NN �YN �Epert
⇤

1S0
3S1 total

(7⇤Be,7⇤Li)

NLO13 6.8 -24 -1.0 0 0 -17.2(30)

CSB1 7.8 -24 -49.3 25.5 -24 -40.2(30)

NLO19 5.8 -40 -0.6 0 0 -34.2(30)

CSB1 5.8 -41 -43.1 42.1 -0.3 -35.2(30)

Gal(1) 3 -70 50 -17

Exp(2) �100 ± 90

(7⇤Li,7⇤He)

NLO13 7.8 -13 -0.4 0 0 -5.2(30)

CSB1 6.8 -14 -48.7 25.5 -24 -31.2(30)

NLO19 4.8 -22 -42.7 42 0 -17.2(30)

CSB1 4.8 -21 -37.9 36.9 -1 -16.2(30)

observed splittings - but he does not mention that the underlying CSB e↵ects had
changed in the meantime. Seen in a positive way, her calculation showed that the
empirical CSB shifts for A = 4 and A = 7 available at that time were simply not
compatible.

Note that Hiyama calibrates her ↵⇤ interaction to 5
⇤He while we calibrate our

�SRG to that hypernucleus!

Which CSB scenario in A=4 is consistent with the one for A=7, and which one
is not! Note that for the CSB1 case �aCSB

1S0 ⌘ a⇤p�a⇤n is ⇡ 0.62±0.08 fm, whereas

for the triplet state the prediction is with �aCSB
3S1 ⇡ �0.10 ± 0.02 fm significantly

smaller and of opposite sign. In case of CSB2 we get �aCSB
1S0 ⇡ �1.17 fm and

�aCSB
3S1 ⇡ �0.33 fm, respectively. Hiyama’s potential in her Eq. (3.3) suggests a

ratio of �5.9/�8.7 for the singlet/triplet cases.

Hiyama’s original results for A=8 ⇤ hypernuclei within a three-body cluster
model (⇤+↵+3He/t) can be found in Ref. [?]. Calculations with CSB in the ⇤-
3He/⇤-t clusters taken into account are reported in [?]. With the CSB interaction
fixed from A=4 (CSB2 scenario) she gets 0.16 MeV for 8

⇤Be-8⇤Li. This is about
half of what we find for this scenario, see Table 12 below.

Comment: There are new A = 4 data from the STAR collaboration [?]. The
splittings found by them are �E(0+) = 160 ± 140(stat) ± 100(syst) keV and
�E(1+) = �160 ± 140(stat) ± 100(syst) keV.

(7
ΛBe, 7

ΛLi*)

8 Hoai Le et al.

Table 7 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

with 3BFs with 2BFs Experiment

NLO19 NLO13 NLO19 NLO13

� = 0.823 � = 0.765
7
⇤Be 5.54 ± 0.22 4.30 ± 0.47 5.44 ± 0.03 4.53 ± 0.34 5.16 ± 0.08
7
⇤Li⇤ 5.64 ± 0.28 4.42 ± 0.58 5.49 ± 0.04 4.59 ± 0.34 5.26 ± 0.03 5.53 ± 0.13
7
⇤He 5.64 ± 0.27 4.39 ± 0.54 5.43 ± 0.06 4.45 ± 0.35 5.55 ± 0.1

Table 8 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) NLO13(500) Exp.

emulsion counter

7
⇤Be 5.54 ± 0.22 4.30 ± 0.47 5.16 ± 0.08 ?

7
⇤Li⇤ 5.64 ± 0.28 4.42 ± 0.58 5.26 ± 0.03 5.53 ± 0.13

7
⇤He 5.64 ± 0.27 4.39 ± 0.54 5.55 ± 0.1

Table 9 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) CSB1 CSB1A

a⇤p
s -2.91 -2.65 -2.58

a⇤n
s -2.91 -3.20 -3.29

�as 0 0.55 0.71

a⇤p
t -1.42 -1.57 -1.52

a⇤n
t -1.41 -1.45 -1.49

�at -0.01 -0.12 -0.03

Hiyama’s A = 7 calculation [?] is performed within a four-body cluster model
(⇤+N+N+↵). Her results without CSB force are included in Table 9 and are
quite well in line with the experimental evidence, as far as the CSB splitting is
concerned. Her results with the CSB force included are 0.15 MeV for 7

⇤Be-7⇤Li and
0.13 MeV for 7

⇤Li-7⇤He according to the figures (0.2 MeV according to the text).
However, she fitted her CSB potential to the old but outdated splittings in the
A = 4 system, i.e. to the scenario CSB2. We know from our study [?] that this leads
to a di↵erent trend for the ⇤p and ⇤n singlet interactions and to a sizable e↵ect in
the triplet state. Gal [?] emphasized that her calculation failed to reproduce the

• NLO19 predicts rather well separation energies of the A=7 isotriplet
• CSB: NLO13 & NLO19 results are comparable with experiment

(Hoai Le, J.H., U.-G. Meißner, A. Nogga, arXiv:2210.03387)
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CSB in A=8 iso-doublet 8
ΛLi, 8

ΛBe
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E. Hiyama et al., PRC 80 (2009)(1)

CSB in A=8 doublet: 8ΛBe, 8
ΛLi

• CSB1 fits lead to a larger CSB in A=8 doublet as compared to experiment 

experimental CSB result for A=8 could be larger than  keV?40 ± 60
CSB estimated for A=4 could still be too large or have different spin-dependence?

A. Gal PLB 744 (2015)
(2)

E. Botta et al., NPA 960 (2017)(3)

Separation energies in A=8 doublet, computed at   that reproduces  λ BΛ(5
ΛHe)

NN:SMS +(450)N4LO

+3N: (450)N2LO

+SRG-induced YNN 

10 Hoai Le et al.

Table 11 ⇤ separation energies for A = 8 systems. The results are computed for the
NLO13(500) and NLO19(500) potentials, SRG-evolved to the corresponding magic flow param-
eters. Experiments are taken from the compilation in Ref. [?]. The cited results by Hiyama et
al. based on a three-body cluster model [?] are without CSB force. The accurate reproduction
of the 1+ ground state of 8

⇤Li is accidental, as stated in that work.

�Y N
8
⇤Be 8

⇤Li

NLO13 0.765 5.56 ± 0.25 5.57 ± 0.30

NLO19 0.823 7.15 ± 0.10 7.17 ± 0.10

Hiyama et al. 6.72 6.80

Exp. emulsion 6.84 ± 0.05 6.80 ± 0.03

Exp. counter ? ?

Table 12 Contributions to CSB for the A = 8 isospin multiplet, based on the YN potentials
NLO13 and NLO19 with cuto↵ ⇤ = 500 MeV. All NN, 3N and YN potentials are SRG-evolved
to a flow parameter of � = 1.88 fm-1. The SRG-induced YNN forces are also included in
all calculations. The results are for the original potentials (without CSB force) and for the
scenarios CSB1, see text. Experimental value for 8

⇤Be-8⇤Li is 40 ± 60 keV.

YN �T �NN �YN �Epert
⇤

1S0
3S1 total

NLO13 12.2 8 -2.1 0 -4.0 16.2(50)

CSB1 11.9 7 99.8 55.5 158.8 177.7(50)

NLO19 6.6 -11 -0.9 0 -1.9 -6.3(50)

CSB1 6.3 -11 62 79.1 147.3 142.6(50)

Hiyama(1) 160

Gal(2) 11 -81 119 49

Exp(3) 40 ± 60

5 NCSM results for A = 8 isodoublet

6 Conclusions

In the present work, we have studied e↵ects from CSB in the Y N interaction.
Specifically, we have utilized the experimentally known di↵erence of the ⇤ sep-
aration energies in the mirror nuclei 4

⇤He and 4
⇤H to constrain the ⇤-neutron

interaction. For that purpose, we derived the contributions of the leading CSB
interaction within chiral e↵ective field theory and added them to our NLO chiral
hyperon-nucleon interactions [?,?]. CSB contributions arise from a non-zero ⇤⇤⇡

coupling constant which is estimated from ⇤ � ⌃0 mixing, the mass di↵erence
between K± and K0, and from two contact terms that represent short-ranged
CSB forces. In the actual calculation, the two arising CSB low-energy constants
are fixed by considering the known di↵erences in the energy levels of the 0+ and

10 Hoai Le et al.

Table 11 ⇤ separation energies for A = 8 systems. The results are computed for the
NLO13(500) and NLO19(500) potentials, SRG-evolved to the corresponding magic flow param-
eters. Experiments are taken from the compilation in Ref. [?]. The cited results by Hiyama et
al. based on a three-body cluster model [?] are without CSB force. The accurate reproduction
of the 1+ ground state of 8

⇤Li is accidental, as stated in that work.

�Y N
8
⇤Be 8

⇤Li

NLO13 0.765 5.56 ± 0.25 5.57 ± 0.30

NLO19 0.823 7.15 ± 0.10 7.17 ± 0.10

Hiyama et al. 6.72 6.80

Exp. emulsion 6.84 ± 0.05 6.80 ± 0.03

Exp. counter ? ?

Table 12 Contributions to CSB for the A = 8 isospin multiplet, based on the YN potentials
NLO13 and NLO19 with cuto↵ ⇤ = 500 MeV. All NN, 3N and YN potentials are SRG-evolved
to a flow parameter of � = 1.88 fm-1. The SRG-induced YNN forces are also included in
all calculations. The results are for the original potentials (without CSB force) and for the
scenarios CSB1, see text. Experimental value for 8

⇤Be-8⇤Li is 40 ± 60 keV.

YN �T �NN �YN �Epert
⇤

1S0
3S1 total

NLO13 12.2 8 -2.1 0 -4.0 16.2(50)

CSB1 11.9 7 99.8 55.5 158.8 177.7(50)

NLO19 6.6 -11 -0.9 0 -1.9 -6.3(50)

CSB1 6.3 -11 62 79.1 147.3 142.6(50)

Hiyama(1) 160

Gal(2) 11 -81 119 49

Exp(3) 40 ± 60

5 NCSM results for A = 8 isodoublet

6 Conclusions

In the present work, we have studied e↵ects from CSB in the Y N interaction.
Specifically, we have utilized the experimentally known di↵erence of the ⇤ sep-
aration energies in the mirror nuclei 4

⇤He and 4
⇤H to constrain the ⇤-neutron

interaction. For that purpose, we derived the contributions of the leading CSB
interaction within chiral e↵ective field theory and added them to our NLO chiral
hyperon-nucleon interactions [?,?]. CSB contributions arise from a non-zero ⇤⇤⇡

coupling constant which is estimated from ⇤ � ⌃0 mixing, the mass di↵erence
between K± and K0, and from two contact terms that represent short-ranged
CSB forces. In the actual calculation, the two arising CSB low-energy constants
are fixed by considering the known di↵erences in the energy levels of the 0+ and

• NLO13 underestimates and NLO19 overestimates separation energies

• CSB: NLO13 & NLO19 results are too large compared to experiment

Johann Haidenbauer Hyperon-nucleon interaction



Charge symmetry breaking - Mainz 2022
https://hypernuclei.kph.uni-mainz.de/

• ∆B(0+) = B0+

Λ (4
ΛHe)− B0+

Λ (4
ΛH)

= 178± 55 keV
• ∆B(1+) = B1+

Λ (4
ΛHe)− B1+

Λ (4
ΛH)

= −139± 58 keV

STAR Collaboration, PLB 834 (2022) 137449:
∆B(0+) = 160± 140 keV, ∆B(1+) = −160± 140 keV

Johann Haidenbauer Hyperon-nucleon interaction
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