Assorted aspects of the hyperon-nucleon interaction

Johann Haidenbauer

IAS & JCHP, Forschungszentrum Jülich, Germany

EXOTICO Workshop, ECT*, Trento, October 17-21, 2022

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

(Hoai Le, Ulf-G. Meißner, Andreas Nogga)

3 The Λ*d* system

5 Summary

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χ EFT à la Weinberg (1990)

- Power counting: systematic improvement by going to higher order
- Possibility to derive two- and three-baryon forces and external current operators in a consistent way
- degrees of freedom: octet baryons (N, Λ , Σ , Ξ), pseudoscalar mesons (π , K, η)
- meson-exchange: fixed by the underlying chiral symmetry of QCD + SU(3)
- short-distance dynamics remains unresolved represented by contact terms (involve low-energy constants (LECs) that need to be determined from data)

$$V_{B_{1}B_{2} \rightarrow B_{1}'B_{2}'}^{CT} = \tilde{C}_{\alpha} + C_{\alpha}(p'^{2} + p^{2}) \quad (C_{\beta}p'^{2}, C_{\gamma}p'p)$$

$$\alpha = {}^{1}S_{0}, {}^{3}S_{1}; \ \beta = {}^{3}S_{1} - {}^{3}D_{1}; \ \gamma = {}^{3}P_{0}, {}^{1}P_{1}, {}^{3}P_{1}, {}^{3}P_{2}$$

 ΛN - ΣN interaction:

LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244 NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24 NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91 N²LO: J.H. et al., in preparation, arXiv:2208.13542

イロト イポト イヨト イヨト 二日

Spin dependence of the $\wedge N$ interaction

Experiments: only integrated cross sections (G. Alexander et al.; B. Sechi-Zorn et al.) (angular distribution of events) No information on spin dependence (singlet, triplet)

$$\sigma_{\Lambda N} \propto rac{1}{4} |T^s_{\Lambda N}|^2 + rac{3}{4} |T^t_{\Lambda N}|^2$$

s-shell hypernuclei (Herndon & Tang, PR 153 (1967) 1091):

$${}^{3}_{\Lambda} \mathrm{H}: \quad \tilde{V}_{\Lambda N} \approx \frac{3}{4} V^{s}_{\Lambda N} + \frac{1}{4} V^{t}_{\Lambda N} \qquad {}^{4}_{\Lambda} \mathrm{He} \left(0^{+}\right): \quad \tilde{V}_{\Lambda N} \approx \frac{1}{2} V^{s}_{\Lambda N} + \frac{1}{2} V^{t}_{\Lambda N}$$

$${}^{4}_{\Lambda} \mathrm{He} \left(1^{+}\right): \quad \tilde{V}_{\Lambda N} \approx \frac{1}{6} V^{s}_{\Lambda N} + \frac{5}{6} V^{t}_{\Lambda N} \qquad {}^{5}_{\Lambda} \mathrm{He}: \quad \tilde{V}_{\Lambda N} \approx \frac{1}{4} V^{s}_{\Lambda N} + \frac{3}{4} V^{t}_{\Lambda N}$$

Jülich-Bonn group:

 use σ_{Λp} and ³_ΛH separation energy (130 ± 50 keV) to fix relative strength of singlet/triplet interaction

Three-body forces?

- estimate of 3BF contribution (e.g. from power counting): ΔB_Λ < 50 keV
- experimental uncertainty
 <u>50 keV</u>
- \Rightarrow direct experimental information on strength of ΛN singlet/triplet interaction is needed

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つくぐ

3- and many-body forces in chiral EFT (E. Epelbaum)

number of independent LECs in the three-body force:

NNN: one-pion exchange 3NF (c_D),contact term (c_E) $\land NN$: one-pion exchange 3BF (2 LECs),contact term (3 LECs)(decuplet saturation (NLO): 1 ($\land NN$) + 1 (ΣNN) LECs)

(two-pion exchange 3BF is fixed from chiral symmetry + SU(3))

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Hypernuclei within the NCSM

ab initio no-core shell model (NCSM)

Basic idea: use harmonic oscillator states and soft interactions

- m-scheme uses single particle states (center-of-mass motion not separated)
- antisymmetrization for nucleons easily performed (Slater determinant)
- Iarger dimensions (applications to p-shell hypernuclei by Wirth & Roth)

Jacobi-NCSM

- uses relative (Jacobi) coordinates (Hoai Le et al., EPJA 56 (2020) 301)
- explicit separation of center-of-mass motion possible
- antisymmetrization for nucleons difficult but feasible for $A \leq 9$
- small dimensions

Soft interactions: Similarity renormalization group (SRG) (unitary transformation)

$$\frac{dH(s)}{ds} = [[T, H(s)], H(s)] \qquad H(s) = T + V(s) \qquad V(s) : V^{NN}(s), V^{YN}(s)$$

- Flow equations are solved in momentum space
- parameter (cutoff) $\lambda = \left(4\mu_{BN}^2/s\right)^{1/4}$ is a measure of the width of the interaction in momentum space
- V(s) is phase equivalent to original interaction
- transformation leads to induced 3BFs, 4BFs, ...

(induced 3BFs included in the work of Wirth & Roth and in our recent studies) (induced 4BFs are most likely very small)

A=3-5 ∧ hypernuclei with SRG-induced YNN force

Hoai Le, arXiv:2210.02860 (HYP2022)

 \Rightarrow contributions of SRG-induced YNNN forces are negligible

(R. Wirth, R. Roth, PRL 117 (2016); PRC 100 (2019))

Johann Haidenbauer Hyperon-nucleon interaction

イロト 不同 トイヨト イヨト

э

Separation energies for A=3-8 ∧ hypernuclei (MeV)

- NLO13 and NLO19 are practically phase equivalent ($\chi^2 \approx 16$ for 36 YN data points)
- NLO13 characterized by a stronger $\Lambda N \cdot \Sigma N$ coupling potential $({}^{3}S_{1} \cdot {}^{3}D_{1})$

	³ _∧ H [Faddeev]	⁴ ∧H(0 ⁺)	$^{4}_{\Lambda}$ H(1 ⁺)	⁵ ∧He	<mark>7</mark> ↓Li	⁸ ∧Li
NLO13	0.135	1.55 ± 0.01	0.82 ± 0.01	$\textbf{2.22} \pm \textbf{0.06}$	5.28 ± 0.68	5.75 ± 1.08
NLO19	0.100	1.51 ± 0.01	1.27 ± 0.01	3.32 ± 0.03	$\textbf{6.04} \pm \textbf{0.30}$	$\textbf{7.33} \pm \textbf{1.15}$
Exp.	0.13 ± 0.05	$\textbf{2.16} \pm \textbf{0.08}$	1.07 ± 0.08	$\textbf{3.12} \pm \textbf{0.02}$	5.85 ± 0.13	6.80 ± 0.03
	$0.41\pm0.12[\text{S}]$				5.58 ± 0.03	
	0.072 ± 0.063 [A]					

NN: SMS N⁴LO+(450) + 3NF: N²LO(450) + SRG-induced YNN force [S] ... STAR Collaboration, [A] ... ALICE Collaboration

NLO19 (500): ${}^{4}_{\Lambda}$ H(1⁺), ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li fairly well described NLO13 (500) underestimates the separation energies

clear signal for (missing) chiral YNN forces:

in (standard) chiral EFT 3BFs appear at N²LO with decuplet saturation at NLO (LECs: $1 \land NN + 1 \Sigma NN$)

→ could be fixed from separation energies of, e.g., ${}^{4}_{\Lambda}$ H (0⁺, 1⁺) or ${}^{4}_{\Lambda}$ H (0⁺, 1⁺), ${}^{5}_{\Lambda}$ He

・ロン ・ 一 レ ・ 日 と ・ 日 と

Charge symmetry breaking in the ΛN interaction

CSB due to $\Lambda - \Sigma^0$ mixing leads to a long-ranged contribution to the ΛN interaction (R.H. Dalitz & F. von Hippel, PL 10 (1964) 153)

Strength can be estimated from the electromagnetic mass matrix:

$$\begin{split} \langle \Sigma^0 | \delta M | \Lambda \rangle &= [M_{\Sigma^0} - M_{\Sigma^+} + M_p - M_n] / \sqrt{3} \\ \langle \pi^0 | \delta m^2 | \eta \rangle &= [m_{\pi^0}^2 - m_{\pi^+}^2 + m_{K^+}^2 - m_{K^0}^2] / \sqrt{3} \end{split}$$

$$f_{\Lambda\Lambda\pi} = \left[-2\frac{\langle \Sigma^{0} | \delta M | \Lambda \rangle}{M_{\Sigma^{0}} - M_{\Lambda}} + \frac{\langle \pi^{0} | \delta m^{2} | \eta \rangle}{m_{\eta}^{2} - m_{\pi^{0}}^{2}}\right] f_{\Lambda\Sigma\pi}$$

latest PDG mass values ⇒

$$f_{\Lambda\Lambda\pi} \approx (-0.0297 - 0.0106) f_{\Lambda\Sigma\pi} \approx -0.0403 f_{\Lambda\Sigma\pi}$$

ъ

イロト 不同 とくほ とくほ とう

CSB in chiral EFT

CSB (CIB) in χ EFT: worked out for *pp*, *nn* (and *np*) scattering

Walzl, Meißner, Epelbaum, NPA 693 (2001) 663; Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362 J. Friar et al., PRC 68 (2003) 024003

LØ: Coulomb interaction, $m_{\pi 0}$ - $m_{\pi \pm}$ in OPE NLØ: isospin breaking in $f_{NN\pi}$, leading-order contact terms

*NN*¹*S*₀: $a_{\rho\rho} - a_{nn} \approx 1.5$ fm mostly due to short-range forces (ρ^0 - ω mixing, a_1^0 - f_1 mixing)

Faddeev-Yakubovsky calculation for NLO13 and NLO19 interactions with CSB forces including contact terms: (J.H., U.-G. Meißner, A. Nogga, FBS 62 (2021) 105)

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

Charge symmetry breaking in ⁴₀H-⁴₀He

- $\Delta B(0^+) = B_{\Lambda}^{0^+}({}^4_{\Lambda}\text{He}) B_{\Lambda}^{0^+}({}^4_{\Lambda}\text{H})$ = 233 ± 92 keV
- $\Delta B(1^+) = B_{\Lambda}^{1^+}({}^4_{\Lambda}\mathrm{He}) B_{\Lambda}^{1^+}({}^4_{\Lambda}\mathrm{H})$ = -83 ± 94 keV

adjust CSB contact terms to ΔB 's

(Schulz et al., 2016; Yamamoto et al., 2015)

(fm // keV)	$a_s^{\Lambda p}$	a_s^n	$a_t^{\wedge p}$	$a_t^{\wedge n}$	$\Delta B(0^+)$	$\Delta B(1^+)$
NLO19(500)	-2.649	-3.202	-1.580	-1.467	249	-75
NLO19(550)	-2.640	-3.205	-1.524	-1.407	252	-72
NLO19(600)	-2.632	-3.227	-1.473	-1.362	243	-67
NLO19(650)	-2.620	-3.225	-1.464	-1.365	250	-69

CSB in singlet (¹ S₀) much larger than in triplet (³ S₁) practically independent of cutoff; same results for NLO13 without CSB interaction: $a_s^{\Lambda p} \approx a_s^{\Lambda p} \approx -2.9$ fm with CSB interaction: $\Delta a_s = a_s^{\Lambda p} - a_s^{\Lambda n} \approx 0.62 \pm 0.08$ fm; $\Delta a_t \approx -0.10 \pm 0.02$ fm

Charge symmetry breaking in A=7-8 ∧-hypernuclei

Hoai Le, J.H., U.-G. Meißner, A. Nogga, arXiv:2210.03387

(in	keV)	ΔT	$\Delta V_{\rm NN}$		$\Delta V_{\rm YN}$		ΔB
				$^{1}S_{0}$	³ S ₁	total	
⁷ _A Be- ⁷ _A Li*	NLO13	8	-24	-49	26	-24	-40 (30)
	NLO19	6	-41	-43	42	9	-35 (30)
	Hiyama		-70			200	150
	Gal	3	-70			50	-17
	experiment						-100 ± 90
⁷ Li*- ⁷ He	NLO13	7	-14	-49	26	-24	-31 (30)
	NLO19	5	-21	-38	37	-1	-16 (30)
	Hiyama		-80			200	130
	Gal	2	-80			50	-28
	experiment						-20 ± 230
⁸ Be- ⁸ Li	NLO13	12	7	100	56	159	178 (50)
	NLO19	6	-11	62	79	147	143 (50)
	Hiyama		40				160
	Gal	11	-81			119	49
	experiment						40 ± 60

experimental results are taken from E. Botta et al., NPA 960 (2017) 165 A. Gal, PLB 744 (2015) 352 (shell model); E. Hiyama et al., PRC 80 (2009) 054321 (cluster model)

CSB: A = 7 results are comparable with experiment; A = 8 too large, a = 3

∧*d* scattering

 $\wedge d$ scattering experiments are practically impossible however, one can study the $\wedge d$ system as final-state interaction:

- Heavy ion collisions
 Ad correlations measured in Ni+Ni collisions
 FOPI Collaboration (Norbert Herrmann, 2012)
- $K^- A \rightarrow A' \wedge d$

Ad invariant mass spectrum FINUDA Collaboration, 2007

 K^{-4} He → $n \wedge d$: KEK-PS E549 Collaboration, 2007 AMADEUS Collaboration (c. Curceanu, O. Vazquez Doce, 2012-14)

- pd → K⁺∧d
 ∧d invariant mass spectrum
 COSY, Jülich, 2012 but not yet analyzed
- Ad two-particle momentum correlations in pp collisions ALICE Collaboration

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Heavy ion collisions

Λd – correlations

K. Wisniewski

Improvement (2003→2008): PID

FOPI 2003 and 2008 data are consistent, Inconsistent with cusp (Σ – d – threshold) and FINUDA.

N.Hermann, Univ. Heidelberg

イロト 不同 トイヨト イヨト

13

ъ

Norbert Herrmann (FOPI), 2012

Hyperon-nucleon interaction

K⁻⁴He (Oton Vazquez Doce (KLOE), 2014)

KLOE data: Λd , Λt events

Strangeness in medium with KLOE

Information on $\wedge d$ scattering

Faddeev calculations by Hetherington and Schick, PR 139 (1965) B 1164

$$\sigma_{\mathsf{A}\mathsf{d}} = \frac{1}{3}\sigma_{1/2} + \frac{2}{3}\sigma_{3/2}$$

\Rightarrow doublet $\wedge d$ S-wave dominates near threshold

hypertriton: $B_E = 2.354 \pm 50 \text{ MeV}$ [∧*pn*] 0.130 ± 50 MeV [∧*d*] #EFT (H.-W. Hammer, NPA 705 (2002) 173) $\Rightarrow a_{1/2} = 16.8^{+4.4}_{-2.4}$ fm, $r_{3/2} = 1.3 \pm 0.3$ fm

however, H & S: $a_s^{\wedge N} = -2.0$ fm, $a_t^{\wedge N} = -0.52$ fm \Rightarrow nowadays: $a_s^{\wedge N} = -(2.5 \sim 2.9)$ fm, $a_t^{\wedge N} = -(1.5 \sim 1.7)$ fm

Ad scattering lengths

in the spin-doublet S-wave:

Cobis et al., JPG 23 (1997) 401	HW. Hammer, NPA 705 (2002) 173 (#EFT)
$a_{1/2} = 16.3^{+4.0}_{-2.1} \text{ fm} r_{1/2} = 3.2 \text{ fm}$	$a_{1/2} = 16.8^{+4.4}_{-2.4} \text{ fm}$ $r_{1/2} = 2.3 \pm 0.3 \text{ fm}$

(see also Hildenbrand/Hammer, PRC 100 (2019) 034002 + Erratum: $a_{1/2} = 15.4^{+4.3}_{-2.2}$ fm)

Bethe formula:

$$\frac{1}{a_{1/2}} = \gamma - \frac{1}{2} r_{1/2} \gamma^2, \qquad B_{\Lambda} = \frac{\gamma^2}{2\mu_{\Lambda d}}, \quad B_{\Lambda} = 0.13 \pm 0.05 \text{ MeV}$$

in the spin-quartet S-wave:

M. Schäfer et al., PLB 808 (2020) 135614 (#EFT)									
$a_s^{\wedge N}$ $a_t^{\wedge N}$ $a_{3/2}$ (fm) $r_{3/2}$									
Alexander B	-1.80 fm	-1.60 fm	-17.3 fm	3.6 fm					
NSC97f	-2.60 fm	-1.71 fm	-10.8 fm	3.8 fm					
χ EFT (NLO)	-2.91 fm	-1.54 fm	—7.5 fm	3.6 fm					

3BF: 3 ANN LECs fitted to ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H (0⁺, 1⁺)

イロト イポト イヨト イヨト

ъ

Two-particle correlation function C(k)

Koonin-Pratt formalism

$$C(k) \simeq 1 + \int_0^\infty 4\pi r^2 \, dr \, S_{12}(\mathbf{r}) \left[|\psi(k,r)|^2 - |j_0(kr)|^2 \right]$$

(spherical Gaussian source with radius R: $S_{12}(\mathbf{r}) = \exp(-r^2/4R^2)/(2\sqrt{\pi}R)^3$)

• Lednicky-Lyuboshitz model

replace full wave function by its asymptotic form: $\psi(k, r) \approx j_0(kr) + f(k) \frac{\exp(ikr)}{r}$

$$\int_0^\infty 4\pi r^2 dr \, S_{12}(r) \left[|\psi(k,r)|^2 - |j_0(kr)|^2 \right] \approx \frac{|f(k)|^2}{2R^2} F(r_0) + \frac{2\text{Re}f(k)}{\sqrt{\pi}R} F_1(x) - \frac{\text{Im}f(k)}{R} F_2(x)$$

 $f(\mathbf{k}) = (S(\mathbf{k}) - 1)/2i\mathbf{k}$... scattering amplitude (S ... S-matrix)

 \Rightarrow replace by effective-range expansion: $f(k) \approx 1/(-\frac{1}{a} + r_0 k^2/2 - ik)$

 $\begin{aligned} F(r_0) &= 1 - r_0 / (2\sqrt{\pi}R) \text{ ... correction to wave function} \\ F_1(x) &= \int_0^x dt \, e^{t^2 - x^2} / x, \quad F_2(x) = (1 - e^{-x^2}) / x, \quad x = 2kR \end{aligned}$

 \star valid when the range of the interaction is smaller than the source size

 \star if f(k) (scattering length a) is large, the first term dominates

 \rightarrow result depends strongly on (the corrections to) the wave function

Results with Lednicky-Lyuboshitz formula

spin-doublet *S*-wave (2S) fixed from A. Cobis (left) or H.-W. Hammer (right) spin-quartet *S*-wave (4S) fixed from \neq EFT results based on χ EFT, NSC97f or Alexander AN scattering lengths bands represent the uncertainty in the $^3_{\Lambda}$ H separation energy (Jurič et al., 1973) (J.H., PRC 102 (2020) 034001)

Johann Haidenbauer Hyperon-nucleon interaction

ъ

• R = 1.2 fm: large difference between LL and wave-function calculation

• R = 5 fm (not shown): difference between results from LL and for a square well potential is small

- Ad: strongly attractive (large scattering lengths in both spin channels)
- \rightarrow LL formula is unreliable for a quantitative analysis also for effective Λd potentials further tests are required investigations based on three-body calculations of Λd are desirable

Strange dibaryons

R.J. Oakes, PR 131 (1963) 2239

SU(3) flavor symmetry {10*} strange partners of the deuteron

R.L. Jaffe, PRL 38 (1977) 195

イロト 不得 とくき とくきとう

ъ

MIT quark bag model

Experimental evidence for threshold structure

 $M_{\Sigma^+} + M_n = 2128.97 \text{ MeV}$ $M_{\Sigma^0} + M_p = 2130.87 \text{ MeV}$

"ordinary" threshold effect? bound state? virtual state $(np^{1}S_{0})$?

Johann Haidenbauer Hyperon-nucleon interaction

χ^2 for $\Sigma^- p$ and $\Sigma^+ p$ data

$\wedge N$ result near ΣN threshold is primarily constrained by (20) near-threshold $\Sigma^- p$ data

reaction	NLO13				NLO19				Jülich '04	NSC97f (ND)
	500	550	600	650	500	550	600	650		
$\Sigma^- p \rightarrow \Lambda n$	3.7	3.9	4.1	4.4	4.7	4.7	4.0	4.4	8.3	3.9 (4.3)
$\Sigma^- p \rightarrow \Sigma^0 n$	6.1	5.8	5.8	5.7	5.5	5.5	6.0	5.7	6.4	6.0 (5.5)
$\Sigma^- p \rightarrow \Sigma^- p$	2.0	1.8	1.9	1.9	3.0	2.9	2.2	1.9	1.6	2.3 (3.6)
$\Sigma^+ ho ightarrow \Sigma^+ ho$	0.3	0.4	0.5	0.3	0.3	0.4	0.4	0.3	0.1	0.2 (0.1)
r _R	0.1	0.2	0.1	0.2	1.1	0.7	0.1	0.5	53.6	0.0 (0.9)
total χ^2	12.2	12.0	12.3	12.5	14.6	14.2	12.7	12.8	70 [16.4]	12.4 (14.4)

$$\left(r_{R}=\frac{1}{4}\frac{\sigma_{s}(\Sigma^{-}\rho\to\Sigma^{0}n)}{\sigma_{s}(\Sigma^{-}\rho\to\Lambda n)+\sigma_{s}(\Sigma^{-}\rho\to\Sigma^{0}n)}+\frac{3}{4}\frac{\sigma_{t}(\Sigma^{-}\rho\to\Sigma^{0}n)}{\sigma_{t}(\Sigma^{-}\rho\to\Lambda n)+\sigma_{t}(\Sigma^{-}\rho\to\Sigma^{0}n)}\right)$$

best description of near-threshold ΣN data: NLO13, NLO19 (600,650), NSC97a-f $\Rightarrow \chi^2 = 12 - 13$

J.H., U.-G. Meißner, Chin. Ph. C 45 (2021) 9 \Rightarrow search for ΣN poles in complex plane

・ロト ・ 同ト ・ ヨト ・ ヨト

Poles in the complex $q_{\Sigma N}$ plane

2nd quadrant (sheet II, bt): unstable bound state

3rd quadrant (sheet IV, tb): inelastic virtual state

Deser-Trueman formula:

$$\Delta E_{S} + i \frac{\Gamma_{S}}{2} = -\frac{2}{\mu_{\Sigma \rho} r_{B}^{3}} a_{S}^{sc} \left(1 - \frac{a_{S}^{sc}}{r_{B}}\beta\right)$$

 r_B ... Bohr radius ... 51.4 fm; $\beta = 2(1 - \Psi(1)) \approx 3.1544$ $\mu_{\Sigma p} \dots \Sigma^- p$ reduced mass a^{sc} ... Coulomb-distorted $\Sigma^- p$ scattering length

Carbonell, Richard, Wycech, ZPA 343 (1992) 343 ($\bar{p}p$): works well once Coulomb and *p*-*n* mass difference is taken into account

NOTE:

different sign conventions for scattering lengths in ΣN ($\overline{N}N$) and $\overline{K}N$!

 $\Delta E < 0 \Leftrightarrow$ repulsive shift

イロト 不得 トイヨト イヨト

		NL	D13			NLO19				NSC97f
Λ (MeV)	500	550	600	650	500	550	600	650		
E1 So	-248	-231	-146	-106	-249	-234	-146	-107	-130	-498
Г _{1 S0}	1401	1391	1357	1317	1471	1455	1381	1309	1788	1809
E3 S1	-1286	-1256	-1211	-1159	-944	-942	-1210	-1141	+884	-825
Г _{3 S1}	2338	2514	2657	2865	3506	3406	2620	2975	4782	2605
E _{1S}	-1026	-1000	-945	-896	-770	-765	-944	-882	+630	-743
Γ _{1S}	2104	2233	2332	2478	2997	2918	2310	2558	4034	2406

antiprotonic atoms: $E_{1S} \approx -720 \text{ eV}, \Gamma_{1S} \approx 1100 \text{ eV}$

K⁻ atoms: $E_{1S} \approx -280 \text{ eV}, \Gamma_{1S} \approx 540 \text{ eV}$

 \Rightarrow width Γ noticeably larger for $\Sigma^{-}p$

threshold of the neutral "partner" channel ($\Sigma^0 n$) is slightly below the one of $\Sigma^- p$

 $\bar{p}p$ and K^-p : corresponding channels ($\bar{n}n$ and \bar{K}^0n) are slightly above

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Summary

Hyperon-nucleon interaction constructed within chiral EFT

- Approach is based on a modified Weinberg power counting, analogous to applications for *NN* scattering
- The potential (contact terms, pseudoscalar-meson exchanges) is derived imposing SU(3)_f constraints
- S = -1 dibaryon: strong evidence for its existence - but not as ideal textbook (Breit-Wigner type) resonance

Hypernuclei

- three-body forces: should be small for (³_{\Left}H) or moderate (⁴_{\Left}H, ⁴_{\Left}He, ⁵_{\Left}He) needs to be quantified/confirmed by explicit inclusion of 3BFs
- charge-symmetry breaking in ${}^4_\Lambda H {}^4_\Lambda He$ can be reproduced when taking into account the full leading CSB potential within chiral EFT
- charge-symmetry breaking in A = 7 8 A-hypernuclei predicted CSB splitting for ⁷_ABe, ⁷_ALi*, ⁷_AHe is in line with experiments CSB splitting for ⁸_ABe, ⁸_ALi is overestimated

 Λd momentum correlation function

- Could provide more insight into the spin dependence of the ΛN interaction
- however, elaborate (Faddeev-type) calculations might be needed

Backup slides

Johann Haidenbauer Hyperon-nucleon interaction

ヘロト 人間 とくほとく ほとう

æ

Contact terms for YN – partial-wave projected

spin-momentum structure up to NLO

$$V({}^{1}S_{0}) = \tilde{C}_{1S_{0}} + C_{1S_{0}}(p^{2} + p'^{2})$$

$$V({}^{3}S_{1}) = \tilde{C}_{3S_{1}} + C_{3S_{1}}(p^{2} + p'^{2})$$

$$V(\alpha) = C_{\alpha}pp' \qquad \alpha \triangleq {}^{1}P_{1}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$$

$$V({}^{3}D_{1} - {}^{3}S_{1}) = C_{3S_{1} - {}^{3}D_{1}}p'^{2}$$

$$V({}^{1}P_{1} - {}^{3}P_{1}) = C_{1P_{1} - 3P_{1}} p p'$$

$$V({}^{3}P_{1} - {}^{1}P_{1}) = C_{3P_{1} - 1P_{1}} p p'$$

(antisymmetric spin-orbit force: $(\vec{\sigma}_1 - \vec{\sigma}_2) \cdot (\vec{q} \times \vec{k})$)

C
 ^α
 ^α

イロン 不得 とくほ とくほ とうほ

structure of contact terms for BB

SU(3) structure for scattering of two octet baryons \rightarrow

 $8 \otimes 8 = 1 \oplus 8_a \oplus 8_s \oplus 10^* \oplus 10 \oplus 27$

BB interaction can be given in terms of LECs corresponding to the SU(3), irreducible representations: C¹, C⁸*a*, C⁸*s*, C^{10*}, C¹⁰, C²⁷

	Channel	I	V _α	V_{eta}	$V_{\beta \to \alpha}$
<i>S</i> = 0	NN ightarrow NN	0	-	$C^{10^*}_{eta}$	-
	NN ightarrow NN	1	C_{α}^{27}	-	-
<i>S</i> = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{10} \left(9C_{\alpha}^{27} + C_{\alpha}^{8_s}\right)$	$\frac{1}{2}\left(C_{\beta}^{8_a}+C_{\beta}^{10^*}\right)$	- <i>C</i> ⁸ sa
	$\Lambda N \rightarrow \Sigma N$	1 2	$\frac{3}{10}\left(-C_{\alpha}^{27}+C_{\alpha}^{8_s}\right)$	$\frac{1}{2}\left(-C_{\beta}^{8a}+C_{\beta}^{10^{*}}\right)$	-3 <i>C</i> ⁸ sa
					C ⁸ sa
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{10}\left(C_{\alpha}^{27}+9C_{\alpha}^{8_{s}}\right)$	$rac{1}{2}\left(C^{8a}_eta+C^{10^*}_eta ight)$	3 <i>C</i> ⁸ sa
	$\Sigma N \rightarrow \Sigma N$	<u>3</u> 2	C_{α}^{27}	C^{10}_{β}	-

 $\alpha = {}^{1}S_{0}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}, \quad \beta = {}^{3}S_{1}, {}^{3}S_{1}, {}^{-3}D_{1}, {}^{1}P_{1}$

No. of contact terms: LO: 2(NN) + 3(YN) + 1(YY)NLO: 7 (NN) + 11 (YN) + 4 (YY)

(No. of spin-isospin channels in *NN*+*YN*: 10 S = -2, -3, -4: 27)

$\wedge N$ scattering lengths versus Hypertriton ($^{3}_{\wedge}$ H)

G. Alexander et al., PR 173 (1968) 1452: $a_{\rm S}=-1.8^{+2.3}_{-4.2}$ fm, $a_t=-1.6^{+1.1}_{-0.8}$ fm

< ∃→

ъ

3-body forces strongly scheme dependent!

different degrees of freedom in the effective field theory

- different counting schemes
- different hierarchy of 3BFs

(Hammer, Nogga, Schwenk, Rev. Mod. Phys. 85 (2013) 197)

イロト 不得 とくほ とくほ とう

Estimation of 3BFs based on NLO results

● ³_∧H

(a) cutoff variation: ΔE_{Λ} (3BF) \leq 50 keV (b) "3BF" from ΛN - ΣN coupling:

> switch off ΛN - ΣN coupling in Faddeev-Yakubovsky equations: ΔE_{Λ} (3BF) \approx 10 keV expect similar ΔE_{Λ} from Σ^* (1385) excitation

(E) < E) < E</p>

(c) ³H: 3NF ~ $Q^3 |\langle V_{NN} \rangle|_{^3H} \sim 650 \text{ keV}$ $(|\langle V_{NN} \rangle|_{^3H} \sim 50 \text{ MeV}; Q \sim m_{\pi}/\Lambda_b; \Lambda_b \simeq 600 \text{ MeV})$ $^3_{\Lambda}\text{H}: |\langle V_{\Lambda N} \rangle|_{^3_{\Lambda}\text{H}} \sim 3 \text{ MeV} \rightarrow \Delta E_{\Lambda} (3BF) \approx Q^3 |\langle V_{\Lambda N} \rangle|_{^3_{\Lambda}\text{H}} \simeq 40 \text{ keV}$ Note: root-mean-square radius of $^3_{\Lambda}\text{H}: \sqrt{\langle r^2 \rangle} \approx 5 \text{ fm}$ (deuteron: $\sqrt{\langle r^2 \rangle} \approx 2 \text{ fm}$) $\Rightarrow \text{ most of the time } \Lambda \text{ and two } Ns \text{ are outside of the range of a standard 3BF!}$

• ${}^{A}_{\Lambda}$ H, ${}^{A}_{\Lambda}$ He (a) cutoff variation: ΔE_{Λ} (3BF) $\approx 200 \text{ keV} (0^{+})$ and $\approx 300 \text{ keV} (1^{+})$ (b) "3BF" from ΛN - ΣN coupling: ΔE_{Λ} (3BF) $\approx 230 - 340 \text{ keV} (0^{+})$, $\approx 150 - 180 \text{ keV} (1^{+})$

 $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H(He) calculations with explicit inclusion of 3BFs are planned for the future

Hypernuclei studies based on chiral EFT potentials

Goal: perform few- and many-body calculations that take into account the full complexity of the underlying YN interaction (tensor coupling, $\Lambda N \cdot \Sigma N$ coupling, ...) in a consistent framework

Faddeev-Yakubovsky calculations: feasible only up to A = 4: ³_AH, ⁴_AH (0⁺), ⁴_AH (1⁺) enough hypernuclei to fix 3BF LEC up to NLO (decuplet saturation) not enough hypernuclei to fix 3BF LECs up to N²LO so far no (explicit) 3BFs included (Andreas Noga, Jülich)

No-core shell model (NCSM) calculations for LO interaction hypernuclei up to ¹³_AC have been considered (Wirth & Roth, PRL 117 (2016) 182501, PRC 100 (2019) 044313) so far no (explicit) 3BFs included calculations for NLO interaction hypernuclei up to ⁷_ALi have been considered (Hoai Le, PhD thesis, Jülich 2020) so far no 3BFs included

• ... other potentials, other groups, other methods

イロト 不得 トイヨト イヨト

SRG applied to the YN interaction

Hoai Le, PhD thesis, University of Bonn 2020

 $^{1}S_{0}$, NLO19 ($\Lambda = 650 \text{ MeV}$)

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

CSB in A=7 iso-triplet 7 He, 7 Li*, 7 Be

	NLO19(500)	NLO13(500)	$\operatorname{Exp}^{(2)}$		
			emulsion	counter	
$^{7}_{\Lambda}\mathrm{Be}$	5.54 ± 0.22	4.30 ± 0.47	5.16 ± 0.08	?	
$^{7}_{\Lambda}$ Li*	5.64 ± 0.28	4.42 ± 0.58	5.26 ± 0.03	5.53 ± 0.13	
$^{7}_{\Lambda}{ m He}$	5.64 ± 0.27	4.39 ± 0.54		5.55 ± 0.1	

NN:SMS N⁴LO+(450) +3N: N²LO(450) +SRG-induced YNN

Separation energies in A=7 isotriplet

	YN	ΔT	Δ NN		$\varDelta \rm YN$		$\Delta E_{\Lambda}^{pert}$
				${}^{1}S_{0}$	${}^{3}S_{1}$	total	
	NLO13	6.8	-24	-1.0	0	0	-17.2(30)
	CSB1	7.8	-24	-49.3	25.5	-24	-40.2(30)
$^{7}_{\Lambda}$ Be, $^{7}_{\Lambda}$ Li*)	NLO19	5.8	-40	-0.6	0	0	-34.2(30)
	CSB1	5.8	-41	-43.1	42.1	-0.3	-35.2(30)
	$Gal^{(1)}$	3	-70			50	-17
	$Exp^{(2)}$						-100 ± 90

⁽¹⁾A. Gal PLB 744 (2015)

イロト イポト イヨト イヨト

⁽²⁾E. Botta et al., NPA 960 (2017)

ъ

- NLO19 predicts rather well separation energies of the A=7 isotriplet
- CSB: NLO13 & NLO19 results are comparable with experiment

(Hoai Le, J.H., U.-G. Meißner, A. Nogga, arXiv:2210.03387)

CSB in A=8 iso-doublet ⁸Li, ⁸Be

	λ_{YN}	$^{8}_{\Lambda}\mathrm{Be}$	$^{8}_{\Lambda}$ Li
NLO13	0.765	5.56 ± 0.25	5.57 ± 0.30
NLO19	0.823	7.15 ± 0.10	7.17 ± 0.10
Hiyama et al.		6.72	6.80
Exp. emulsion		6.84 ± 0.05	6.80 ± 0.03
Exp. counter		?	?

Separation energies in A=8 doublet, computed at λ that reproduces $B_{\Lambda}(^{5}_{\Lambda}\text{He})$

YN	ΔT	$\Delta \rm NN$	ΔYN			$\Delta E_{\Lambda}^{pert}$
			${}^{1}S_{0}$	${}^{3}S_{1}$	total	
NLO13	12.2	8	-2.1	0	-4.0	16.2(50)
CSB1	11.9	7	99.8	55.5	158.8	177.7(50)
NLO19	6.6	-11	-0.9	0	-1.9	-6.3(50)
CSB1	6.3	-11	62	79.1	147.3	142.6(50)
Hiyama ⁽¹⁾						160
$Gal^{(2)}$	11	-81			119	49
$Exp^{(3)}$						40 ± 60

NN:SMS N⁴LO+(450) +3N: N²LO(450) +SRG-induced YNN ⁽¹⁾E. Hiyama et al., PRC 80 (2009) ⁽²⁾A. Gal PLB 744 (2015) ⁽³⁾E. Botta et al., NPA 960 (2017)

・ 同 ト ・ ヨ ト ・ ヨ ト

- NLO13 underestimates and NLO19 overestimates separation energies
- CSB: NLO13 & NLO19 results are too large compared to experiment

Charge symmetry breaking - Mainz 2022

https://hypernuclei.kph.uni-mainz.de/

• $\Delta B(0^+) = B_{\Lambda}^{0^+}({}^4_{\Lambda}\text{He}) - B_{\Lambda}^{0^+}({}^4_{\Lambda}\text{H})$ = 178 ± 55 keV

•
$$\Delta B(1^+) = B_{\Lambda}^{1^+}({}^4_{\Lambda}\text{He}) - B_{\Lambda}^{1^+}({}^4_{\Lambda}\text{H})$$

= -139 ± 58 keV

STAR Collaboration, PLB 834 (2022) 137449: $\Delta B(0^+) = 160 \pm 140 \text{ keV}, \quad \Delta B(1^+) = -160 \pm 140 \text{ keV}$