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Hypernuclear interactions
Why is understanding hypernuclear interactions interesting? 

• hyperon contribution to the EOS, neutron stars, supernovae 
• "hyperon puzzle" 
• Λ as probe to nuclear structure 
• flavor dependence of baryon-baryon interactions 

￼2

(SN1987a, Wikipedia)

4. Acceptance of the SKS spectrometer

The effective solid angle of SKS (d!) was calculated
with a Monte Carlo simulation code GEANT "25#. The effects
of energy loss and multiple scattering through a trajectory
were included in this calculation. The effective solid angle
was averaged on the distribution of the beam profile obtained
from the experimental data. It was calculated as a function of
scattering angle $%& and momentum $p& as follows:

d!$% ,p &!!
%"$1/2&'%

%#$1/2&'%
d cos %!

0

2(
d)

$
number of events accepted
number of events generated , $3.5&

where events were generated uniformly from %" 1
2 '% to %

# 1
2 '% in the polar angle, from 0 to 2( in the azimuthal

angle, and from p" 1
2 'p to p# 1

2 'p in the momentum.

5. Total systematic errors

The error on the beam normalization and the experimental
efficiency factors was obtained to be %7% by adding in
quadrature assuming no correlations among the factors. As
for the effective solid angle of SKS, the possible change
caused by the long-term fluctuation of the beam profile was
taken into account as a systematic error, which was estimated
to be %1%. The error on the target thickness is shown in
Table I. The total systematic error on the cross section for
each target was obtained combining these errors; %9% for
*
89Y and *

12C, and %10% for *
51V.

The consistency among the cross sections obtained in the
different experimental cycles was examined by using the
12C((#,K#) data. As shown in Table III, the cross sections
of the *

12C ground-state peak, calculated separately for each
experimental cycle, agreed quite well within the statistical
errors.

F. Background level

The background levels for all the spectra were examined
by looking at the events in the region where the binding
energy is larger than that for the ground state of a produced
* hypernucleus. The backgrounds were almost uniform and
found to be less than 0.03 +b/srMeV for all the spectra.
The target-empty ((#,K#) data were analyzed using the

same analysis program as that for the normal ((#,K#) data.
The background was almost uniform and estimated to be less
than 0.04 +b/srMeV.
On the basis of the analyses, we assumed the backgrounds

around the bound regions of the obtained spectra were neg-
ligible and uniform.

IV. EXPERIMENTAL RESULTS

The hypernuclear mass spectra of *
89Y, *

51V, and *
12C $thin

target& are shown in Figs. 5, 6, and 7. The vertical scale is
shown in the average cross section obtained in the scattering
angles from 2 to 14 ° in the laboratory frame, which is de-
fined as follows:

,̄2° –14°-!
%!2°

%!14°" d,

d! # d! $ !
%!2°

%!14°
d! . $4.1&

The horizontal scale is shown in the binding energy calcu-
lated by Eq. $3.2&. For convenience, they are shown in the
tabular form in Tables IV, V, and VI.
Qualities of the spectra discussed in the last section are

summarized in Table VII.

A. !
89Y

The *
89Y spectrum showed characteristic bump structures

which reflect the major shell structure of the * orbits
coupled to the 0g9/2

"1 neutron-hole state. The widths for the p,
d, and f orbits were significantly wider than expected from
the energy resolution of 1.65 MeV $FWHM& and became
wider for the * orbits with higher angular momenta; the
widths were obtained to be 2.4%0.2, 3.0%0.2, and 4.6
%0.5MeV for the p, d, and f orbits by fitting each major
bump with a single Gaussian. In particular, the widest bump
of the f orbit appears to split into two peaks. In the present
experiment, the energy resolution can be accurately esti-

FIG. 5. Hypernuclear mass spectra of *
89Y without $up& and with

$down& fitting curves described in the text. The quoted errors are
statistical.
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only interact via the two-body ΛN potential. As a matter of
fact, within the AFDMC framework hypernuclei turn out to
be strongly overbound when only the ΛN interaction is
employed [34,35]. The inclusion of the repulsive three-
body force [model (I)], stiffens the EOS and pushes the
threshold density to 0.34ð1Þ fm−3. In the inset of Fig. 1 the
neutron and lambda fractions are shown for the two
HNM EOSs.
Remarkably, we find that using the model (II) for ΛNN

the appearance of Λ particles in neutron matter is ener-
getically unfavored at least up to ρ ¼ 0.56 fm−3, the largest
density for which Monte Carlo calculations have been
performed. In this case the additional repulsion provided by
the model (II) pushes ρthΛ towards a density region where
the contribution coming from the hyperon-nucleon poten-
tial cannot be compensated by the gain in kinetic energy. It
has to be stressed that (I) and (II) give qualitatively similar
results for hypernuclei. This clearly shows that an EOS
constrained on the available binding energies of light
hypernuclei is not sufficient to draw any definite conclusion
about the composition of the neutron star core.
The mass-radius relations for PNM and HNM obtained

by solving the Tolman-Oppenheimer-Volkoff equations
[62] with the EOSs of Fig. 1 are shown in Fig. 2. The

onset of Λ particles in neutron matter sizably reduces the
predicted maximum mass with respect to the PNM case.
The attractive feature of the two-body ΛN interaction leads
to the very low maximum mass of 0.66ð2ÞM⊙, while the
repulsive ΛNN potential increases the predicted maximum
mass to 1.36ð5ÞM⊙. The latter result is compatible with
Hartree-Fock and Brueckner-Hartree-Fock calculations
(see for instance Refs. [2–5]).
The repulsion introduced by the three-body force plays a

crucial role, substantially increasing the value of the Λ
threshold density. In particular, when model (II) for the
ΛNN force is used, the energy balance never favors the
onset of hyperons within the density domain that has been
studied in the present work (ρ ≤ 0.56 fm−3). It is interest-
ing to observe that the mass-radius relation for PNM up to
ρ ¼ 3.5ρ0 already predicts a NS mass of 2.09ð1ÞM⊙ (black
dot-dashed curve in Fig. 2). Even if Λ particles appear at
higher baryon densities, the predicted maximum mass will
be consistent with present astrophysical observations.
In this Letter we have reported on the first quantum

MonteCarlo calculations for hyperneutronmatter, including
neutrons andΛ particles. As already verified in hypernuclei,
we found that the three-body hyperon-nucleon interaction
dramatically affects the onset of hyperons in neutron matter.
When using a three-body ΛNN force that overbinds hyper-
nuclei, hyperons appear at around twice the saturation
density and the predicted maximum mass is 1.36ð5ÞM⊙.
By employing a hyperon-nucleon-nucleon interaction
that better reproduces the experimental separation energies
of medium-light hypernuclei, the presence of hyperons is
disfavored in the neutron bulk at least up to ρ ¼ 0.56 fm−3

and the lower limit for the predicted maximum mass is
2.09ð1ÞM⊙. Therefore, within the ΛN model that we have
considered, the presence of hyperons in the core of the
neutron stars cannot be satisfactorily established and thus
there is no clear incompatibility with astrophysical obser-
vations when lambdas are included. We conclude that in
order to discuss the role of hyperons—at least lambdas—in
neutron stars, the ΛNN interaction cannot be completely
determined by fitting the available experimental energies in
Λ hypernuclei. In other words, the Λ-neutron-neutron
component of the ΛNN force will need both additional
theoretical investigation, possibly within different frame-
works such as chiral perturbation theory [63,64], and a
substantial additional amount of experimental data, in
particular for highly asymmetric hypernuclei and excited
states of the hyperon.

We would like to thank J. Carlson, S. C. Pieper, S.
Reddy, A.W. Steiner, W. Weise, and R. B. Wiringa for
stimulating discussions. The work of D. L. and S. G. was
supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics, under the NUCLEI
SciDAC grant and A. L. by the Department of Energy,
Office of Science, Office of Nuclear Physics, under
Contract No. DE-AC02-06CH11357. The work of S. G.
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FIG. 2 (color online). Mass-radius relations. The key is the
same as of Fig. 1. Full dots represent the predicted maximum
masses. Horizontal bands at ∼2M⊙ are the observed masses of
the heavy pulsars PSR J1614-2230 [18] and PSR J0348þ 0432
[19]. The grey shaded region is the excluded part of the plot due
to causality.

TABLE II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

Hyperon-nucleon potential c1½MeV& c2½MeV&
ΛN −71.0ð5Þ 3.7(3)
ΛN þ ΛNN (I) −77ð2Þ 31.3(8)
ΛN þ ΛNN (II) −70ð2Þ 45.3(8)
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ρΛ ¼ xρ are the neutron and hyperon densities, respec-
tively. The energy per particle can be written as

EHNMðρ; xÞ ¼ ½EPNMðð1 − xÞρÞ þmn&ð1 − xÞ

þ ½EPΛMðxρÞ þmΛ&xþ fðρ; xÞ: ð2Þ

To deal with the mass difference Δm≃ 176 MeV between
neutrons and lambdas the rest energy is explicitly taken into
account. The energy per particle of PNM EPNM has been
calculated using the AFDMC method [42,43] and it reads

EPNMðρnÞ ¼ a
!
ρn
ρ0

"
α
þ b

!
ρn
ρ0

"
β
; ð3Þ

where the parameters a, α, b, and β are reported in Table I.
We parametrized the energy of pure lambda matter EPΛM

with the Fermi gas energy of noninteracting Λ particles.
Such a formulation is suggested by the fact that in the
Hamiltonian of Eq. (1) there is no ΛΛ potential. The reason
for parametrizing the energy per particle of hyperneutron
matter as in Eq. (2) lies in the fact that, within AFDMC
calculations, EHNMðρ; xÞ can be easily evaluated only for a
discrete set of x values. They correspond to a different
number of neutrons (Nn ¼ 66; 54; 38) and hyperons
(NΛ ¼ 1; 2; 14) in the simulation box giving momentum
closed shells. Hence, the function fðρ; xÞ provides an
analytical parametrization for the difference between
Monte Carlo energies of hyperneutron matter and pure
neutron matter in the (ρ; x) domain that we have consid-
ered. Corrections for the finite-size effects due to the
interaction are included as described in Ref. [60] for both
nucleon-nucleon and hyperon-nucleon forces. Finite-size
effects on the neutron kinetic energy arising when using
different number of neutrons have been corrected adopting
the same technique described in Ref. [61]. Possible addi-
tional finite-size effects for the hypernuclear systems have
been reduced by considering energy differences between
HNM and PNM calculated in the same simulation box, and
by correcting for the (small) change of neutron density.
As can be inferred by Eq. (2), both hyperon-nucleon

potential and correlations contribute to fðρ; xÞ, whose
dependence on ρ and x can be conveniently exploited
within a cluster expansion scheme. Our parametrization is

fðρ; xÞ ¼ c1
xð1 − xÞρ

ρ0
þ c2

xð1 − xÞ2ρ2

ρ20
: ð4Þ

Because the ΛΛ potential has not been included in the
model, we have only considered clusters with at most one

Λ. We checked that contributions coming from clusters of
two or more hyperons and three or more neutrons give
negligible contributions in the fitting procedure. We have
also tried other functional forms for fðx; ρÞ, including
polytropes inspired by those of Ref. [20]. Moreover, we
have fitted the Monte Carlo results using different x data
sets. The final results weakly depend on the choice of
parametrization and on the fit range, in particular for the
hyperon threshold density. The resulting EOSs and mass-
radius relations are represented by the shaded bands in
Fig. 1 and Fig. 2. The parameters c1 and c2 corresponding
to the centroids of the figures are listed in Table II.
Once fðρ; xÞ has been fitted, the chemical potentials for

neutrons and lambdas are evaluated via

μnðρ; xÞ ¼
∂EHNM

∂ρn ; μΛðρ; xÞ ¼
∂EHNM

∂ρΛ ; ð5Þ

where EHNM ¼ ρEHNM is the energy density. The hyperon
fraction as a function of the baryon density, xðρÞ, is
obtained by imposing the condition μΛ ¼ μn. The Λ
threshold density ρthΛ is determined where xðρÞ starts being
different from zero.
In Fig. 1 the EOS for PNM (green solid curve) and HNM

using the two-body ΛN interaction alone (red dotted curve)
and two- plus three-body hyperon-nucleon force in the
original parametrization (I) (blue dashed curve) are dis-
played. As expected, the presence of hyperons makes the
EOS softer. In particular, ρthΛ ¼ 0.24ð1Þ fm−3 if hyperons

TABLE I. Fitting parameters for the neutron matter EOS of
Eq. (3) [42].

a½MeV& α b½MeV& β

13.4(1) 0.514(3) 5.62(5) 2.436(5)
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FIG. 1 (color online). Equations of state. Green solid curve
refers to the PNM EOS calculated with the AV8’þ UIX
potential. The red dotted curve represents the EOS of hypermatter
with hyperons interacting via the two-body ΛN force alone. The
blue dashed curve is obtained including the three-body hyperon-
nucleon potential in the parametrization (I). Shaded regions
represent the uncertainties on the results as reported in the text.
The vertical dotted lines indicate the Λ threshold densities ρthΛ . In
the inset, neutron and lambda fractions corresponding to the two
HNM EOSs.

PRL 114, 092301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015

092301-3

(Hotchi et al. (2001))(Lonardoni et al. (2015))

89Y(π+,K+)
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Hypernuclei
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(from Panda@FAIR web page)

• ΛN interactions are generally weaker than the NN  interaction 
• naively: core nucleus + hyperons 
• „separation energies“ are quite  

independent from NN(+3N) interaction  

• no Pauli blocking of Λ in nuclei  
• good to study nuclear structure 
• even light  hypernuclei exist in  

several spin states  

• non-trivial constraints 
on the YN interaction even  
from lightest ones  

• size of YNN interactions? 
need to include Λ-Σ conversion!

Only few YN data. Hypernuclear data provides additional 
constraints.
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Hypernuclei

• new data (J-PARC, Star, Alice, …)  
• world averages compiled by Mainz group (Eckert et al. ) 

￼4
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Hypernuclear interactions

 - early models (Downs, Iddings, Brown, Dalitz, before 1970) 
  - Nijmegen group (Nijm D, Nijm F, SC89, SC97 and ESC(ESC16), 1973-2016)  
  - Jülich model (Jülich 1994, Jülich 2004) 
  - RGM model of Fujiwara, fss2 (1995, 2002) 

models have successfully used to understand binding mechanism 
important role of ￼  conversion  Λ−Σ

￼5

We will use here chiral interactions, start with a brief summary of other  
approaches to the ￼  ￼  interaction ΛN (YN)

pionless (=Goldstone boson less)  EFT  
 - application to ￼  and ￼   (Hammer 2002, Hildenbrand et al. 2019,2020)  

 - application to ￼  hypernuclei (Contessi et al. PRL 2018) 
interactions given by contact interactions, usually in leading order 
only ￼  explicitly considered 
EFT requires 3BFs in leading order (three additional parameters) 
expansion parameter

3
ΛH Λnn
A = 3 − 5

Λ

EFT based approaches

Long history of ￼  interaction models ΛN



5 (+1) NN/YN (YY)  
short range parameters

23(+5)  NN/YN (YY)  
short range parameters

chiral SU(2) symmetry of QCD. The symmetry breaking pattern places stringent
constraints on the interaction of the Goldstone bosons. In particular, they do
not interact with hadrons at very low energies in the so-called chiral limit (i.e.,
the limit of massless up and down quarks). If the typical hadronic momenta in-
volved in a process are of the order of the pion mass, one is still sufficiently close
to this non-interacting limit in order for the scattering amplitude to be calculable in
perturbation theory (via the so-called chiral expansion). This method is applicable
in the Goldstone boson and single-baryon sectors and is referred to as chiral per-
turbation theory (ChPT), see [2] for a recent review. On the other hand, the in-
teraction between nucleons does not vanish and, in fact, remains strong in the
above-mentioned limit. Indeed, the appearance of shallow bound=virtual states
signals the failure of perturbation theory already at very low energies. One way
to circumvent this difficulty in the few-nucleon sector is to apply ChPT to the
irreducible part of the amplitude (i.e., the one which does not involve contributions
generated by iterations of the Schr€oodinger equation) which gives rise to the nuclear
forces [3].

In this talk, I discuss some recent developments in chiral EFT for few-nucleon
systems. In Sect. 2, I briefly outline the structure of nuclear forces in few lowest
orders of the chiral expansion. Selected applications to few-nucleon observables
are discussed in Sect. 3. I end with the summary and outlook in Sect. 4.

2 Nuclear forces in chiral EFT

The hierarchy of the nuclear forces in EFT without explicit delta degrees of free-
dom at lowest orders in the chiral expansion is depicted in Fig. 1. The diagrams

Fig. 1 Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting [3]. Solid and

dashed lines denote nucleons and pions, respectively. Solid dots, filled circles and filled squares refer

to the leading, subleading and sub-subleading vertices, respectively. The crossed square denotes 2N

contact interactions with 4 derivatives

58 E. Epelbaum

(adapted from Epelbaum, 2008)

no additional contact 
terms in NN/YN (YY) 

BB force 3B force 4B force

October 9th, 2023

Chiral NN & YN interactions

Chiral EFT implements chiral symmetry of QCD 
• perturbative expansion for the interaction 
• non-perturbative solution of Schrödinger eq. 
• symmetries constrain exchanges of Goldstone bosons 
• relations of two- and three- and more-baryon interactions 
• breakdown scale ￼≈ 600 − 700 MeV

￼6

EFT based approaches (cont’)

Retain flexibility to adjust to data due to counter terms 
Regulator required — cutoff/different orders often used to estimate uncertainty 
Λ-Σ conversion is explicitly included (size of 3BFs expected to be N2LO)
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Choice of regulator

￼7

• trad. regularized (Entem et al. 2005, Epelbaum 2001, Ordonez et al. 1994) 
• spectral function (SFR) regularization (Epelbaum 2005) 
• semilocal coordinate-space (SCS) regularization (Epelbaum et al. 2015)   
• semilocal momentum-space (SMS) regularization (Reinert et al. 2018)

Page 14 of 49 Eur. Phys. J. A (2018) 54: 86

Fig. 5. (Color online) Ratios W (2)
C, Λ, i(r)/W (2)

C, ∞(r) for differ-
ent implementations of the regularization i = 1, . . . , 4 defined
in the text as a function of the relative distance between the
nucleons. Dash–double-dotted light-brown, dashed blue, dash-
dotted green and solid red lines refer to i = 1, 2, 3 and 4,
respectively. The cutoff Λ is set to be Λ = 450 MeV. The dot-
ted horizontal line corresponds to the unregularized potential,
i.e., the ratio is equal to 1.

4) Finally, the approach to define the regularized poten-
tial W (2)

C, Λ(q) adopted in the present analysis is

W (2)
C, Λ, 4(q) = e−

q2

2Λ2
2
π

∫ ∞

2Mπ

dµ

µ3
η(2)

C (µ)

×
(

q4

µ2 + q2
+ C2

C,1(µ) + C2
C,2(µ) q2

)
e−

µ2

2Λ2 , (57)

where the functions C2
C,i(µ) are determined as de-

scribed above and given in appendix B.

In fig. 5, we show the ratios of the potentials W (2)
C, Λ, i(r),

with i = 1, . . . , 4, to the unregularized expression
W (2)

C,∞(r) As before, we use the intermediate value of
the cutoff of Λ = 450MeV. Retaining either only the
momentum-transfer- or the µ-dependent part of the reg-
ulator in eq. (34), i.e. refraining from performing the
spectral function or momentum regularization, strongly
affects the long-range part of the TPEP and results in
large deviations from the unregularized TPEP even at
rather large distances. While both the third and fourth
approaches maintain the long-range part of the TPEP,
one observes that our final approach, which minimizes the
amount of short-range contributions in the long-range po-
tentials, leads to the smoothest behavior at intermediate
distances with the smallest amount of distortions, simi-
larly to what has been observed in the case of the OPEP
in fig. 4. Notice further that the resulting coordinate-space
behavior of the regularized potentials is qualitatively sim-
ilar to that of potentials in ref. [6].

After these preparations, we have all the necessary
tools to address the convergence of the chiral expansion for
the long-range interactions in a meaningful way. In figs. 6
and 7, we show the chiral expansion of the long-range

isoscalar and isovector potentials Vi, Λ(r) and Wi, Λ(r).
While we employ in this work the cutoff values in the range
of Λ = 350 . . . 550MeV, here we only show the results for
the intermediate cutoff value of Λ = 450MeV as repre-
sentative examples. The values of the pion-nucleon (πN)
LECs are taken from the recent analysis of πN scatter-
ing in the framework of the Roy-Steiner equation [88] as
discussed in sect. 6.1. Notice that the vanishing of the cor-
responding central and spin-spin potentials at short dis-
tances is enforced by the adopted convention in our defini-
tion of the long-range contributions as discussed above. It
should be understood that the short-distance behavior of
Vi, Λ(r) and Wi, Λ(r) is scheme dependent which manifests
itself e.g. in their strong dependence on Λ. On the other
hand, we found that the profile functions are largely in-
sensitive to the considered cutoff variation at distances of
r ! 2 fm. The strongest long-range potentials are gener-
ated by the OPEP in the isovector tensor channel and the
TPEP in the isoscalar singlet channel, the feature which
follows from the large-Nc analysis of nuclear forces [89]
and is also supported by phenomenological studies. Gen-
erally, one observes a fairly good convergence of the chi-
ral expansion except for the cases where the correspond-
ing potentials are weak such as especially the isovector
spin-orbit and, to a lesser extent, the isovector central po-
tentials WLS, Λ(r) and WC, Λ(r), respectively. Notice that
while in these cases the N4LO contribution appears to
be much larger than the N3LO one, its absolute size is
comparable in magnitude with the size of N4LO contri-
butions in other channels. We further emphasize that the
somewhat peculiar convergence pattern of the chiral ex-
pansion of the TPEP at orders NLO and N2LO is, to
a large extent, related to the implicit treatment of the
∆(1232) resonance. This results in numerically large val-
ues of the subleadong pion-nucleon LECs c3 and c4 and
leads to enhanced subleading contributions to the TPEP.
The convergence of the chiral expansion for the long-range
part of the nuclear forces is improved in the chiral EFT
formulation with explicit ∆ degrees of freedom [84,90–93].
Clearly, final conclusions on the convergence of the chiral
expansion can only be drawn from looking at observables
rather than profile functions. Further discussion is thus
relegated to sect. 7.

To summarize the main results of this section, we have
introduced a momentum-space regularization framework
for pion exchange contributions by regularizing the static
propagators of pions exchanged between different nucle-
ons. Our approach maintains the long-range part of the
interaction and can be easily implemented at the level
of the spectral representation of the TPEP with no need
to recalculate loop integrals entering the definition of the
potential. The method is highly flexible and by no means
restricted to the cases where the spectral function repre-
sentation is available. In particular, it can be easily ap-
plied to the ring diagrams appearing in the three-nucleon
force starting from N3LO [34, 69] by switching to coor-
dinate space. It can also be employed straightforwardly
to regularize the exchange electroweak charge and current
operators derived using the method of unitary transfor-
mation [37–39] or based on time-ordered perturbation

Eur. Phys. J. A (2018) 54: 86 Page 9 of 49

Fig. 4. (Color online) Ratio of the regularized to unregularized spin-spin (left panel) and tensor (right panel) potentials due to
one-pion exchange as a function of the distance between two nucleons for the cutoff of Λ = 450MeV. Red solid lines correspond
to the employed regularization approach as given in eq. (30). Dash-dotted green line shows the result for the spin-spin potential
without performing the additional subtraction, i.e. with C(Mπ) = 0. Dashed blue lines show the results based on the regulator
exp(−q2/Λ2) instead of exp(−(q2 + M2

π)/Λ2).

coordinate space with

V (r⃗ ) = VC(r) + τ1 · τ2 WC(r)
+ [VS(r) + τ1 · τ2 WS(r)] σ⃗1 · σ⃗2

+ [VT (r) + τ1 · τ2 WT (r)] S12

+ [VLS(r) + τ1 · τ2 WLS(r)] L⃗ · S⃗, (24)

where S12 = σ⃗1 · r̂ σ⃗2 · r̂ − (1/3)σ⃗1 · σ⃗2, S⃗ = (σ⃗1 + σ⃗2)/2
and L⃗ = −ir⃗ × ∇⃗.

Consider first the regularized expressions for the static
one-pion exchange potential (OPEP)

V pp
1π, Λ = V nn

1π, Λ = V1π, Λ(Mπ0),

V np
1π, Λ = −V1π, Λ(Mπ0) + 2(−1)I+1V1π, Λ(Mπ±), (25)

where I denotes the total isospin of the two-nucleon sys-
tem. The above expressions include the IB correction due
to the different pion masses which is the dominant long-
range IB effect, see refs. [76–81] for more details on the
isospin dependence of the NN force. Notice that charge de-
pendence of the pion-nucleon coupling constant is consis-
tent with zero [82] and for this reason will not be taken into
account in the present analysis. The potential V1π, Λ(Mπ)
in eq. (25) has the following form in momentum space:

V1π, Λ(Mπ, q⃗ ) =

− g2
A

4F 2
π

(
σ⃗1 · q⃗ σ⃗2 · q⃗
q2 + M2

π

+ C(Mπ) σ⃗1 · σ⃗2

)
e−

q2+M2
π

Λ2 , (26)

where gA, Fπ, Mπ0 and Mπ± are the axial-vector cou-
pling constant of the nucleon, pion decay constant, neu-
tral and charged pion mass, respectively. Notice that as a
matter of convention, we include in the definition of the
OPEP a leading-order contact interaction chosen in such
a way that it minimizes the amount of short-range con-
tributions in the regularized OPEP. More precisely, the
constant C(Mπ) is determined by the requirement that

the spin-spin part of the corresponding coordinate-space
potential vanishes for r → 0, which leads to

C(Mπ) = −
Λ

(
Λ2 − 2M2

π

)
+ 2

√
πM3

πe
M2

π
Λ2 erfc

(
Mπ
Λ

)

3Λ3
,

(27)
where erfc(x) is the complementary error function

erfc(x) =
2√
π

∫ ∞

x
dt e−t2 . (28)

Using the coordinate-space expression for the regularized
Yukawa potential

UΛ(Mπ, r)=
∫

d3q

(2π)3
eiq⃗·r⃗ 1

q2 + M2
π

e−
q2+M2

π
Λ2

=
e−Mπr erfc

(
Mπ
Λ − Λr

2

)
−eMπr erfc(Mπ

Λ + Λr
2 )

8πr
,

(29)

it is easy to Fourier transform the potential V1π, Λ(Mπ, q⃗ )
to configuration space leading to

V1π, Λ(Mπ, r⃗ ) =
∫

d3q

(2π)3
eiq⃗·r⃗ V1π, Λ(Mπ, q⃗ )

=
g2

A

4F 2
π

(
S12 r

∂

∂r

(
1
r

∂

∂r

)
UΛ(Mπ, r)

+σ⃗1 · σ⃗2

[
M2

π

3
UΛ(Mπ, r)

−
(

C(Mπ) +
1
3

)
Λ3

8π3/2
e−

Λ2r2
4 −M2

π
Λ2

])
.

(30)

Up to regularization, the employed form of the static
OPEP coincides with the one used in refs. [6, 7].

In fig. 4, we plot the ratio of the regularized to un-
regularized spin-spin and tensor potentials of the one-
pion exchange (in the limit of exact isospin symmetry) for

W(2)
C,Λ(r) =

1
2π2r ∫

∞

2Mπ

dμ μ e−μrη(2)
C (μ)e− q2 + μ2

2Λ2 +subtraction

(Reinert et al. 2018)(Reinert et al. 2018)

1￼  exchangeπ

2￼  exchange (NLO)π

NLO13/NLO19 YN based on trad. reg.  
N2LO based on SMS (incl. subtractions)

￼Λ = 450 MeV
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SMS N2LO interaction 
In order to check uncertainties realization in  
     LO(700)  NLO(500), NLO(550), NLO(600) and N2LO(500), N2LO(550), N2LO(600) 

Details on fitting procedure using partly flavor-SU(3): 

• flavor SU(3) is broken by using physical meson and baryon masses!   

• retain only the ￼  exchange from the 2 Goldstone boson exchanges 
         should be absorbed in SU(3)-breaking counter terms  

• use 36 data at low energy to determine s-wave counter terms  

• hypertriton is required to be bound (binding energy roughly correct)  
           in NLO and N2LO 

• include SU(3) breaking in LO counter terms (necessary to avoid bound states in YN) 

• assume SU(3) symmetry for p-waves counter terms in NLO  
values for p-wave counter terms of NN 

• fit to differential cross section in N2LO  
      two versions for N2LO(550) differ for differential cross sections 
      none is clearly preferred  

2π

as(Λp) = − 2.8 fm

￼8
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Fig. 5 Cross section for Σ−p → Λn as a function of plab. Same description of the curves as in Fig. 1. Data are from the E40
Collaboration [8] for the momentum regions 470− 550 and 550− 650 MeV/c, respectively, and from Refs. [57,60].

based on NLO19 exhibit a sizable cutoff dependence. It
is due to the fact that the hadronic amplitude is over-
all attractive for some cutoffs and repulsive for others
so that there is either a destructive or constructive in-
terference with the attractive Coulomb interaction. In
case of a destructive interference there is a small dip
in the differential cross section at very forward angles.

Data with high resolution would be needed in order to
resolve that issue.

Results for the transition Σ−p → Λn are presented
in Fig. 5. Also in this case the predictions of the SMS
Y N potentials and those of NLO19 are rather simi-
lar. Specifically, all interactions yield a reaction cross
section in line with the E40 data [8]. The angular dis-
tributions are likewise reproduced, cf. Fig. 5 (center
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Fig. 7 Cross section for Λp as a function of plab. Same description of the curves as in Fig. 1. Data are from Refs. [55] (filled
circles), [56] (filled squares), [68,69] (open triangles), [70] (open squares), [71] (open circles) and [6] (inverted triangles).

pected to be provided by the future E86 experiment at
J-PARC [42].

Results for ΛN phase shift in the S- and P -waves
are shown in Figs. 8 and 9. Like in case of ΣN dis-
cussed above, the predictions for the 1S0 and 3S1 par-
tial waves are strongly constrained by fitting the cross
section data. And, as already mentioned, like in our
previous works [38,39,76] the empirical binding energy

of the hypertriton 3
ΛH is used as a further constraint.

Thereby we can exploit the fact that the spin-singlet
and triplet amplitudes contribute with different weights
to the Λp cross section and to the 3

ΛH binding energy,
see Eq. (9) in [39]. Without that feature it would not be
possible to fix the relative strength of the spin-singlet
and spin-triplet S-wave components of the Λp interac-
tion. A more detailed discussion on the hypertriton will

• most relevant cross sections very similar 
in NLO and N2LO 

• similar to NLO19 
• alternative fit (see later) 

N2LO(550)
NLO(550)
NLO19
N2LO(550) (alter.)

J. Haidenbauer et al. EPJ A 59, 63 (2023). 
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Fig. 8 ΛN phase shifts: 1S0 and 3S1–3D1. Same description of the
curves as in Fig. 1. The results for the 3S1 and 3D1 phases are shown
modulo 180◦

Fig. 9 ΛN phase shifts: P-waves. Same description of the curves as
in Fig. 1

that some recent studies suggest a larger dependence on the
NN potential [82,83]. This is in part due to using lower order
NN interactions but also because the dependence on the NN
interaction seems to be larger for the LO Y N interactions.
We are currently investigating the NN force dependence in
more detail [84]. Our preliminary results confirm the small
NN force dependence of the order of 10 keV for the NLO
and N2LO calculations presented here. The dependence is
certainly much smaller than the experimental uncertainty of
±40 keV.

As already mentioned, we require the hypertriton to be
bound as an additional constraint for our Y N interaction.
However, we do not include the 3

ΛH separation energy in
the actual fitting procedure because of its large experimental
uncertainty. While for a long time the value given by Jurič et
al. [85], BΛ = 0.13 ± 0.05 MeV, has been accepted as the
standard, recent measurements reported by the STAR and
ALICE Collaborations indicate that the separation energy
could be either significantly larger (0.41± 0.12± 0.11 MeV
[14]) or somewhat smaller (0.072 ± 0.063 ± 0.036 MeV
[15]). The latest average from the Mainz Group is 0.148 ±
0.040 MeV [86]. New high-precision experiments to deter-
mine the hypertriton binding energy are planned at the Mainz
Microtron (MAMI) [86] and at JLab [87] and will hopefully
resolve those discrepancies.

Given these variations, as a guideline of the present work,
we aimed at achieving a 3

ΛH separation energy in the order of
150 keV with our chiral Y N interactions. An arbitrary fine-
tuning to one or the other value is not really meaningful at
the present stage. It would be also questionable in view of the
fact that there should be a contribution from chiral three-body
forces (3BF) [43]. Those could contribute up to 50 keV to the
binding, as argued in Ref. [39]. Incidentally, since the present
experimental uncertainties exceed that estimation, there is no
way of fixing the pertinent 3BF LECs from the hypertriton
and, therefore, we refrain from including 3BFs in the present
work. A possible and viable way to fix the 3BFs is, in our
opinion, via studies of the 4

ΛH/4ΛHe and 5
ΛHe systems and we

intend to explore that option in the future.
Results of the SMS Y N potentials for the hypertriton sep-

aration energy are summarized in Table 5. It is interesting to
see that the predicted values lie fairly close together, keeping
in mind, of course, that the NLO and N2LO potentials have
been all tuned to the sameΛN scattering length in the 1S0 par-
tial wave. Evidently, the separation energies are well in line
with the experimental values by Jurič et al. and agree also
with the new ALICE measurement within the uncertainty.
Compared to the previous chiral Y N interactions NLO13
and NLO19, the separation energies are slightly larger indi-
cating that the new interactions are more attractive than the
previous ones.

It is now interesting to apply the same interactions to a
more densely bound system, namely 4

ΛHe. For this hypernu-

123

Selected phase shifts
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SMS NLO/N2LO interaction 
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• s-phase shifts very similar in NLO and N2LO 
• similar to NLO19 although different tail at high momenta 

N2LO(550)
NLO(550)
NLO19

J. Haidenbauer et al. 
 EPJ A 59, 63 (2023). 



October 9th, 2023

 scattering can be strongly related to NN in 3P0,3P1,3P2 (at least in NLO) 
In 1P1, in NLO, setting the counter term to zero is OK.
Σ+−p
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displayed. This is the region with the data of Eisele et al. [58],
which are included in the fitting procedure for the S-wave
LECs. One can see that the results for the SMS potentials
are slightly below those of NLO19. The main reason for that
is that we no longer impose strict SU(3) constraints on the
S-wave contact terms.

Once the S-wave LECs are fixed from a combined fit to
the Λp and ΣN cross sections, the differential cross sections
established in the E40 experiment are analyzed. Interestingly,
in the NLO case taking over the LECs from the correspond-
ing NN potential by Reinert et al. [31] for the 3P0,1,2 par-
tial waves, in accordance with SU(3) symmetry, and assum-
ing the LEC in the 1P1 to be zero, yields already a good
description of the E40 data in the region 440–550 MeV/c,
cf. Figure 1 (center of the lower panel). For the N2LO inter-
action all P-wave LECs are adjusted to the data. Actually,
here we explore two scenarios (denoted by the superscripts
a and b in the tables below so that one can distinguish them),
one where the resulting angular distribution is similar to that
obtained for NLO (solid line) and one which produces an
overall more pronounced angular dependence (dashed line).
The latter is clearly preferred by the available data in that
momentum range. However, a view on the situation in the
next momentum region, 550–650 MeV/c, see Fig. 1 (lower
right), tells us that one has to be careful with conclusions.
Here the experiment suggest an overall somewhat different
angular dependence, which seems to be more in line with a
flat behavior or a very moderate increase in forward direction.
In any case, note that the alternative fit provides an at least
visually slightly better description of the old low-energy data
(lower left). Indeed, those data from the momentum region
160–180 MeV/c [58] (Tlab ≈ 12 MeV) seem to exhibit a
more pronounced angular dependence than the E40 data at
much higher momenta. Thus, it would be very interesting to
explore the energy region in between by experiments. Such
data could also help to pin down the P-wave contributions
more reliably since higher partial waves should be much less
important. For completeness, let us mention that the fitting
ranges considered for establishing the SMS NN potential are
plab ! 480 MeV/c at NLO and plab ! 540 MeV/c at N2LO
[31].

The predictions by NLO19 are definitely at odds with
the E40 experiment. However, it should be said that the
pronounced rise of the cross section for backward angles,
excluded by the data, is mainly due to an accidental choice
of the LEC C3SD1

in the ΣN I = 3/2 contact interaction
in [38,39]. Its value can be easily re-adjusted, without any
change in the overall quality of those Y N potentials. Perti-
nent results, for NLO19(600) as example, are indicated by
dotted lines in Fig. 1.

The integrated Σ+ p cross section over a larger energy
range is shown in Fig. 1 (upper right). Note that again the
angular averaging according to Eq. (19) is applied to the the-

Fig. 2 ΣN I = 3/2 phase shifts: P-waves. Same description of the
curves as in Fig. 1. For illustrating the extent of SU(3) symmetry break-
ing, NN phase shifts [65,66] for partial waves in the pertinent {27} irrep
are indicated by circles

ory results. It is likewise done to obtain the indicated E40
data points because only differential cross sections in a lim-
ited angular range are available [9]. Once more the NLO19
potential does not reproduce the trend of the data. Specifi-
cally, contrary to the experiment, there is a rise of the cross
section for larger plab which we observed also for NLO13
and which seems to be present also in results by the so-called
covariant chiral EFT [35,37]. This rise is due to an artifi-
cial behavior of the 3S1 partial wave, presumably caused by
the non-local regulator employed in our NLO13 and NLO19
potentials. Anyway, since plab = 600 MeV/c corresponds
to a laboratory energy of Tlab ≈ 150 MeV, one is certainly
in a region where NLO and possibly even N2LO cannot be
expected to be still quantitatively reliable. In this context, one
should keep in mind that the ΛNπ channel opens around that
energy which clearly marks the formal limit for the applica-
bility of any effective two-body potential. However, whether
the noticeable drop in the experimental cross section, which
can not be reproduced by theory, has something to do with
the opening of that channel or not, remains unclear at present.

The authors of Ref. [9] have attempted to perform a phase-
shift analysis, including partial waves up to the total angular
momentum of J = 2, with the aim to determine the phase
in the 3S1 channel. For that different scenarios have been
considered where the phase shifts in the partial waves in the

123

N2LO(550)
NLO(550)
NLO19
N2LO(550) (alter.)

NN phase

J. Haidenbauer et al. 
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new data (Miwa(2022))  at higher energies provides new constraints!
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Fig. 1 Cross section for Σ+p scattering as a function of plab. Results are shown for the SMS NLO (dash-dotted) and N2LO
(solid) Y N potentials with cutoff 550 MeV. The dashed line corresponds to an alternative fit at N2LO, see text. The cyan band is
the result for NLO19 [39]. The dotted line is the result for NLO19(600) with readjusted C3SD1

, see text. Data are from the E40
experiment [9] for the momentum regions 440− 550 and 550− 650 MeV/c, respectively, and from Refs. [58,64].

experiments. Such data could also help to pin down the
P -wave contributions more reliably since higher partial
waves should be much less important. For completeness,
let us mention that the fitting ranges considered for es-
tablishing the SMS NN potential are plab ! 480 MeV/c
at NLO and plab ! 540 MeV/c at N2LO [31].

The predictions by NLO19 are definitely at odds
with the E40 experiment. However, it should be said

that the pronounced rise of the cross section for back-
ward angles, excluded by the data, is mainly due to an
accidental choice of the LEC C3SD1

in the ΣN I = 3/2
contact interaction in [38,39]. Its value can be easily re-
adjusted, without any change in the overall quality of
those Y N potentials. Pertinent results, for NLO19(600)
as example, are indicated by dotted lines in Fig. 1.

SMS NLO/N2LO interaction 
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Fig. 3 ΣN I = 3/2 phase shifts: 1S0 and 3S1–3D1. Same description
of the curves as in Fig. 1

{27} irrep of SU(3), cf. Table 2, were fixed either from NN
results (exploiting SU(3) symmetry) or from predictions of
Y N models. Earlier efforts for establishing the ΣN I = 3/2
phase shifts, based on the differential cross section of Eisele
et al. (lower-left of Fig. 1), can be found in Refs. [72,73].
Our predictions for the phase shifts are displayed in Figs. 2
and 3. For illustration we include the NN phase shifts in the
3P0,1,2 partial waves (circles) which, as said, would be iden-
tical to the ones for ΣN with I = 3/2 under strict validity
of SU(3) symmetry. It is interesting to see that the difference
is indeed fairly small. In comparison, the predictions of the
chiral potentials for 1P1, not constrained by SU(3), vary siz-
ably. The results for the 1S0 and 3S1 partial waves shown in
Fig. 3 are, of course, strongly constrained by the available
low-energy cross section data. The behavior of the 1S0 is
qualitatively similar to that in the NN case [31], as expected
from the approximate SU(3) symmetry. One can observe a
large difference in the results for the mixing angle ϵ1 between
the SMS Y N potentials and NLO19. As discussed above, its
large value is the reason for the rise of the cross section at
backward angles, cf. Fig. 1. At the time when NLO19 and
NLO13 were established, the existing data did not allow to
fix the relevant LEC (C3SD1

) reliably. However, it can be re-
adjusted (see the dotted line) without changing the overall
χ2 and then the pertinent results can be brought in line with
the E40 measurement.

3.2 The Σ− p channel

Results for Σ− p elastic scattering are presented in Fig. 4.
The SMS Y N potentials produce a slightly weaker energy
dependence of the integrated cross section than NLO19.
In the momentum region of the new E40 data [7], plab =
500–700 MeV/c, the predictions of all our Y N potentials
are similar and in agreement with the experiment. Also the
differential cross sections agree with the experiment, cf.
the lower panel of Fig. 4. It should be said, however, that
the proper behavior in forward direction remains somewhat
unclear since the experimental information is too sparse in
that angular region. Nonetheless, the data points available
for the momentum region 550–650 MeV/c could point to a
somewhat steeper rise for small angles. The predictions based
on NLO19 exhibit a sizable cutoff dependence. It is due to
the fact that the hadronic amplitude is overall attractive for
some cutoffs and repulsive for others so that there is either
a destructive or constructive interference with the attractive
Coulomb interaction. In case of a destructive interference
there is a small dip in the differential cross section at very
forward angles. Data with high resolution would be needed
in order to resolve that issue.

Results for the transition Σ− p → Λn are presented in
Fig. 5. Also in this case the predictions of the SMS Y N
potentials and those of NLO19 are rather similar. Specifi-
cally, all interactions yield a reaction cross section in line
with the E40 data [8]. The angular distributions are likewise
reproduced, cf. Fig. 5 (center and left of the lower panel). One
should keep in mind that in case of NLO19 no actual fitting
of the P-wave LECs was performed. The ones belonging to
the {27} and {10∗} irreps were taken over from fits to NN P-
waves, exploiting SU(3) symmetry constraints, whereas the
others were fixed qualitatively by requiring that the contri-
bution of each P-wave to the Λp cross section for momenta
above the ΣN threshold remains small [38]. We note that
for Σ− p → Λn partial waves up to J = 8 are needed to
achieve converged results for the differential cross section at
600 MeV/c.

In the context of the inelastic Σ− p data by Engelmann et
al. [57], we would like to point to a footnote in that paper
which emphasizes the role of the Σ− lifetime in their deter-
mination of the cross sections. The fact that the present value
is almost 10 % smaller [74] suggests that the actual cross
sections could be smaller, too.

There are no new data for the charge-exchange reaction
Σ− p → Σ0n. The predictions of chiral EFT are in agree-
ment with the existing experimental evidence, as one can see
in Fig. 6.
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Notes on the current status of the SMS interactions 

• so far no YNN forces (N2LO) have been used in A>2 calculations (see in a moment) 

• p-waves are not uniquely determined          
 more accurate hypernuclear calculations and/or additional differential observables 
(polarizations, more cross differential cross sections, …)  

• data from additional channels will be helpful (￼ ) 

• calculation for single particle energies in nuclear matter yields results similar to NLO19 
 — dependence on order and cutoff indicates need to include YNN forces 

• even ratio of spin singlet/spin triplet strength requires ￼   
 
Is assumption of negligible YNN force valid for this hypernucleus?  

Λp, Σ−p → Σ0n, . . .

3
ΛH

￼13

SMS NLO/N2LO interaction 

       uncertainty analysis to  

1. pin down dependence on NN force   
       (motivated by recent work of Gazda et al 2022, Htun et al. 2021) 

2. estimate N2LO contribution which quantifies the expected YNN force contribution
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Order N2LO requires combination of chiral   interaction 

Need calculation of separation energies (use Faddeev, Yakubovsky eq. or J-NCSM)  
and use different orders for uncertainty estimate.  

Assuming a negligible numerical uncertainty and the following ansatz for the order by 
order convergence    

                    ￼       where   ￼     (￼    LO, exp., max, …)  

a Bayesian analysis of the uncertainty is possible  (see  Melendez et al. 2017,2019)  

Extracting ￼  for ￼  from calculations and assuming identical probability 
distributions for ￼  for ￼  the uncertainty is given by the distribution of  

                                            ￼  

NN, YN, 3N and YNN

XK = Xref

K

∑
k=0

ck Qk Q = Meff
π /Λb Xref

ck k ≤ K
ck k > K

δXK = Xref

∞

∑
k=K+1

ck Qk

￼14

Uncertainty analysis  to ￼  to ￼A = 3 5
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How to obtain the distribution for ￼  ? 

      EFT expectation: ￼  are natural-sized, i.e. of order 1.  

                           defines prior distribution (usually normal distribution with width ￼ )  

                           ￼  is distributed using an inverse-￼  distribution (parameters ￼ , ￼ )  
      
For this choice, the posterior then follows the same distribution (conjugate prior)  
        with shifted parameters given the data:   

                   ￼      ￼       (￼  for ￼  values extracted)     

               uncertainty follows so-called student ￼ distribution (analytically known)  
               allows to extract degree of believe intervals (DoB) 

dependence on choice of prior will be less for large ￼  ! 

ck

ck

c̄
c̄ χ2 ν0 τ0

ν = ν0 + nc ντ2 = ν0τ2
0 + ⃗c2

k ⃗c2
k = ∑ c2

k nc

t

nc
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Uncertainty analysis  to ￼  to ￼A = 3 5



October 9th, 2023

• expansion parameter ￼  should be consistent with assumption  
of ￼  independent distribution of ￼   

• distribution of of prior should be consistent with observed pattern for ￼   
• few orders used cannot entirely remove prior dependence 

    ￼    

    ￼   

    ￼

Q
k ck

ck

Q = 0.4
τ2

0 = 2.25
ν0 = 1.5
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Uncertainty analysis  to ￼  to ￼A = 3 5
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Fig. 4 (Left) Consistency plots for comparing actual changes in higher orders to the estimated DoB intervals for p[%]. (Right)
Values of the c coe�cients extracted using as a reference value the maximum of the energy at LO and the scale di↵erence to
NLO depending on the order k. Also shown are the average and standard variation order by order and in total.

consistency, we use both kind of information simulta-
neously. In this way, we finally obtained Q = 0.4. Note
that this value of Q is slightly larger than the one ob-
tained from regular nuclei [24]. This could probably be
related to the small number of data that are available
for determining the distributions. We test the validity of
our choices by generating consistency plots as proposed
in Ref. [59] that show the comparison between the ob-
tained rates of the overlap of higher-order calculations
with lower-order degree of believe (DoB) intervals and
the expected values, see Fig. 4. Clearly, our uncertainty
estimates are statistically consistent with the observed
changes due to higher orders contributions.

The obtained distribution of ck coe�cients is also in-
teresting. Their dependence on the order k of the expan-
sion is shown on the right hand side of Fig. 4 together
with the average values per order and the complete av-
erage with standard deviation. For their extraction, we
chose reference values close to the corresponding exper-
imental separation energies in order to be independent
of the LO result. The latter might be altered by choos-
ing a quite small singlet scattering length in order to
match the 3

⇤H separation energy [61]. In addition, be-
cause of this choice for Xref , we are able to use all coef-
ficients for determining the posteriors. The final results
are nevertheless independent of the reference value. In-
terestingly, the NLO coe�cients have a tendency to be
larger than all the other ones. We note that this ten-
dency is also observed for the expansion coe�cients ob-
tained for light nuclei [24]. Nevertheless, in general, all
expansion coe�cients are of natural size and, therefore,
the expansion scale Q seems to be consistently chosen.
For this extraction, it has been assumed that the di↵er-
ence of the higher order contributions are of the order
naively expected. We have also attempted to analyse
the results assuming that all higher order contributions
are of the order of the first missing contribution, i.e.

the YNN interaction at order k = 3. In this case, the
higher order NN expansion coe�cients become unnat-
urally small which supports our assumption that these
di↵erences are indeed of the expected order. Note that
this assumption is not true for the regulator depen-
dence which will ultimately be counterbalanced by a
YNN 3BF once it has been taken into account. The
cuto↵ dependence is therefore a Q3 e↵ect for all orders
higher than and including NLO.

The pattern of convergence of the separation ener-
gies with respect to chiral order is shown in Fig. 5. As
discussed above, the same expansion scale of Q = 0.4
is used for the convergence with respect to the NN and
YN interactions. Clearly, the variation due to the NN
interaction is much smaller than the one due to the YN
interaction. In order to compare theNN cuto↵ variation
with the relevant uncertainty estimate, we include re-
sults for di↵erent NN cuto↵s as green points. Although
these calculations were performed at order N4LO+, we
show them in the figure at NLO since the cuto↵ vari-
ation will be ultimately mostly observed by the only
N2LO contribution that we are not taking into account,
namely the leading YNN interaction. As can be seen,
the NN cuto↵ variation is consistent with the 68% DoB
interval, in most cases it is smaller than this uncertainty
estimate. This is consistent with our observation in the
previous section and with the general expectation that
the cuto↵ variation and the dependence on the chiral
order of the NN interaction is of less relevance when
predicting ⇤ separation energies.

The more relevant uncertainty is due to the trunca-
tion of the chiral expansion of the YN interaction. The
figure shows the expected error bands at di↵erent or-
ders. Clearly, the large expansion parameter leads only
to a slow decrease of this uncertainty in higher orders.
The grey bands indicate the uncertainty at NLO at-
tached to the result at order N2LO. This is the relevant
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(see also Maris et al. 2022)  



October 9th, 2023 ￼17

Application to ￼3ΛH
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Fig. 5 Comparison of the convergence with respect to the chiral order of the employed NN (left) and YN (right) potentials
for 3

⇤H, 4
⇤He(0+), 4

⇤He(1+)and 5
⇤He (from top to bottom).

• ￼ , ￼  and ￼  are chosen using all available data (NN and YN convergence) 

• uncertainties are extracted using ￼  for NN or YN convergence  

• use ￼  of individual hypernuclei 

Q ν0 τ0

ck

ck

DoB 95%
DoB 68%
￼ΛNN = 450 MeV
cutoff dependence of N4LO+

exp.

individual uncertainties for NN and YN convergence for each separation energy

consistent with experimental data 
cutoff dependence always at least NLO (YNN missing!)
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Application to ￼4ΛHe
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Fig. 5 Comparison of the convergence with respect to the chiral order of the employed NN (left) and YN (right) potentials
for 3

⇤H, 4
⇤He(0+), 4

⇤He(1+)and 5
⇤He (from top to bottom).

DoB 95%
DoB 68%
￼ΛNN = 450 MeV
cutoff dependence of N4LO+

exp.
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Application to ￼  and summary5
ΛHe

12

Fig. 5 Comparison of the convergence with respect to the chiral order of the employed NN (left) and YN (right) potentials
for 3

⇤H, 4
⇤He(0+), 4

⇤He(1+)and 5
⇤He (from top to bottom).

• without YNN: sizable uncertainties at ￼  and 5 
• ￼  sufficiently accurate 
• NN/YN dependence small at least for ￼

A = 4
A = 3

A = 3 13

nucleus �68(NN) �68(YN)

3
⇤H 0.011 0.015

4
⇤He (0+) 0.157 0.239

4
⇤He (1+) 0.114 0.214

5
⇤He 0.529 0.881

Table 5 Half the size of the 68% DoB intervals for the ⇤ sep-
aration energy at NLO based on the convergence with respect
to the YN and NN interactions (in MeV).

quantity for the comparison to the data shown in red
since all calculations do not include the leading chiral
YNN interactions. Note that we include the experimen-
tal separation energies of 4⇤H and 4

⇤He in the figure since
the calculations have been performed with isospin con-
serving interactions that cannot properly predict the
charge symmetry breaking di↵erences of the separation
energies of these mirror hypernuclei. It can be seen that
all experimental energies are within the 68% DoB in-
tervals. The NLO uncertainties are substantial and sig-
nificantly larger than the experimental uncertainties for
A = 4 and 5. Only for 3

⇤H, the experimental and theo-
retical uncertainty are comparable, justifying our choice
to constrain the strength of the YN interaction in the
1S0 partial wave by the 3

⇤H separation energy [25,62].

In order to extract an estimate of the size of YNN in-
teractions from these results, we have summarized half
the size of the NLO 68% DoB interval in Table 5 for
both, the NN and the YN convergence. The depen-
dence on the NN interaction is generally a factor two
smaller than the one on the YN interaction. It is how-
ever larger than the one anticipated from older calcu-
lations comparing results for di↵erent phenomenolog-
ical NN interactions [11]. Incidentally, the values are
roughly in line with the “model uncertainties” from
Ref. [22], though one has to keep in mind that the latter
results are obtained in an entirely di↵erent way, see the
discussion in the preceding subsection.

The relevant quantity for assessing the size of YNN
interactions is the NLO 68% DoB for YN since this
quantity is larger. It is reassuring that the estimate for
the YNN force for 3

⇤H is around 15 keV and therefore
smaller than the experimental uncertainty. This esti-
mate is smaller than the result of a first explicit (though
incomplete) evaluation of 3BFs for 3

⇤H by Kamada et
al. [63], namely of the part due to 2⇡ exchange, that
suggests a contribution of around 50-100 keV. It re-
mains to be seen whether this 2⇡ contribution will be
partially canceled by short range interactions once the
LECs have been adjusted to other light nuclei.

For A = 4, the YNN contribution can be expected
to be of the order of 200 keV. Also this estimate is in
line with previous results. In Ref. [18], we observed that
the NLO13 and NLO19 YN potentials exhibit a regula-
tor dependence of up to 210 keV and variations of the
separation energies of up to 320 keV due to dispersive
e↵ects associated with the ⇤N -⌃N coupling which we
both can take as estimate for YNN contributions. The
estimate here, based on the convergence pattern of the
chiral expansion, is of similar size. For 5

⇤He, the compar-
ison of NLO19 and NLO13 can again provide hints to
the size of YNN interactions. We found in Ref. [37] that
the result for NLO13 and NLO19 di↵ers by 1.1 MeV
which gives a lower bound of possible YNN force con-
tributions. Therefore, also the estimate in Table 5 of
900 keV appears reasonable.

Additionally, we employed the approach proposed
by Epelbaum, Krebs and Meißner (EKM) [26] for es-
timating the uncertainty as outlined in the appendix.
This estimated error depends strongly on the expan-
sion parameter chosen. It turns out that for standard
values of Q = 0.31, the estimates are well in line with
the Bayesian results. For Q = 0.4, the EKM estimates
are somewhat larger but still of similar order as the
statistically motivated ones.

It is also interesting to look at the prospective N2LO
uncertainties once the leading YNN interactions are in-
cluded. In our analysis, we find 6, 100 and 350 keV for
the A=3, 4 and 5 hypernuclei, respectively. These esti-
mates are however strongly dependent on the expansion
parameter Q. For example, for Q = 0.3 as in [24], we
find N2LO uncertainties of 3, 50 and 200 keV.

5 Summary

In this work, we have investigated various aspects rele-
vant for the theoretical uncertainties of calculations of
separation energies of ⇤ hypernuclei with A  5. These
light hypernuclei have attracted some attention recently
because their properties are mostly determined by the
S-wave YN interactions which are reasonably well con-
strained by the available YN data and the hypertriton
separation energy. To a great extent the e↵ort for pro-
viding a quantitative assessment of the uncertainties of
our few-body calculations was motivated by the study
of Gazda et al. [22] which suggested that even the em-
ployed NN interaction might have an significant impact
on the uncertainty of the predicted hyperon separation
energies.

In the present work, we considered two possible sour-
ces for uncertainties. First, there is the numerical un-
certainty which, in our case, is caused by discretization
and/or truncation of the model space in the no-core
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Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to Λ − "0 mixing (left two
diagrams) and π0 − η mixing (right diagram).

Fig. 2 CSB contributions from K±/K 0 exchange (left) and from contact terms (right)

2.2 CSB in Chiral EFT

As noted by Dalitz and von Hippel many decades ago [1], Λ − "0 mixing leads to a long-ranged CSB
contribution to the ΛN interaction due to pion exchange, see Fig. 1. The strength of the potential can be
estimated from the electromagnetic mass matrices,

⟨"0|δm|Λ⟩ = [m"0 − m"+ + mp − mn]/
√

3,

⟨π0|δM2|η⟩ = [M2
π0 − M2

π+ + M2
K+ − M2

K 0 ]/
√

3 (1)

and subsumed in terms of an effective ΛΛπ coupling constant

fΛΛπ =
[

−2
⟨"0|δm|Λ⟩
m"0 − mΛ

+ ⟨π0|δM2|η⟩
M2

η − M2
π0

]

fΛ"π . (2)

Based on the latest PDG mass values [29], one obtains

fΛΛπ = f (Λ−"0)
ΛΛπ + f (η−π0)

ΛΛπ ≈ (−0.0297 − 0.0106) fΛ"π . (3)

In this context, let us mention that there are also lattice QCD calculations of Λ − "0 mixing [30–33].
In our implementation of CSB within chiral EFT, we follow closely the arguments given in pertinent

studies of isospin-breaking effects in the nucleon-nucleon (NN ) system, see Refs. [26–28]. According to Ref.
[27], the CSB contributions at leading order are characterized by the parameter ϵM2

π/Λ
2 ∼ 10−2, where

ϵ ≡ md−mu
md+mu

∼ 0.3 and Λ ∼ Mρ . In particular, one expects a potential strength of V CSB
BB ∼ (ϵM2

π/Λ
2) VBB .

At order n = 2 (NLØ in the notation of Ref. [28]), there are contributions from isospin violation in the pion-
baryon coupling constant, which in the ΛN case arise from the aforementioned "0 −Λ mixing as well as from
π0 − η mixing. In addition, there are contributions from short range forces (arising from ρ0 −ω mixing, etc.).
In chiral EFT, such forces are simply represented by contact terms involving LECs (Fig. 2 right) that need to
be fixed by a fit to data. Contributions at n = 1 (LØ) are due to a possible Coulomb interaction between the
baryons in question and due to mass differences between Mπ± and Mπ0 . Such contributions do not arise in
the ΛN system. However, in the extension to SU(3), there is CSB induced by the MK±-MK 0 mass difference,
see left side of Fig. 2. We take that into account in our calculation, since it is formally at leading order. But
because the kaon mass is rather large compared to the mass difference, its effect is actually very small. For a
general overview, we refer the reader to Table 1 in Ref. [28].
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• formally leading contributions: 
Goldstone boson mass difference 

      —  very small due to the small  
      relative difference of kaon masses

• subleading but most important  
— effective CSB  ΛΛπ coupling constant (Dalitz, van Hippel, 1964) 

• so far less considered, but equally important 
   —   CSB contact interactions (for singlet and triplet) 

Aim: use A=4 hypernuclei to determine the two unknown 
   CSB LECs and predict Λn scattering 
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Fit of contact interactions

• Adjust the two CSB contact interactions to one main scenario (CSB1) 
• Size of LECs as expected by power counting   

 

￼  

 

md − mu

mu + md ( Mπ

Λ )
2

CS,T ≈ 0.3 ⋅ 0.04 ⋅ 0.5 ⋅ 104 GeV ∝ 6 ⋅ 10−3 ⋅ 104 GeV

  105 Page 8 of 15 J. Haidenbauer et al.

Table 4 CSB contact terms for the 1S0 (s) and 3S1 (t) partial waves, cf. Eq. (4), fixed from the present experimental splittings
∆E(0+) = 233 keV and ∆E(1+) = −83 keV (CSB1)

Λ NLO13 NLO19

CCSB
s CCSB

t CCSB
s CCSB

t

500 4.691 × 10−3 −9.294 × 10−4 5.590 × 10−3 −9.505 × 10−4

550 6.724 × 10−3 −8.625 × 10−4 6.863 × 10−3 −1.260 × 10−3

600 9.960 × 10−3 −9.870 × 10−4 9.217 × 10−3 −1.305 × 10−3

650 1.500 × 10−2 −1.142 × 10−3 1.240 × 10−2 −1.395 × 10−3

The values of the LECs are in 104 GeV−2

that in Λp. Furthermore, there are noticeably smaller changes for the triplet Λn scattering length in those two
scenarios. In particular, for CSB1 the values for Λn and Λp are fairly close to that without CSB.

Table 2 also provides the results of the full (non-perturbative) calculation of the CSB splittings of the 0+
and 1+ states for A = 4 hypernuclei for all three CSB scenarios. In addition, the predictions for the original
Y N potentials, without any explicit CSB force, and for the case where only the one-boson-exchange CSB
contributions (CSB-OBE) (Λ − #0 mixing, η − π0 mixing, K±/K 0 exchange) are added. For CSB1 and
CSB3, the CSB of the separation energy agrees within experimental uncertainties with the values mentioned
above. For CSB2, there are some deviations to the pre-2014 situation. Given that this is an outdated scenario
anyway and that CSB2 required a complete refit of the Y N interaction, we refrained from further improving
the description of CSB. The obtained splittings without CSB contact terms confirm the conclusion from earlier
studies [7,34,35] that the standard mechanisms can only explain a very small fraction of the experimentally
found CSB in A = 4 hypernuclei. In particular, because of cancellations between the OBE contributions,
once η − π0 mixing is treated properly [4], the overall results do not really improve when including those.
In addition, the large variation between the NLO13 and NLO19 results is a clear signal for the missing CSB
contact terms.

Now we analyze in more detail the results for scenario CSB1, the one which is in line with the present
experimental situation. Corresponding results are summarized in Table 3. There is a clear and universal trend
for a sizable splitting between the Λp and Λn scattering length in the singlet state, once we impose the
reproduction of ∆E(0+) and ∆E(1+). The splitting in the triplet state is much smaller and actually goes into
the opposite direction. In particular, for reproducing the experimentally observed CSB splitting in the A = 4
hypernuclei, in the 1S0 state the Λn interaction is required to be more attractive than for Λp, whereas for 3S1
the Λn interaction is slightly less attractive than that for Λp.

With regard to the Λn scattering lengths the results for the singlet channel are quite robust. The predictions
are in the narrow range of −3.2 to −3.3 fm and practically independent of the cutoff and whether NLO13 or
NLO19 is used. There is more variation in case of the triplet state which, however, is simply a reflection of the
situation observed already in the calculation without CSB forces. One very interesting aspect is that, adding
the CSB interaction to our NLO potentials established in Refs. [20,21], improves also the overall description
of the Λp data as quantified by the χ2 value – without any refit, see Table 2. It is due to the noticeable reduction
of the strength of the Λp interaction in the singlet channel by the needed CSB force, cf. the pertinent scattering
lengths in the table. In fact, one could interpret this as sign for a consistency of the available Λp data with
the present values of the CSB level splittings in the A = 4 hypernuclei. In this context we want to mention
that a recent measurement of the Λp momentum correlation function in pp collisions at 13 TeV [47] likewise
indicates that a slightly less attractive Λp interaction is favored by the data.

Finally, note that ∆aCSB
1S0 ≡ aΛp − aΛn is ≈ 0.62± 0.08 fm for the 1S0 partial wave, which is comparable

to but noticeably smaller than the CSB effects in the pp and nn scattering lengths where it amounts to
∆aCSB = app − ann = 1.5 ± 0.5 fm [12]. On the other hand, in case of the triplet state, the prediction
is with ∆aCSB

3S1 ≈ −0.10 ± 0.02 fm significantly smaller and of opposite sign. Here, in the ΛN case, the
uncertainty is estimated solely from the differences between NLO13 and NLO19 and the cutoff variations. A
precise experimental determination of the CSB in A = 4 hypernuclei will allow one to obtain the scattering
length with the accuracy estimated here. As can be seen in Table 2, different scenarios for CSB lead to rather
different values of the scattering length. This is the main lesson from this work. Obviously, for reliable values
one needs a confirmation of the presently available experimental data, with best possible accuracy.

• Problem: large experimental uncertainty of experiment 
• here only fit to central values to test theoretical  

uncertainties 
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Table 6 Perturbative estimate of different contributions to the CSB of 4
ΛHe and 4

ΛH for the 0+ state based on 4
ΛHe wave functions

for scenario CSB1

Interaction ⟨T ⟩CSB ⟨VY N ⟩CSB V CSB
NN ∆E pert

Λ ∆EΛ

NLO13(500) 44 200 16 261 265(14)
NLO13(550) 46 191 20 257 261(14)
NLO13(600) 44 187 20 252 256(14)
NLO13(650) 38 189 18 245 249(14)
NLO19(500) 14 224 5 243 249(14)
NLO19(550) 14 226 7 247 252(14)
NLO19(600) 22 204 12 238 243(14)
NLO19(650) 26 207 12 245 250(14)

The SMS N4LO+ (450) NN interaction [40] was used in all cases .The contributions of the kinetic energy ⟨T ⟩CSB, the Y N
interaction ⟨VY N ⟩CSB and the contribution of the nuclear core V CSB

NN = ⟨VNN ⟩CSB −E(3He)+E(3H) are separated and combined
to the total CSB ∆E pert

Λ . The direct comparison of separation energies for full calculations of 4
ΛHe and 4

ΛH, ∆EΛ, is also given.
All energies are in keV

Table 7 Perturbative estimate of different contributions to the CSB of 4
ΛHe and 4

ΛH for the 1+ state based on 4
ΛHe wave functions

for scenario CSB1

Interaction ⟨T ⟩CSB ⟨VY N ⟩CSB VCSB
NN ∆E pert

Λ ∆EΛ

NLO13(500) 5 − 90 15 − 71 − 66(14)
NLO13(550) 5 − 86 18 − 63 − 56(14)
NLO13(600) 4 − 83 19 − 59 − 53(14)
NLO13(650) 3 − 80 17 − 59 − 55(14)
NLO19(500) 1 − 84 3 − 80 − 75(14)
NLO19(550) 2 − 81 2 − 77 − 72(14)
NLO19(600) 4 − 82 6 − 71 − 67(14)
NLO19(650) 4 − 79 9 − 66 − 69(14)
Same interactions and notations as in Table 6

Fig. 3 CSB of 4
ΛHe/4ΛH in the 0+ (top, red circles) and 1+ (bottom,blue circles) state compared to the currently best experimental

values (red and blue bands). The error bars reflect the numerical uncertainty
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Prediction for ￼  scatteringΛn

￼22

• assuming the current experimental situation for ￼  

• without CSB: ￼        with CSB1: ￼      

• improved description of ￼  data 
• almost independent of cutoff & NLO variant  
• CSB of triplet is smaller than of singlet

4
ΛH / 4

ΛHe
aΛn

s ≈ 2.9 fm aΛn
s ≈ 3.3 fm

Λp

An accurate prediction for the  ￼  interaction is possible using hypernuclei!Λn

Title Suppressed Due to Excessive Length 9

Table 2 Comparison of di↵erent CSB scenarios, based on the Y N interactions NLO13 and
NLO19 with cuto↵ ⇤ = 600 MeV. Results are shown for the original NLO interactions, with
addition of OBE contribution to CSB, and for the scenarios CSB1, CSB2, CSB3 with added
CSB contact terms. CSB1 corresponds to the present experimental status. Note that the �2

for the NLO interactions di↵ers slightly from the ones given in Refs. [20,21] because there the
small di↵erences between ⇤p and ⇤n have not been taken into account. Small deviations of
the CSB from values of the three scenarios are due to using perturbation theory for fitting and
using a smaller number of partial waves for fitting.

a⇤p
s a⇤p

t a⇤n
s a⇤n

t �2
(⇤p) �2

(⌃N) �2
(total) �E(0

+
) �E(1

+
)

NLO13 -2.906 -1.541 -2.907 -1.517 4.47 12.34 16.81 58 24

CSB-OBE -2.881 -1.547 -2.933 -1.513 4.39 12.43 16.83 57 20

CSB1 -2.588 -1.573 -3.291 -1.487 3.43 12.38 15.81 256 -53

CSB2 -3.983 -1.281 -2.814 -0.948 4.51 12.31 16.82 299 161

CSB3 -2.792 -1.666 -3.027 -1.407 9.52 12.41 21.93 370 56

NLO19 -2.906 -1.423 -2.907 -1.409 3.58 12.70 16.28 34 10

CSB-OBE -2.877 -1.415 -2.937 -1.419 3.30 13.01 16.31 -6 -7

CSB1 -2.632 -1.473 -3.227 -1.362 3.45 12.68 16.13 243 -67

CSB2 -3.618 -1.339 -3.013 -1.117 4.02 12.09 16.12 218 129

CSB3 -2.758 -1.546 -3.066 -1.300 7.49 12.64 20.14 359 45

Table 3 Singlet (s) and triplet (t) S-wave scattering lengths and �2 values for the fits to the
present experimental CSB splittings of �E(0+) = 233 keV and �E(1+) = �83 keV (CSB1),
based on the Y N interactions NLO13 and NLO19.

a⇤p
s a⇤p

t a⇤n
s a⇤n

t �2(⇤p) �2(⌃N) �2(total)

NLO13(500) -2.604 -1.647 -3.267 -1.561 4.47 12.13 16.60

NLO13(550) -2.586 -1.551 -3.291 -1.469 3.46 12.03 15.49

NLO13(600) -2.588 -1.573 -3.291 -1.487 3.43 12.38 15.81

NLO13(650) -2.592 -1.538 -3.271 -1.452 3.70 12.57 16.27

NLO19(500) -2.649 -1.580 -3.202 -1.467 3.51 14.69 18.20

NLO19(550) -2.640 -1.524 -3.205 -1.407 3.23 14.19 17.42

NLO19(600) -2.632 -1.473 -3.227 -1.362 3.45 12.68 16.13

NLO19(650) -2.620 -1.464 -3.225 -1.365 3.28 12.76 16.04

Mainz became available: �E(0+) = 350 ± 50 keV and �E(1+) = 30 ± 50 keV.
It is the status considered by Gazda and Gal in Ref. [9] and discussed in the
review [44]. In addition, we look at the situation up to 2014 (which will be labeled
CSB2), namely �E(0+) = 350 ± 50 keV and �E(1+) = 240 ± 80 keV [13]. It is
the one discussed by Gal in Ref. [8] and, of course, in all pre-2014 studies of CSB
in the A = 4 hypernuclei. Note that the CSB splitting in the 1+ states in the
scenarios CSB1 and CSB3 is compatible with zero, given the present experimental
uncertainty.

We determine the CSB LECs from perturbative calculations of the CSB contri-
bution to the 4

⇤H-4⇤He splittings for the three scenarios CSB1-3. Table 2 provides
a comparison of the results for the di↵erent scenarios with those of the initial
(NLO13 and NLO19) Y N potentials, for a regulator with cuto↵ ⇤ = 600 MeV, cf.
Ref. [20] for details. The total �2 for the NLO13 and NLO19 potentials is from a

for "CSB1": currently accepted  
         experimental values

remeasurement of ￼  excitation energy to match accuracy for ￼ ? 

measurement of ￼  ground state at J-PARC 

4
ΛH 4

ΛHe
4
ΛHe
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Conclusions & Outlook
• YN  interactions not well understood   

• scarce YN data  

• more information necessary to solve "hyperon puzzle" 

• Hypernuclei provide important constraints    

• CSB of ￼  scattering &  ￼    

• ￼  is used to constrain the spin dependence 

• new experiments planned at J-PARC, MAMI, J-Lab, FAIR,… 

• New SMS YN interactions 
• give an accurate description low energy YN data 

• order LO, NLO and N2LO allow uncertainty quantification  

• have a non-unique determination of contact interactions (data necessary)  

• Chiral 3BF need to be included  

• NLO uncertainty is sizable in ￼  and ￼   

• chiral 3BFs are formulated (Petschauer et al., (2016))  
   and the  implementation is currently checked

ΛN 4
ΛHe / 4

ΛH
3
ΛH

A = 4 5

￼23


