

# Recent Progress in Nuclear Lattice EFT

#### Ulf-G. Meißner, Univ. Bonn & FZ Jülich



#### - Ulf-G. Meißner, Recent Progress in Nuclear Lattice EFT - PKU Nuclear Theory Seminar, Oct. 31, 2022 -

### **Contents**

- Two motivations
- The minimal nuclear interaction
- *Ab initio* calculation of the <sup>4</sup>He transition form factor
- Emergent geometry and duality in the carbon nucleus
- Wave function matching
- Recent results
- Summary and outlook

# Two motivations

#### The <sup>4</sup>He form factor puzzle

• Recent Mainz measurements of  $F_{M0}(0^+_2 \rightarrow 0^+_1)$  appear to be in stark disagreement with *ab initio* nuclear theory Kegel et al., Phys. Rev. Lett. **130** (2023) 152502



#### • Monopole transition ff



#### low-momentum expansion

#### $\Rightarrow$ A low-energy puzzle for nuclear forces?

#### The nuclear radii puzzle

• Modern *ab initio* methods get correct energies, but incorrect radii

Cipollone et al., Phys. Rev. C 92 (2015) 014306, ...

• E.g. shell model with SRG evolved chiral NN and NNN interactions

LENPIC, Phys. Rev. C 106 (2022) 064002



#### Can we solve these puzzles with NLEFT?

- ullet Work on a discretized Euclidean space-time  $L^3 imes L_t$
- Build on successful continuum chiral NN + NNN forces
  - $\hookrightarrow \text{discretized chiral potential w/ pion exchanges} \\ \text{and contact interactions + Coulomb}$

see e.g. Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773

- Typical lattice parameters:
  - -a=1...2 fm $ightarrow p_{
    m max}=rac{\pi}{a}\simeq 315-630$  MeV [UV cutoff]
  - -L = 5...15 in units of a
- Special features:
  - $\hookrightarrow$  no continuum limes (EFT)
  - $\hookrightarrow$  approximate Wigner SU(4) spin-isopin symmetry suppresses sign oscillations

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

≧§ Lähde · Meißne

 $\square$ 

**Nuclear Lattice Effective Field Theory** 

Lecture Notes in Physics 957

Nuclear Lattice

**Effective Field** 

D Springer

Timo A. Lähde Ulf-G. Meißner

Theory

An Introduction

Essentials of Nuclear Binding

B. N. Lu, N. Li, S. Elhatisari, D. Lee, E. Epelbaum, UGM, Phys. Lett. **B 797** (2019) 134863

- Ulf-G. Meißner, Recent Progress in Nuclear Lattice EFT - PKU Nuclear Theory Seminar, Oct. 31, 2022 -

# **A minimal nuclear interaction**

• Basic idea:

 $\hookrightarrow$  explore the approximate SU(4) spin-isospin symmetry of the nuclear forces

```
Wigner (1936)
```

← particular friendly for MC simulations (suppression of sign oscillations) Chen, Lee, Schäfer, Phys. Rev. Lett. **93** (2004) 242302

 $\hookrightarrow$  the <sup>4</sup>He nucleus is a prime candidate (I = S = 0)

- Ingredients:
  - $\hookrightarrow$  2N & 3N forces (contact interactions)
  - $\hookrightarrow$  local & non-local smearing (generates range of these forces)
  - $\hookrightarrow$  use later as the LO action free of sign problem (simple Hamiltonian)

### Short reminder of Wigner SU(4) symmetry

Wigner, Phys. Rev. C 51 (1937) 106

• If the nuclear Hamiltonian does not depend on spin and isospin, then it is obviously invariant under SU(4) transformations [really  $U(4) = U(1) \times SU(4)$ ]:

• LO pionless EFT:  $\mathcal{L}_{\pi} = N^{\dagger} \left( i \partial_t + \frac{\vec{\nabla}^2}{2m_N} \right) N - \frac{1}{2} \left( C_S (N^{\dagger}N)^2 + C_T (N^{\dagger}\vec{\sigma}N)^2 \right)$ Mehen, Stewart, Wise, Phys. Rev. Lett. 83 (1999) 931

• Partial wave LECs:  $C({}^1S_0) = C_S - 3C_T$  ,  $C({}^3S_1) = C_S + C_T$ 

⇒ The operator  $(N^{\dagger}N)^2$  is invariant under Wigner SU(4), but  $(N^{\dagger}\vec{\sigma}N)^2$  is not ⇒ In the Wigner SU(4) limit, one finds:  $C({}^1S_0) = C({}^3S_1) \rightarrow a_{np}^{S=0} = a_{np}^{S=1} \rightarrow \infty$ ⇒ The exact symmetry limit corresponds to a scale invariant non-relativistic system

#### **Essential elements for nuclear binding I**

Lu, Li, Elhatisari, Epelbaum, Lee, UGM. Phys. Lett. B 797 (2019) 134863 [arXiv:1812.10928]

• Highly SU(4) symmetric LO action without pions, local and non-local smearing:

$$\begin{split} H_{\mathrm{SU}(4)} &= H_{\mathrm{free}} + \frac{1}{2!} C_2 \sum_n \tilde{\rho}(n)^2 + \frac{1}{3!} C_3 \sum_n \tilde{\rho}(n)^3 \\ \tilde{\rho}(n) &= \sum_i \tilde{a}_i^{\dagger}(n) \tilde{a}_i(n) + \frac{s_L}{|n'-n|=1} \sum_i \tilde{a}_i^{\dagger}(n') \tilde{a}_i(n') \\ \tilde{a}_i(n) &= a_i(n) + \frac{s_{NL}}{|n'-n|=1} \sum_i a_i(n') \\ &+ \frac{1}{|n'-n|=1} \sum_{n'-n'=1}^{n} a_i(n') + \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') \\ &+ \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') + \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') \\ &+ \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') + \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') \\ &+ \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') + \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') \\ &+ \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') + \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') \\ &+ \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') + \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') \\ &+ \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') + \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') \\ &+ \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') + \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n} a_i(n') \\ &+ \frac{1}{|n'-n'|=1} \sum_{n'-n'=1}^{n$$

• Only four parameters!

 $C_2$  and  $C_3$  = strength of the leading two- and three-body interactions  $s_L$  and  $s_{NL}$  = strength of the local and the non-local interaction



#### **Essential elements for nuclear binding II**

- Fixing the parameters:
  - $\star$  interaction strength  $C_2$  and range  $s_L$  from the average S-wave scattering lengths and effective ranges (requires SU(4) breaking later)
  - $\star$  interaction strength  $C_3$  from the <sup>3</sup>H binding energy
  - $\star$  interaction range  $s_{NL}$  can not be determined in light nuclei
  - $\hookrightarrow$  calculate the volume- and surface energy of mid-mass nuclei  $16 \leq A \leq 40$
  - compare w/ existing calculations:

$$\hookrightarrow \boxed{s_{NL} = 0.5}$$

Mac-Mic: Wang et al., Phys. Lett. B **734** (2014) 215 FRLDM: Möller et al., Atom Data Nucl. Data Tabl. **59** (1995) 184 mean field: Bender et al., Rev. Mod. Phys. **75** (2003) 121



# **Energies for selected nuclei**

 Calculated binding energies for 3N & alpha-type nuclei:

| • | Binding energies for |
|---|----------------------|
|   | 86 even-even nuclei  |



- selected nuclei: amazingly precise, all deviations  $\leq 4\%$  (except <sup>12</sup>C)
- even-even isotopic chains come out amazingly precise, general trends reproduced  $\hookrightarrow$  on the proton-rich side better than on the neutron-rich one  $\rightarrow$  spin-dep. effects
- but remember: this is only leading order!

# Radii for selected nuclei

• Calculated charge radii for 3N & alpha-type nuclei:

|                  | $R_{ m ch}$ | Exp. | $m{R_{ch}}/Exp.$ |
|------------------|-------------|------|------------------|
| <sup>3</sup> Н   | 1.90(1)     | 1.76 | 1.08             |
| <sup>3</sup> He  | 1.99(1)     | 1.97 | 1.01             |
| <sup>4</sup> He  | 1.72(3)     | 1.68 | 1.02             |
| <sup>16</sup> 0  | 2.74(1)     | 2.70 | 1.01             |
| <sup>20</sup> Ne | 2.95(1)     | 3.01 | 0.98             |
| $^{24}Mg$        | 3.13(2)     | 3.06 | 1.02             |
| <sup>28</sup> Si | 3.26(1)     | 3.12 | 1.04             |
| <sup>40</sup> Ca | 3.42(3)     | 3.48 | 0.98             |

 Charge distributions for <sup>16</sup>O and <sup>40</sup>Ca



- Radii quite well described (except <sup>12</sup>C)
- ↔ overcomes earlier problems (see PRL 109 (2012) 252501, 112 (2014) 102501)
- Also a fair description of the charge distributions at LO!

#### **Neutron matter**

#### $\bullet$ 14 to 66 neutrons in $L=5, 6, 7 ightarrow ho=0.02-0.15\,{ m fm^{-3}}$



exact SU(4)
 → deviations at low densities

• SU(4) breaking term  $\rightarrow a_{nn} \checkmark$  $\hookrightarrow$  good overall description

APR = Akmal, Pandharipande, Ravenhall, Phys. Rev. C **58** (1998) 1804; GCR = Gandolfi, Carlson, Reddy, Phys. Rev. C **85** (2012) 032801; all others in: Tews et al., Phys. Rev. Lett. **110** (2013) 032504.

- Ulf-G. Meißner, Recent Progress in Nuclear Lattice EFT - PKU Nuclear Theory Seminar, Oct. 31, 2022 -

*Ab initio* calculation of the <sup>4</sup>He transition form factor

UGM, S. Shen, S. Elhatisari, D. Lee, 2309.01558 [nucl-th]

- Ulf-G. Meißner, Recent Progress in Nuclear Lattice EFT - PKU Nuclear Theory Seminar, Oct. 31, 2022 -

#### **Basic considerations**

- Use the essential elements action, all parameters fixed!
- Calculate the transition ff and its low-energy expansion form the transition density

$$egin{aligned} &
ho_{ ext{tr}}(r) = \langle 0_1^+ | \hat{
ho}(ec{r}) | 0_2^+ 
angle \ &F(q) = rac{4\pi}{Z} \int_0^\infty 
ho_{ ext{tr}}(r) j_0(qr) r^2 dr = rac{1}{Z} \sum_{\lambda=1}^\infty rac{(-1)^\lambda}{(2\lambda+1)!} q^{2\lambda} \langle r^{2\lambda} 
angle_{ ext{tr}} \ &rac{Z |F(q^2)|}{q^2} = rac{1}{6} \langle r^2 
angle_{ ext{tr}} \left[ 1 - rac{q^2}{20} \mathcal{R}_{ ext{tr}}^2 + \mathcal{O}(q^4) 
ight] \ &\mathcal{R}_{ ext{tr}}^2 = \langle r^4 
angle_{ ext{tr}} / \langle r^2 
angle_{ ext{tr}} \end{aligned}$$

• The first excited state sits in the continuum & close to the  ${}^{3}H$ -p threshold

 $\hookrightarrow$  use large volumes L = 10, 11, 12 or L = 13.2 fm, 14.5 fm, 15.7 fm

 $\hookrightarrow$  the lattice spacing is fixed to a = 1.32 fm, corresponding  $\Lambda = \pi/a = 465$  MeV

#### The first excited state

- 3 coupled channels with 0<sup>+</sup> q.n's ightarrow accelerates convergence as  $L_t 
  ightarrow \infty$
- Shell-model wave functions (4 nucleons in  $1s_{1/2}$ , twice 3 in  $1s_{1/2}$  and 1 in  $2s_{1/2}$ )

| <i>L</i> [fm] | $E(0^+_1)$ [MeV] | $E(0^+_2)$ [MeV] | $\Delta E  [{ m MeV}]$ |
|---------------|------------------|------------------|------------------------|
| 13.2          | -28.32(3)        | -8.37(14)        | 0.28(14)               |
| 14.5          | -28.30(3)        | -8.02(14)        | 0.42(14)               |
| 15.7          | -28.30(3)        | -7.96(9)         | 0.39(9)                |

 $\hookrightarrow$  statistical and large- $L_t$  errors

 $\hookrightarrow$  agreement w/ experiment:  $E(0^+_1)=28.3\,{ ext{MeV}},\,\Delta E=0.4\,{ ext{MeV}}$ 

 $\hookrightarrow \Delta E$  consistent w/ no-core Gamov shell model Michel et al., 2306.05192 [nucl-th]

 $\hookrightarrow$  consistent w/ the Efimov tetramer analysis  $\Delta E = 0.38(2)$  MeV

von Stecher, D'Incao, Greene, Nat. Phys. 5 (2009) 417; Hammer, Platter, EPJA 32 (2007) 113

## **The transition form factor**

#### • Transition charge density



#### • Transition form factor



- → agrees with the reconstructed one
   from Kamimura PTEP 2023 (2023) 071D01
- $\hookrightarrow$  very small central depletion (no zero)
- $\hookrightarrow$  excellent description of the data
- → Coulomb required plus smaller uncertainty (improved signal)

# The transition form factor II

#### • Small momentum expansion



|                       | $\langle r^2  angle_{ m tr}$ [fm $^2$ ] | $\mathcal{R}_{	ext{tr}}$ [fm] |
|-----------------------|-----------------------------------------|-------------------------------|
| Experiment            | $1.53\pm0.05$                           | $4.56\pm0.15$                 |
| Th (AV8'+ centr. 3N)* | $1.36\pm0.01$                           | $4.01\pm0.05$                 |
| Th (AV18 + UIX )      | $1.54\pm0.01$                           | $3.77\pm0.08$                 |
| Th (NLEFT)            | $1.49\pm0.01$                           | $4.00\pm0.04$                 |

\*Hiyama, Gibson, Kamimura, PRC 70 (2004) 031001

 $\hookrightarrow$  Also consistent description of the low-energy data

- $\hookrightarrow$  **No puzzle** to the nuclear forces!
- ← Can be improved using N3LO action + wave function matching Elhatisari et al., 2210.17488 [nucl-th]

Emergent geometry and duality in the carbon nucleus

#### Wigner's SU(4) symmetry and the carbon spectrum

 Study of the spectrum of <sup>12</sup>C Shen, Lähde, Lee, UGM, Eur. Phys.J. A 57 (2021) 276
 → spin-orbit splittings are known to be weak Hayes, Navratil, Vary, Phys. Rev. Lett. 91 (2003) 012502 Johnson, Phys. Rev. C 91 (2015) 034313

 $\hookrightarrow$  start with cluster and shell-model configurations  $\rightarrow$  next slide

• Locally and non-locally smeared SU(4) invariant interaction:

$$V = C_{2} \sum_{n',n,n''} \rho_{NL}(n') f_{s_{L}}(n'-n) f_{s_{L}}(n-n'') \rho_{NL}(n'') :, \quad f_{s_{L}}(n) = \begin{cases} 1, & |n| = 0, \\ s_{L}, & |n| = 1, \\ 0, & \text{otherwise} \end{cases}$$
$$\rho_{NL}(n) = a_{NL}^{\dagger}(n) a_{NL}(n)$$
$$a_{NL}^{(\dagger)}(n) = a^{(\dagger)}(n) + s_{NL} \sum_{|n'|=1} a^{(\dagger)}(n+n'), \quad s_{NL} = 0.2$$

 $\hookrightarrow$  only two adjustable parameters  $(C_2, s_L)$  fitted to  $E_{^4\mathrm{He}}$  &  $E_{^{12}\mathrm{C}}$ 

 $\hookrightarrow$  investigate the spectrum for  $a=1.64\,{
m fm}$  and  $a=1.97\,{
m fm}$ 

( 1

 $|\mathbf{n}| = \mathbf{0}$ 

# Configurations

#### • Cluster and shell model configurations



#### **Transient energies**

• Transient energies from cluster and shell-model configurations



# Spectrum of <sup>12</sup>C

Shen, Lähde, Lee, UGM, Eur. Phys.J. A 57 (2021) 276 [arXiv:2106.04834]

• Amazingly precise description  $\rightarrow$  great starting point



 $\rightarrow$  solidifies earlier NLEFT statements about the structure of the  $0^+_2$  and  $2^+_2$  states

#### A closer look at the spectrum of $^{12}C$

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

• Include also 3NFs: 
$$V = \frac{C_2}{2!} \sum_{n} \tilde{\rho}(n)^2 + \frac{C_3}{3!} \sum_{n} \tilde{\rho}(n)^3$$

- Fit the four parameters:
  - $C_2, C_3$  ground state energies of <sup>4</sup>He and <sup>12</sup>C
  - $s_{\rm L}$  radius of <sup>12</sup>C around 2.4 fm
  - *s*<sub>NL</sub> best overall description of the transition rates
- Calculation of em transitions
   requires coupled-channel approach
   e.g. 0<sup>+</sup> and 2<sup>+</sup> states



#### Spectrum of <sup>12</sup>C reloaded

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

• Improved description when 3NFs are included, amazingly good



#### $\rightarrow$ solidifies earlier NLEFT statements about the structure of the $0^+_2$ and $2^+_2$ states

# **Electromagnetic properties**

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

#### • Radii (be aware of excited states), quadrupole moments & transition rates

|                           | NLEFT                         | FM               | D $lpha$ clus | ter B | EC       | RXMC    | Exp.   |     |                                |
|---------------------------|-------------------------------|------------------|---------------|-------|----------|---------|--------|-----|--------------------------------|
| $r_c(0^+_1)$ [fm]         | 2.53(1)                       | 2.5              | 53 2.54       | l 2   | .53      | 2.65    | 2.47(2 | 2)  |                                |
| $r(0^+_2)$ [fm]           | 3.45(2)                       | 3.3              | 3.71          | 3     | .83      | 4.00    | -      |     |                                |
| $r(0^+_3)$ [fm]           | 3.47(1)                       | 4.6              | 62 4.75       | 5     | —        | 4.80    | -      |     |                                |
| $r(2^+_1)$ [fm]           | 2.42(1)                       | 2.5              | 50 2.37       | 7 2   | .38      | _       | -      |     |                                |
| $r(2^+_2)$ [fm]           | 3.30(1)                       | 4.4              | 4.43          | 3     | _        | _       | _      |     |                                |
|                           |                               |                  | NLEFT         | FMD   | $\alpha$ | cluster | NCSM   |     | Exp.                           |
| $Q(2^+_1)$ [ $e{ m fm}^2$ | <sup>2</sup> ]                |                  | 6.8(3)        | _     |          | _       | 6.3(3) | 8.1 | $\overline{\mathfrak{l}(2.3)}$ |
| $Q(2^+_2)$ [ $e{ m fm}^2$ | <sup>2</sup> ]                |                  | -35(1)        | —     |          | —       | —      |     | _                              |
| $M(E0,0^+_1$ –            | $ ightarrow 0^+_2)$ [ $e$ fm  | ו <sup>2</sup> ] | 4.8(3)        | 6.5   |          | 6.5     | —      | 5   | .4(2)                          |
| $M(E0,0^+_1$ –            | $ ightarrow 0^+_3)$ [ $e$ fm  | ו <sup>2</sup> ] | 0.4(3)        | —     |          | _       | —      |     | -                              |
| $M(E0,0^+_{2}$ –          | $ ightarrow 0^+_3)$ [ $e$ fm  | ו <sup>2</sup> ] | 7.4(4)        | —     |          | —       | —      |     | _                              |
| $B(E2,2^+_1-$             | $ ightarrow 0^+_1)$ $[e^2$ fn | n <sup>4</sup> ] | 11.4(1)       | 8.7   |          | 9.2     | 8.7(9) | 7   | .9(4)                          |
| $B(E2,2^+_1-$             | $ ightarrow 0^+_2)~[e^2$ fn   | n <sup>4</sup> ] | 2.5(2)        | 3.8   |          | 0.8     | _      | 2   | .6(4)                          |

#### **Electromagnetic properties**

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

• Form factors and transition ffs [essentially parameter-free]:





Chernykh et al., Phys. Rev. Lett. 105 (2010) 022501

#### **Emergence of geometry**

• Use the pinhole algorithm to measure the distribution of  $\alpha$ -clusters/matter:



• equilateral & obstuse triangles  $\rightarrow 2^+$  states are excitations of the  $0^+$  states

# **Emergence of duality**

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

<sup>12</sup>C spectrum shows a cluster/shell-model duality



#### • dashed triangles: strong 1p-1h admixture in the wave function

### Sanity check

- Repeat the calculations w/ the time-honored N2LO chiral interaction
  - $\hookrightarrow$  better NN phase shifts than the SU(4) interaction
  - $\hookrightarrow$  but calculations are much more difficult (sign problem)



- spectrum as before (good agreement w/ data)
- density distributions as before (more noisy, stronger sign problem)

Towards heavy nuclei and nuclear matter: Wave function matching

## Wave function matching I

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

- $\bullet$   $H_{\rm soft}$  has tolerable sign oscillations, good for many-body observables
- $H_{\chi}$  has severe sign oscillations, derived from the underlying theory
- $\hookrightarrow$  can we find a unitary trafo, that creates a chiral  $H_{\chi}$  that is pert. th'y friendly?

$$H'_{\chi} = U^{\dagger} \, H_{\chi} \, U$$

 $\Box$  Let  $|\psi^0_{
m soft}
angle$  be the lowest eigenstate of  $H_{
m soft}$ 

 $\Box$  Let  $|\psi_{\chi}^{0}
angle$  be the lowest eigenstate of  $H_{\chi}$ 

 $\Box$  Let  $|\phi_{soft}\rangle$  be the projected and normalized lowest eigenstate of  $H_{soft}$  $|\phi_{soft}\rangle = \mathcal{P} |\psi_{soft}^0\rangle/||\psi_{soft}^0\rangle||$ 

 $\Box$  Let  $|\phi_{\chi}\rangle$  be the projected and normalized lowest eigenstate of  $H_{\chi}$  $|\phi_{\chi}\rangle = \mathcal{P} |\psi_{\chi}^{0}\rangle/||\psi_{\chi}^{0}\rangle||$ 

$$\hookrightarrow U_{R',R} = \theta(r-R)\delta_{R',R} + \theta(R'-r)\theta(R-r)|\phi_{\chi}^{\perp}\rangle\langle\phi_{\rm soft}^{\perp}|$$

# Wave function matching II

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

#### • Graphical representation of w.f. matching



• W.F. matching is a "Hamiltonian translator": eigenenergies from  $H_1$  but w.f. from  $H_2 = U^{\dagger}H_1U$  Elhatisari et al., [arXiv:2210.17488 [nucl-th]], L. Bovermann, PhD thesis

#### • W.F. matching for the light nuclei

| Nucleus                                                                                              | $B_{ m LO}$ [MeV] | B <sub>N3LO</sub> [MeV] | Exp. [MeV] |
|------------------------------------------------------------------------------------------------------|-------------------|-------------------------|------------|
| $E_{oldsymbol{\chi},\mathbf{d}}$                                                                     | 1.79              | 2.21                    | 2.22       |
| $\langle \psi_{ m soft}^{0}    H_{\chi, m d}    \psi_{ m soft}^{0}  angle $                          | 0.45              | 0.62                    |            |
| $\langle \psi^0_{ m soft}    H^{\prime}_{\chi, m d}    \psi^0_{ m soft}  angle $                     | 1.65              | 2.01                    |            |
| 1 / a/b 0 + H + a/b 0                                                                                | 5.06(8)           | 5.01(0)                 | 9 / 9      |
| $  \langle \varphi_{soft}   \pi \chi, t   \varphi_{soft} \rangle  $                                  | 0.90(8)           | 5.91(9)                 | 0.40       |
| $\langle \psi_{ m soft}^{0}    H_{oldsymbol{\chi}, { m t}}^{\prime}    \psi_{ m soft}^{0}  angle $   | 7.97(8)           | 8.72(9)                 |            |
| $\left[ \left< \psi^0_{ m soft} \right  H_{\chi,lpha} \left  \psi^0_{ m soft} \right>  ight.  ight.$ | 24.61(4)          | 23.84(14)               | 28.30      |
| $\langle \psi_{	ext{soft}}^{0}    H_{\chi,lpha}^{\prime}    \psi_{	ext{soft}}^{0}  angle $           | 27.74(4)          | 29.21(14)               |            |



- reasonable accuracy for the light nuclei
- Tjon-band recovered with  $H'_{\gamma}$

Platter, Hammer, UGM, Phys. Lett. B 607 (2005) 254

 $\hookrightarrow$  now let us go to larger nuclei....

# Nuclei at N3LO

ullet Binding energies of nuclei for  $a=1.32\,{
m fm}\,(p_{
m max}=470\,{
m MeV})$ 

→ systematic errors via history matching Elhatisari et al., [arXiv:2210.17488 [nucl-th]]



### **Charge radii at N3LO**

• Charge radii (a = 1.32 fm, statistical errors can be reduced)

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]



#### **Neutron & nuclear matter at N3LO**

• EoS of pure neutron matter & nuclear matter (a = 1.32 fm)

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]



### Sanity check

• One referee asked us to do calculations outside the history matching interval

 $\hookrightarrow$  so let us look at <sup>50</sup>Cr and <sup>58</sup>Ni:

| Nucleus          | $E_{ m N3LO}$ [MeV] | $E_{\mathrm{exp}}$ [MeV] | $R_{ m N3LO}$ [fm] | $R_{\mathrm{exp}}$ [fm] |
|------------------|---------------------|--------------------------|--------------------|-------------------------|
| <sup>50</sup> Cr | -425.32(943)        | -435.05                  | 3.6469(229)        | 3.6588                  |
| <sup>58</sup> Ni | -493.13(661)        | -506.46                  | 3.7754(202)        | 3.7752                  |

 $\hookrightarrow$  Energies within 2-3%, uncertainties on the 1-2% level

 $\hookrightarrow$  Radii smack on, uncertainties can be improved

 $\hookrightarrow$  Test passed  $\checkmark$ 

# **Recent results**

### Nuclear charge radii of Si isotopes



- $\hookrightarrow$  mirror nucleus to  ${}^{32}$ Ar  $\rightarrow L$  (slope of symm. en.)
- $\hookrightarrow$  (dis)appearance of magic numbers
- Use laser spectroscopy at BECOLA/FRIB
  - $\hookrightarrow$  radius related to frequency shift
  - $\hookrightarrow R_{
    m ch}(^{
    m 32}
    m Si) = 3.153(12)$  fm
  - $\hookrightarrow$  completes the chain from <sup>28</sup>Si to <sup>32</sup>Si
  - $\hookrightarrow$  combined with  $^{32}$ Ar radius  $\rightarrow L \leq 60 \; {
    m MeV}$
- NLEFT calculation reproduces the trend of the data well  $\checkmark$ 
  - $\hookrightarrow$  also:  $L_{
    m NLEFT} = 50 \pm 1$  MeV



## **Study of the Be isotopes**

- Be isotopes show many interesting features, e.g.
  - $\hookrightarrow$  alpha-cluster nuclei (like <sup>8</sup>Be)
  - $\hookrightarrow$  large halo nuclei (like <sup>11</sup>Be)
  - $\hookrightarrow$  parity inversion of the <sup>11</sup>Be g.s.
- many calculations of one or a few isotopes (QMC, NCSM + cont., cluster models, ...)

   → no unified picture
- NLEFT provides a large basis of cluster and shell model states
  - $\hookrightarrow$  perform a calculation of A = 7 12 using the SU(4) minimal interaction
  - $\hookrightarrow$  perform a calculation of A = 7 12 using the N3LO wfm interaction
  - $\hookrightarrow$  all parameters fixed  $\rightarrow$  **true** predictions
  - $\hookrightarrow$  here: spectra, EM observables in the works

#### Spectra of the BE isotopes from A = 7 - 12

Shen, Elhatisari, UGM, ... in preparation



- SU(4) works astonishingly well, but some visible deviations
- $\bullet$  N3LO gives an overall very good description, all levels correctly ordered  $\sqrt{}$

#### **Structure factors for hot neutron matter**

Ma, Liu, Lu, Elhatisari, Lee, Li, UGM, Steiner, Wang, 2306.04500 [nucl-th]

- Core collapse supernovae: 99% of the gravitational energy escapes via neutrinos
  - $\hookrightarrow$  need precise calculations of neutrino-nucleus cross sections
  - $\hookrightarrow$  these XS are determined by the *structure factors* (correlation functions):

$$egin{aligned} S_V(q) &= \int d^3 r \, e^{-i ec q \cdot ec r} \left< \delta 
ho(0,ec r) \delta 
ho(0,0) 
ight>, & \delta 
ho = 
ho - \left< 
ho 
ight> \ S_A(q) &= \int d^3 r \, e^{-i ec q \cdot ec r} \left< \delta 
ho_z(0,ec r) \delta 
ho_z(0,0) 
ight>, & \delta 
ho_z = 
ho_z - \left< 
ho_z 
ight> \end{aligned}$$

• Various calculations using different methods exist

 $\hookrightarrow$  HF, RPA, extended virial expansions (model-independent for high T and low  $\rho$ )

- → *ab initio* calculation based on pionless EFT Alexandru et al., Phys. Rev. Lett. **126** (2021) 132701
- $\hookrightarrow$  perform an *ab initio* calculation within NLEFT at N3LO

#### **Computational scheme**

Ma, Liu, Lu, Elhatisari, Lee, Li, UGM, Steiner, Wang, 2306.04500 [nucl-th]

• Consider the grand canonical ensemble (inverse temp.  $\beta = 1/T$ , N nucleons):

$$\mathcal{Z} = \sum_N e^{eta \mu_G N} Z(eta, N) \,, \quad Z(eta, N) = \sum_{c_1, ..., c_N} \langle c_1, ..., c_N | \exp(-eta H) | c_1, ..., c_N 
angle$$

- $c_i = (ec{n}_i, \sigma_i, au_i)$  single-particle basis
- Many-body operators induce exponentially growing contractions

 $\hookrightarrow$  rank-one operator (RO) method:  $F_{\alpha} = \sum_{n} a_{i,j}(\vec{n}) \underbrace{f_{\alpha,i,j}(\vec{n})}_{s.p. \ orb. \ fct}$ 

$$\hookrightarrow$$
 rank-one operator:  $F_{lpha_1'}^\dagger F_{lpha_1} = \lim_{c_1 o \infty} : \exp\left(c_1 F_{lpha_1'}^\dagger F_{lpha_1}\right) :$ 

 $\hookrightarrow$  can be easily extended to higher-body rank-one operators

 $\hookrightarrow$  reduction to exponentials of one-body operators  $\rightarrow$  enormous speed-up

#### **Structure factors**

Ma, Liu, Lu, Elhatisari, Lee, Li, UGM, Steiner, Wang, 2306.04500 [nucl-th]

• Simulation details:

 $\hookrightarrow L^3=6^3,7^3,8^3$  ,a=1.32 fm,  $a_t=0.2$  fm

 $\hookrightarrow$  average over twisted b.c.'s  $\rightarrow$  better t.d. limit Lu et al., Phys. Rev. Lett. **125** (2020) 192502

- Results in the long wavelength limit (q → 0)

   → can be used to calibrate RPA /Skyrme calc's
   → unitary virial expansion works amazingly well
- $\bullet \; S_{V,A}(q)$  at T=10 MeV,  $\mu_G=0.018$  fm $^{-3}$ 
  - $\hookrightarrow$  in the high-density limit  $S_V=S_A=
    ho$
  - $\hookrightarrow$  controlled corrections to the long wavelength limit
  - $\hookrightarrow$  estimated uncertainty:  $\sim 5\%$



Investigated the <sup>4</sup>He transition form factor using NLEFT w/o tuning any parameter
 → minimal nuclear interaction gives a good description of the data
 → no problem to the nuclear forces

- New insights into the emergent geometry and duality in the carbon nucleus
- New computational tool for quantum physics: Wave function matching
  - $\hookrightarrow$  allows for precision calculations into the mid-mass region and beyond
  - $\hookrightarrow$  consistent energies and radii into the mid-mass region
  - $\hookrightarrow$  many intriguing results shown & more to come



### The transition form factor w/o 3NFs

#### • What is the role of the 3NFs? Switch them off!



 $\hookrightarrow$  FF goes up, so does  $\Delta E = 0.50(6)$  MeV, consistent w/ Michel et al.

 $\hookrightarrow$  radius too large (2.02(0.01) fm<sup>2</sup>), fourth moment ok (4.15(0.05) fm<sup>2</sup>)

 $\hookrightarrow$  for  $q^2 \gtrsim 3$  fm $^{-2}$ , the ff is ok (range of the 3NFs)

#### **Electron scattering off nucleons and nuclei**

- Electron scattering is a versatile tool to
  - $\Rightarrow$  reveal the structure of the nucleon
  - $\Rightarrow$  reveal the structure of atomic nuclei
  - $\Rightarrow$  information encoded in **form factors**, ...
- Often complimentary information through final-state interactions (FSI) in reactions or decays
- this talk addresses two topics of high current interest:
  - a new method to measure the proton charge radius
  - an *ab initio* calculation of the <sup>4</sup>He transition ff

50







© Tohoku Univ.