Hyperon-nucleon interaction in chiral effective field theory

Johann Haidenbauer

IAS, Forschungszentrum Jülich, Germany

International Workshop on J-PARC Hadron Physics 2023, Tokai, Japan, September 12-15, 2023

(Hoai Le, Ulf-G. Meißner, Andreas Nogga)

2 YN interaction in chiral effective field theory

3 Light A hypernuclei

Johann Haidenbauer Hyperon-nucleon interaction

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Hyperon physics - recent developments

- Role of hyperons in neutron stars ("hyperon puzzle") Neutron stars with masses ≥ 2M_☉ ⇒ stiff equation of state (EoS) With increasing density n → Λ ⇒ softening of the EoS ⇒ Conventional explanations of observed mass-radius relation fail
- New measurements of Λp cross sections by the CLAS Collaboration at JLab New extended measurements of ΣN observables in the E40 experiment at J-PARC differential cross sections for Σ⁺p, Σ⁻p
- Measurements of two-particle momentum correlation functions by the STAR, HADES, and ALICE Collaborations (Λρ, ΛΛ, Ξ⁻ρ, ...)
- HAL QCD: Lattice QCD simulations for *YN* interactions for quark masses close to the physical point ($M_{\pi} \approx 145 \text{ MeV}$)
- Progress in *ab initio* methods like no-core shell model (NCSM) microscopic calculations of hypernuclei up to A ≥ 10

イロト 不得 とくき とくきとうき

BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χ EFT à la Weinberg (1990)

Advantages:

- Power counting systematic improvement by going to higher order
- Possibility to derive two- and three-baryon forces and external current operators in a consistent way
- degrees of freedom: octet baryons (*N*, Λ, Σ, Ξ), pseudoscalar mesons (π, *K*, η)
- pseudoscalar-meson exchanges
- contact terms represent unresolved short-distance dynamics involve low-energy constants (LECs) that need to be fixed by a fit to data

ΛN - ΣN interaction

LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244
 NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24
 NLO19: J.H., U.-G. Meißner, A. Nogga, FPJA 56 (2020) 91
 SMS NLO, N²LO: J.H., U.-G. Meißner, A. Nogga, H. Le, EPJA 59 (2023) 63

(BB systems with strangeness S = -1 to -6)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Extension of chiral EFT interaction up to N²LO

(Nucleon-nucleon forces in chiral EFT (E. Epelbaum))

N²LO: no new (additional) BB LECs in the two-body sector

```
leading-order three-body forces (3BFs)
```

イロト イポト イヨト イヨト 二日

NN interaction in chiral EFT

Semilocal momentum-space (SMS) regularized chiral NN potential

(Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86) [up to N⁴LO (N⁴LO⁺) !!]

LO to NLO: drastic change in all partial waves

NLO to N²LO: changes mostly in *P*-waves and higher partial waves

chiral YN potential up to N²LO

adopt the framework of Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86: "Semilocal momentum-space regularized (SMS) chiral *NN* potentials"

• employ a regulator that minimizes artifacts from cutoff Λ

nonlocal cutoff $(\vec{q} = \vec{p}' - \vec{p})$

$$V_{1\pi}^{
m reg} \propto rac{e^{-rac{p'^4+p^4}{\Lambda^4}}}{ec{q}^2+M_{\pi}^2} o rac{1}{ec{q}^2+M_{\pi}^2} \left[1-rac{p'^4+p^4}{\Lambda^4}+\mathcal{O}(\Lambda^{-8})
ight]$$

local cutoff:

$$V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{\vec{q}^2 + M_{\pi}^2}{\Lambda^2}}}{\vec{q}^2 + M_{\pi}^2} \to \frac{1}{\vec{q}^2 + M_{\pi}^2} - \frac{1}{\Lambda^2} + \frac{\vec{q}^2 + M_{\pi}^2}{\Lambda^4} + \dots$$

does not affect long-range physics at any order in the $1/\Lambda^2$ expansion applicable to 2π exchange too:

$$V_{2\pi} = \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} \mu d\mu \frac{\rho(\mu)}{\vec{q}^2 + \mu^2} \to V_{2\pi}^{\text{reg}} = e^{-\frac{\vec{q}^2}{2\Lambda^2}} \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} \mu d\mu \frac{\rho(\mu)}{\vec{q}^2 + \mu^2} e^{-\frac{\mu^2}{2\Lambda^2}} + \dots$$

NN: $\Lambda = 350\text{-}550 \text{ MeV} (\pi)$ YN: $\Lambda = 500\text{-}600 \text{ MeV} (\pi, K, \eta)$

SMS YN potentials up to NLO, N²LO (with $\Lambda = 550$ MeV)

(J.H., U.-G. Meißner, A. Nogga, H. Le, EPJ A 59 (2023) 63) NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

quality of the fit – total χ^2 (36 data points): NLO19(600): 16.0 SMS NLO: 15.2 SMS N²LO: 15.6

cross sections dominated by S-waves (are already well described at NLO) \rightarrow (as expected) practically no change when going to N²LO

integrated cross sections at higher energies not included in the fitting process!

 $\Sigma^+ \rho \rightarrow \Sigma^+ \rho$ and $\Sigma^- \rho \rightarrow \Sigma^- \rho$ cross sections:

$$\sigma = \frac{2}{\cos \theta_{\max} - \cos \theta_{\min}} \int_{\cos \theta_{\min}}^{\cos \theta_{\max}} \frac{d\sigma(\theta)}{d\cos \theta} d\cos \theta$$

 $\cos \theta_{\min} = -0.5; \cos \theta_{\max} = 0.5$

fss2 ... Fujiwara et al. (constitutent quark model) Jülich 04, Nijmegen NSC97f ... meson-exchange potentials

イロト 不得 とくき とくきとうき

LECs in the ${}^{1}S_{0}$, ${}^{3}S_{1}$ - ${}^{3}D_{1}$ fixed from low-energy YN cross sections

SMS NLO: LECs in ³*P*-waves taken over from *NN* fit (RKE) (strict SU(3) symmetry: $V_{NN} \equiv V_{\Sigma^+\rho}$ in the ¹*S*₀, ³*P*_{0,1,2} partial waves!)

SMS N²LO: LECs in *P*-waves fitted to the E40 data (two trials)!

data suggest a drop from $440 \le p \le 550 \text{ MeV/c to } 550 \le p \le 650 \text{ MeV/c!}$ effect of $\Lambda p\pi^+$ threshold ($\approx 600 \text{ MeV/c}$)?

3

 $\Sigma^- p \rightarrow \Lambda n$: quite well reproduced by NLO19 (NLO13) and SMS YN potentials $\Sigma^- p \rightarrow \Sigma^- p$: behavior at forward angles remains unclear

 $\Sigma^- \rho$ and $\Sigma^- \rho \to \Lambda n$ data for (550 $\leq \rho \leq$ 650) MeV/c are reproduced with comparable quality

- no unique determination of all *P*-wave LECs possible
- one needs data from additional channels ($\Lambda p, \Sigma^- p \rightarrow \Sigma^0 n, ...$)
- one needs additional differential observables (polarizations, ...)

Hypernuclei within the no-core shell model (NCSM)

Basic idea: use harmonic oscillator states and soft interactions

- m-scheme uses single particle states (center-of-mass motion not separated)
- antisymmetrization for nucleons easily performed (Slater determinant)
- Iarger dimensions

(applications to *p*-shell hypernuclei by Wirth & Roth; $A \leq 13$)

Jacobi-NCSM

- uses relative (Jacobi) coordinates (Hoai Le et al., EPJA 56 (2020) 301)
- explicit separation of center-of-mass motion possible
- antisymmetrization for nucleons difficult but feasible for A ≤ 9
- small dimensions

Soft interactions: Similarity renormalization group (SRG) (unitary transformation)

$$\frac{dH(s)}{ds} = [[T, H(s)], H(s)] \qquad H(s) = T + V(s) \qquad V(s) : V^{NN}(s), V^{YN}(s)$$

- Flow equations are solved in momentum space
- parameter (cutoff) $\lambda = \left(4\mu_{BN}^2/s\right)^{1/4}$ is a measure of the width of the interaction in momentum space
- V(s) is phase equivalent to original interaction
- transformation leads to induced 3BFs, 4BFs, ...

(induced 3BFs included in the work of Wirth & Roth and in our recent studies) (induced 4BFs are most likely very small)

Procedure

slide from Hoai Le:

· extrapolation of energies:

▶ strong correlations between $E_{nucl}(\mathcal{N}), E_{hypnucl}(\mathcal{N})$

$$B_{\Lambda,\mathcal{N}} = E_{nucl}(\mathcal{N}) - E_{hypnucl}(\mathcal{N})$$
$$B_{\Lambda,\mathcal{N}} = B_{\Lambda,\infty} + A_1 e^{-b_1 \mathcal{N}}$$

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 56 (2020)

イロト 不得 とくほと くほとう

ъ

Results for $B_{\wedge}(A \leq 8)$

Hoai Le et al., PRC 107 (2023) 024002

- NLO13 and NLO19 are almost phase equivalent
- NLO13 characterized by a stronger $\Lambda N \cdot \Sigma N$ coupling potential $({}^{3}S_{1} \cdot {}^{3}D_{1})$

Experiment: M. Jurič et al. NPB 52 (1973); E.Botta et al., NPA 960 (2017) 165

NN: SMS N⁴LO⁺(450) + 3NF: N²LO(450) *YN*: NLO13(19) + SRG-induced *YNN* force – but no chiral *YNN* forces!

- NLO13 underestimates separation energies
- NLO19 describes ${}^{4}_{\Lambda}$ He(1⁺), ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li fairly well

イロト イポト イヨト イヨト

Charge symmetry breaking in the ΛN interaction

CSB in the ${}^{4}_{\Lambda}$ He - ${}^{4}_{\Lambda}$ H hypernuclei

イロト イポト イヨト イヨト

CSB results for A=4,7,8 hypernuclei

Hoai Le, J.H., U.-G. Meißner, A. Nogga, PRC 107 (2023) 024002

- NLO13 & NLO19 CSB results for A=7 are comparable to experiment.
- two potentials predict a somewhat larger CSB in A=8 doublet as compared to experiment
 - experimental CS splitting for A=8 could be larger than 40 ± 60 keV?

• CSB estimate for A = 4 too large? different spin-dependence? STAR Collaboration (M. Abdallah et al., PLB 834 (2022) 137449) $\Delta B_{\Lambda}(_{\Lambda}^{A} \text{He} - _{\Lambda}^{A} \text{H}; 0^{+}) = 160 \pm 140 \text{ keV}; \quad \Delta B_{\Lambda}(_{\Lambda}^{A} \text{He} - _{\Lambda}^{A} \text{H}; 1^{+}) = -160 \pm 140 \text{ keV}$

< 🗇 ▶

Separation energies for A=3-8 ∧ hypernuclei (MeV)

- NLO13(19), SMS NLO,N²LO are phase equivalent ($\chi^2 \approx 16$ for 36 YN data points)
- NLO13 characterized by a stronger $\Lambda N \cdot \Sigma N$ coupling potential $({}^{3}S_{1} \cdot {}^{3}D_{1})$

	³ _A H [Faddeev]	$^{4}_{\Lambda}$ He(0 ⁺)	$^{4}_{\Lambda}$ He(1 ⁺)	⁵ ∧He	7∧Li	⁸ ∧Li
NLO13	0.090	1.48 ± 0.02	0.58 ± 0.02	2.22 ± 0.06	5.28 ± 0.68	5.75 ± 1.08
NLO19	0.091	1.46 ± 0.02	1.06 ± 0.02	3.32 ± 0.03	6.04 ± 0.30	$\textbf{7.33} \pm \textbf{1.15}$
SMS NLO	0.124	$\textbf{2.10} \pm \textbf{0.02}$	1.10 ± 0.02	$\textbf{3.34} \pm \textbf{0.01}$		
SMS N ² LO	0.139	$\textbf{2.02} \pm \textbf{0.02}$	1.25 ± 0.02	3.71 ± 0.01		
Exp.*	0.164 ± 0.04	$\textbf{2.347} \pm \textbf{0.036}$	0.942 ± 0.036	3.102 ± 0.03	5.85 ± 0.13	$\textbf{6.80} \pm \textbf{0.03}$
					5.58 ± 0.03	

NLO19 (600): ${}^{4}_{\Lambda}$ He(1⁺), ${}^{5}_{\Lambda}$ He, ${}^{7}_{\Lambda}$ Li fairly well described NLO13 (600) underestimates most separation energies SMS NLO,N²LO (550): ${}^{4}_{\Lambda}$ He(0⁺, 1⁺), ${}^{5}_{\Lambda}$ He fairly well described (${}^{3}_{\Lambda}$ H is used to constrain the strength of the ΛN singlet/triplet interaction!)

are the variations due to (missing) chiral YNN forces?

chiral YNN forces appear at N²LO

 \Rightarrow estimate size of YNN forces from truncation error in the chiral expansion

* Chart of Hypernuclides https://hypernuclei.kph.uni-mainz.de/

イロン 不得 とくほう 不良 とう

Uncertainty quantification for EFTs

• Uncertainty for a given observable X(p):

(EKM: Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53, S. Binder et al., PRC 93 (2016) 044002)

estimate uncertainty via

- the expected size of higher-order corrections
- the actual size of higher-order corrections

 $\Delta X^{LO} = Q^2 |X^{LO}| \quad (X^{NLO} \approx Q^2 X^{LO}) \quad \text{expansion parameter} : Q \sim M_{\pi} / \Lambda_b \approx 140/600$ $\Delta X^{NLO} = \max \left(Q^3 |X^{LO}|, Q^1 |\delta X^{NLO}|\right); \quad \delta X^{NLO} = X^{NLO} - X^{LO}$ $\Delta X^{N^2 LO} = \max \left(Q^4 |X^{LO}|, Q^2 |\delta X^{NLO}|, Q^1 |\delta X^{N^2 LO}|\right); \quad \delta X^{N^2 LO} = X^{N^2 LO} - X^{NLO}$...

 Bayesian approach (Furnstahl, Klco, Phillips, Melendez): (Furnstahl et al., PRC 92 (2015) 024005; Melendez et al., PRC 100 (2019) 044001)

$$\begin{split} X^{(k)} &= X^{(0)} + \sum_{i=2}^{k} \delta X^{(i)} =: X_{ref}(c_0 + c_2 Q^2 + c_3 Q^3 + \dots) \\ \Delta X^{(k)} &= X_{ref}\left(\sum_{n=k+1}^{\infty} c_n Q^n\right); \quad c_n \sim \mathcal{O}(1); \ c_n | \bar{c}^2 \sim \mathcal{N}(0, \bar{c}^2); \ \bar{c}^2 \sim \chi^{-2}(\nu_0, \tau_0^2) \end{split}$$

 \bar{c}^2 ... marginal variance; v_0 ... prior degrees-of-freedom; τ_0^2 ... prior scale (pointwise model) Q, \bar{c}^2 , etc. ... deduced from order-by-order calculations, prior expectations, consistency plots $+ \Box \rightarrow + \langle \overline{C} \rangle \rightarrow \langle \overline{C} \rightarrow \langle \overline{C} \rangle \rightarrow \langle \overline{C} \rightarrow \langle \overline{C} \rightarrow \langle \overline{C} \rangle \rightarrow \langle \overline{C} \rightarrow \langle \overline{C$

Truncation error within the Bayesian approach

Hoai Le et al., arXiv:2308.01756

- NN: SMS LO N⁴LO⁺ (+ N²LO NNN force)
- YN: SMS LO, NLO, N²LO
- excellent convergence for NN interaction
- uncertainty is dominated by the truncation in YN interaction
- effect of YNN 3BF ~ half of 68% DoB interval for NLO result

ъ

Truncation error for separation energies B_{Λ} (MeV)

Truncation error at NLO provides an estimate (upper limit) for the contribution of the leading order $\land NN$ (and ΣNN) 3BF to the separation energies B_{\land}

 $\Delta X^{NLO} \sim |X_{YN}^{N^2LO} - X_{YN}^{NLO}|, \; |X_{YNN}^{N^2LO}|$

	Bayesian	approach	EKM			
	$\Delta_{68}(NN)$	Δ ₆₈ (YN)	$\Delta(NN)$	$\Delta(YN)$	$\Delta(NN)$	$\Delta(YN)$
			<mark>Q</mark> = 0.31		<mark>Q</mark> = 0.40	
³ H	0.01	0.02	0.01	0.02	0.01	0.02
⁴ _∧ He (0 ⁺)	0.16	0.24	0.06	0.30	0.13	0.39
⁴ He (1 ⁺)	0.11	0.21	0.07	0.36	0.09	0.47
⁵ He	0.53	0.88	0.64	1.1	0.83	1.4

 \Rightarrow expect YNN 3BF contributions of 20 keV ($^{3}_{\Lambda}$ H), 250 keV ($^{4}_{\Lambda}$ H, $^{4}_{\Lambda}$ He), 900 keV ($^{5}_{\Lambda}$ He)

イロト 不得 とくき とくきとうき

Situation for the hypertriton

Experiment: 164 \pm 40 keV (Mainz), 406 \pm 120 keV (STAR), 102 \pm 63 keV (ALICE)

- Bayesian approach: ΔB_{Λ} (3BF) \leq 20 keV
 - (a) cutoff variation: ΔB_{Λ} (3BF) \leq 50 keV
 - (b) "pseudo 3BF" from ΛN - ΣN coupling:

switch off $\Lambda N \cdot \Sigma N$ coupling in Faddeev-Yakubovsky equations: ΔB_{Λ} (3BF) ≈ 10 keV

$$\begin{array}{l} \text{(c)} \ {}^{3}\text{H}: \underbrace{\text{3NF}}_{} \sim \mathcal{Q}^{3} \left| \langle V_{NN} \rangle \right|_{^{3}\text{H}} \sim 650 \text{ keV} \\ (\left| \langle V_{NN} \rangle \right|_{^{3}\text{H}} \sim 50 \text{ MeV}; \ \mathcal{Q} \sim M_{\pi} / \Lambda_{b}; \ \Lambda_{b} \simeq 600 \text{ MeV}) \\ & \left| \left| \langle V_{\Lambda N} \rangle \right|_{^{3}\text{H}} \sim 3 \text{ MeV} \rightarrow \Delta B_{\Lambda} \left(\underbrace{\text{3BF}}_{} \right) \approx \underbrace{\mathcal{Q}^{3}}_{} \left| \langle V_{\Lambda N} \rangle \right|_{^{3}\text{H}}^{3} \simeq 40 \text{ keV} \end{array}$$

Kamada et al. (PRC 108 (2023) 024004): explicit inclusion of 2π exchange ΛNN 3BF $\Rightarrow \Delta B_{\Lambda} \approx 20$ keV (and repulsive!) (based on NLO13, NLO19)

Jülich-Bonn-Munich: $B_{\Lambda}({}_{\Lambda}^{3}H)$ is used as constraint to fix the relative strength of the ΛN interaction in the singlet (${}^{1}S_{0}$) and triplet (${}^{3}S_{1}$) states \Rightarrow justified since the <u>3BF</u> contribution is small

Note: root-mean-square radius of $_{\Lambda}^{3}$ H: $\sqrt{\langle r^{2} \rangle} \approx 5 \text{ fm}$ (deuteron: $\sqrt{\langle r^{2} \rangle} \approx 2 \text{ fm}$) \Rightarrow most of the time Λ and two *N*s are outside of the range of a standard 3BF!

Three-body forces are not observables!

two-body off-shell ambiguities ⇔ three-body forces (Polyzou & Glöckle, 1990)

depend on degrees of freedom considered in the calculations $(N, \land \text{ only } ... \text{ or } \Sigma, \Delta, \Sigma^*, ...)$

different degrees of freedom in the effective field theory

- different counting schemes
- different hierarchy of 3BFs

(Hammer, Nogga, Schwenk, Rev. Mod. Phys. 85 (2013) 197)

3

Three-baryon forces in chiral EFT

3N force (van Kolck, PRC 49 (1994) 2932; ... E. Epelbaum et al., PRC 66 (2002) 064001)
 2 LECs in 3N force: D (c_D), E (c_E) → have to be fixed in 3N sector (e.g., ³H binding energy + ⁴He binding energy)
 (2π exchange 3N force: c₁, c₃, c₄ ... fixed from πN scattering) number of LECs small because of the Pauli principle

BBB force in SU(3) chiral EFT (S. Petschauer et al., PRC 93 (2016) 014001)
 BBB contact terms: 18 LECs (ANN: 3 LECs)
 one-meson exchange terms: 14 LECs (ANN: 2 LECs)
 two-meson exchange terms: 10 LECs ... (b₀, b_D, b_F, b_{1,2,3,4}, d_{1,2,3})

<週 > < 注 > < 注 > ... 注

Three-baryon forces with decuplet baryons

NNN: inclusion of the $\Delta(1232)$ resonance

Epelbaum, Krebs, Meißner, NPA 806 (2008) 65; Epelbaum, Hammer, Meißner, Rev. Mod. Phys. 81 (2009) 1773

Decuplet (resonance) saturation + SU(3) symmetry

 \land NN: 1 LEC (\land N ↔ Σ(1385)N contact term) \land NN-ΣNN, ΣNN: 1 additional LEC (ΣN ↔ Σ(1385)N contact term) \Rightarrow 3BF involves only 2 LECs ... to be fixed from $B_{\land}(^{4}_{\land}H)$, ...

Summary

Hyperon-nucleon interaction within chiral EFT

ΛN-ΣN interaction within semilocal momentum-space regularized chiral EFT confirm our previous YN results (up to NLO) based on a nonlocal regulator successful extension to N²LO new Σ[±]p differential cross sections around p_{lab} ≈ 500 MeV/c can be described unique determination of the P-waves is not yet possible

Hypernuclei

- three-body forces: are small for $^3_{\Lambda}$ H, as expected moderate for $^4_{\Lambda}$ H, $^4_{\Lambda}$ He, $^5_{\Lambda}$ He ... needs to be quantified/confirmed by explicit inclusion of 3BFs
 - \rightarrow LECs of 3BF could be fixed from B(⁴_{\lambda}H), ...
- charge-symmetry breaking in ${}^4_\Lambda H {}^4_\Lambda He$ can be reproduced when taking into account the full leading CSB potential within chiral EFT
- charge-symmetry breaking in A = 7 8 A-hypernuclei predicted CSB splitting for ⁷_ABe, ⁷_ALi*, ⁷_AHe is in line with experiments CSB splitting for ⁸_ABe, ⁸_ALi is overestimated

∧p momentum correlation functions

 ALICE: is the Ap interaction possibly somewhat weaker than what the cross section data from the 1960ies suggest (Mihaylov, Korwieser, EPJC 83 (2023) 590)

backup slides

Johann Haidenbauer Hyperon-nucleon interaction

<ロト < 回 > < 回 > < 回 > 、

æ

Consider new Star measurement

STAR Collaboration (M. Abdallah et al.), PLB 834 (2022) 137449

Recent Star measurement suggests somewhat different CSB in A=4:

$\Delta E(1^+) = B_{\Lambda}(^4_{\Lambda}\text{He}, 1^+) - B_{\Lambda}(^4_{\Lambda}\text{H}, 1^+)$		NLO19(500)	CSB	CSB*
$= -83 \pm 94 \text{ keV} \Rightarrow (CSB)$	a_s^{Ap}	-2.91	-2.65	-2.58
$= -160 \pm 140 \pm 100 \text{ keV} \Rightarrow (\text{CSB}^*)$	$a_s^{\Lambda n}$	-2.91	-3.20	-3.29
·	δa_s	0	0.55	0.71
$\Delta E(0^+) = B_{\Lambda}({}^{+}_{\Lambda}\text{He}, 0^+) - B_{\Lambda}({}^{+}_{\Lambda}\text{H}, 0^+)$	a_t^{Ap}	-1.42	-1.57	-1.52
$= 233 \pm 92 \text{ keV} \Rightarrow (CSB)$	$a_t^{\Lambda n}$	-1.41	-1.45	-1.49
$= 160 \pm 140 \pm 100 \text{ keV} \Rightarrow (\text{CSB}^*)$	δa_t	-0.01	-0.12	-0.03
* STAR Collaboration PLB 834 (2022)	$\rightarrow \delta a(^1S)$) increases wh	ile $\delta a({}^3S_1$) decrease

→ How does the STAR measurement affect the predictions of CSB in A=7,8 multiplets ?

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

Impact of Star measurement on CSB in A=7,8

NN:SMS N⁴LO+(450) +YN: NLO13,19(CSB) $\lambda_{NN} = 1.6 \text{ fm}^{-1}$ $\lambda_{YN}^{opt} = 0.823 \text{ fm}^{-1}$ $B_{\Lambda}({}^{5}_{\Lambda}\text{He}, \lambda_{YN}^{opt}) = B_{\Lambda}({}^{5}_{\Lambda}\text{He}, 3\text{BFs})$

ъ

イロト 不同 トイヨト イヨト

- CSB* fit predicts reasonable CSB in both A=7 and A=8 systems
- CSB in A=4(0⁺) and A=8, and in A=4(1⁺) and A=7 are correlated

Estimate of truncation error

- filled symbols: actual estimates for SMS LO, NLO, N²LO YN potentials
- opaque symbols: anticipated results when YNN 3BFs are included
- ${}^{3}_{\Lambda}$ H: used as constraint! Conclusions on true uncertainty are not possible
- Q: $Q = M_{\pi}^{\text{eff}} / \Lambda_b \approx 200/650$ (Epelbaum et al., for light nuclei)

A=3-5 ∧ hypernuclei with SRG-induced YNN force

Hoai Le, EPJ Web Conf. 271 (2022) 01004 (HYP2022)

 \Rightarrow contributions of SRG-induced YNNN forces are negligible

(R. Wirth, R. Roth, PRL 117 (2016); PRC 100 (2019))

イロト 不同 トイヨト イヨト

э

Two-particle correlation function

Koonin-Pratt formalism

Correlation function for identical particles ($\Lambda\Lambda$, $\Sigma^+\Sigma^+$, ...)

$$C(k) \simeq 1 - \frac{1}{2} \exp(-4k^2 R^2) + \frac{1}{2} \int_0^\infty 4\pi r^2 \, dr \, S_{12}(\mathbf{r}) \left[|\psi(k, r)|^2 - |j_0(kr)|^2 \right]$$

Correlation function for non-identical particles ($\Lambda p, \Xi^- p, K^- p, ...$)

$$C(k) \simeq 1 + \int_0^\infty 4\pi r^2 \, dr \, S_{12}(\mathbf{r}) \left[|\psi(k,r)|^2 - |j_0(kr)|^2 \right]$$

Extension to multi-channel problem

$$|\psi(\mathbf{k},\mathbf{r})|^2
ightarrow \sum_{eta} \omega_{eta} |\psi_{eta lpha}(\mathbf{k}_{lpha},\mathbf{r})|^2$$

$$\mathcal{C}_{lpha}(k_{lpha})\simeq 1+\sum_{eta}\omega_{eta}\int_{0}^{\infty}4\pi r^{2}\,dr\,\mathcal{S}_{eta}(\mathbf{r})\left[\left|\psi_{etalpha}(k_{lpha},r)
ight|^{2}-\delta_{etalpha}\left|j_{0}(k_{lpha}r)
ight|^{2}
ight]$$

 \sum_{β} ... over all two-body intermediate states that couple to α ω_{β} ... weights of the various components (often put to 1)

assume a static and spherical Gaussian source with radius *R*: $S_{12}(\mathbf{r}) = \exp(-r^2/4R^2)/(2\sqrt{\pi}R)^3$

3

p momentum correlation function at $\sqrt{s} = 13$ TeV

ALICE Collaboration: pp collisions at 13 TeV (S. Acharya et al., PLB 833 (2022) 137272)

⇒ prediction of NLO19 is fairly well in line with data
 sensitive to the assumption about the contribution of the Σ⁰p feed-down
 Λp: Slightly weaker energy dependence? Reduced overall strength?
 Mihaylov & Gonzalez (EPJC 83 (2023) 590): a_t = -1.15 ± 0.07 fm

Reduced strength of the $\wedge N$ interaction in the ³S₁ state

NLO19(600) is used as starting point

$$a_t = -1.41 \text{ fm} \implies a_t = -1.30 \text{ fm} \quad [-1.15 \text{ fm}]$$

$$\chi^2 = 2.09 \implies \chi^2 = 3.45 \quad [7.14] \text{ (Sechi - Zorn)}$$

$$\chi^2 = 1.29 \implies \chi^2 = 1.15 \quad [6.00] \text{ (Alexander)}$$

$$n_\sigma = 3.2 \implies n_\sigma = 2.2 \text{ (with residual $\Sigma^0 \rho$ interaction included}$$

(reduction in the ${}^{1}S_{0}$ state is limited since we want/need the ${}^{3}_{\Lambda}$ H to be bound!)

structure of contact terms for BB

SU(3) structure for scattering of two octet baryons \rightarrow

 $8 \otimes 8 = 1 \oplus 8_a \oplus 8_s \oplus 10^* \oplus 10 \oplus 27$

BB interaction can be given in terms of LECs corresponding to the SU(3), irreducible representations: C¹, C⁸*a*, C⁸*s*, C^{10*}, C¹⁰, C²⁷

	Channel	I	V _α	V_{eta}	$V_{\beta \to \alpha}$
<i>S</i> = 0	NN ightarrow NN	0	-	$C^{10^*}_{eta}$	-
	NN ightarrow NN	1	C_{α}^{27}	-	-
<i>S</i> = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$	$\frac{1}{10}\left(9C_{\alpha}^{27}+C_{\alpha}^{8_s}\right)$	$\frac{1}{2}\left(C_{\beta}^{8_a}+C_{\beta}^{10^*}\right)$	- <i>C</i> ⁸ sa
	$\Lambda N \rightarrow \Sigma N$	1 2	$\frac{3}{10}\left(-C_{\alpha}^{27}+C_{\alpha}^{8_s}\right)$	$\frac{1}{2}\left(-C_{\beta}^{8a}+C_{\beta}^{10^{*}}\right)$	-3 <i>C</i> ⁸ sa
					C ⁸ sa
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{10}\left(C_{\alpha}^{27}+9C_{\alpha}^{8_{s}}\right)$	$rac{1}{2}\left(C^{8a}_eta+C^{10^*}_eta ight)$	3 <i>C</i> ⁸ sa
	$\Sigma N \rightarrow \Sigma N$	<u>3</u> 2	C_{α}^{27}	C^{10}_{eta}	-

 $\alpha = {}^{1}S_{0}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}, \quad \beta = {}^{3}S_{1}, {}^{3}S_{1}, {}^{-3}D_{1}, {}^{1}P_{1}$

No. of contact terms: LO: 2(NN) + 3(YN) + 1(YY)NLO: 7 (NN) + 11 (YN) + 4 (YY)

(No. of spin-isospin channels in *NN*+*YN*: 10 S = -2, -3, -4: 27)

(3)

Contact terms for YN – partial-wave projected

spin-momentum structure up to NLO

$$V({}^{1}S_{0}) = \tilde{C}_{1S_{0}} + C_{1S_{0}}(p^{2} + p'^{2})$$

$$V({}^{3}S_{1}) = \tilde{C}_{3S_{1}} + C_{3S_{1}}(p^{2} + p'^{2})$$

$$V(\alpha) = C_{\alpha}pp' \qquad \alpha \triangleq {}^{1}P_{1}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$$

$$V({}^{3}D_{1} - {}^{3}S_{1}) = C_{3S_{1} - {}^{3}D_{1}}p'^{2}$$

$$V({}^{1}P_{1} - {}^{3}P_{1}) = C_{1P_{1} - 3P_{1}} p p'$$

$$V({}^{3}P_{1} - {}^{1}P_{1}) = C_{3P_{1} - 1P_{1}} p p'$$

(antisymmetric spin-orbit force: $(\vec{\sigma}_1 - \vec{\sigma}_2) \cdot (\vec{q} \times \vec{k})$)

C
 ^α
 ^α

イロン 不得 とくほ とくほ とうほ

chiral YN potential up to N²LO

Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86

Λ: 350 – 550 MeV ... 450 MeV give best results

YN interaction: approximate SU(3) flavor symmetry $m_{\pi} = 138$ MeV, $m_{K} = 495$ MeV, $m_{\eta} = 547$ MeV

want to keep effects from SU(3) symmetry breaking generated by the single-meson exchange contributions $\Rightarrow \Lambda: 500 - 600 \text{ MeV}$

two-meson exchange contributions: πK , $\pi \eta$, ... are represented by contact terms

 \Rightarrow some SU(3) symmetry breaking in the YN LECs

(S. Petschauer, N. Kaiser, NPA 916 (2013) 1)

$$V^{cont} = \tilde{C}^{\alpha} + \frac{C^{\alpha}(p^2 + p'^2)}{C^{\chi}(m_{K}^2 - m_{\pi}^2)}$$

 $\tilde{C}^{\alpha}, C^{\alpha}, \alpha = \{27\}, \{10^*\}, \{10\}, \{8_s\}, \{8_a\}, \{1\}, \dots$ "regular" contact terms in SU(3) chiral EFT C_i^{χ} : SU(3) symmetry breaking contact terms (in NLO13 and NLO19 ΛN - ΣN potentials we assumed that $C_i^{\chi} = 0$)

chiral YN potential up to N²LO

adopt the framework of Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86: "Semilocal momentum-space regularized (SMS) chiral NN potentials"

• employ a regulator that minimizes artifacts from cutoff Λ nonlocal cutoff $(\vec{q} = \vec{p}' - \vec{p})$

$$V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p'^4 + p^4}{\Lambda^4}}}{\vec{q}^2 + m_{\pi}^2} \to \frac{1}{\vec{q}^2 + m_{\pi}^2} \left[1 - \frac{p'^4 + p^4}{\Lambda^4} + \mathcal{O}(\Lambda^{-8}) \right]$$

local cutoff:

$$V_{1\pi}^{\rm reg} \propto \frac{e^{-\frac{\vec{q}^2 + m_{\pi}^2}{\Lambda^2}}}{\vec{q}^2 + m_{\pi}^2} \to \frac{1}{\vec{q}^2 + m_{\pi}^2} - \frac{1}{\Lambda^2} + \frac{\vec{q}^2 + m_{\pi}^2}{\Lambda^4} + \dots$$

does not affect long-range physics at any order in the $1/\Lambda^2$ expansion applicable to 2π exchange too:

$$V_{2\pi} = \frac{2}{\pi} \int_{2m_{\pi}}^{\infty} \mu d\mu \frac{\rho(\mu)}{\vec{q}^2 + \mu^2} \rightarrow V_{2\pi}^{reg} = \frac{e^{-\frac{\vec{q}^2}{2\Lambda^2}}}{\pi} \frac{2}{\pi} \int_{2m_{\pi}}^{\infty} \mu d\mu \frac{\rho(\mu)}{\vec{q}^2 + \mu^2} e^{-\frac{\mu^2}{2\Lambda^2}} + \dots$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つくぐ

chiral YN interaction up to N²LO

- no new BB contact terms (no additional LECs) enter
- sub-leading meson-baryon vertices enter at N²LO

 πN : fixed from calculating pion-nucleon scattering in chiral perturbation theory

sub-leading (up to Q^2) πN LECs: $c_1 = -0.74$; $c_3 = -3.61$; $c_4 = 2.44$ (cf. RKE 2018)

 $\pi\Lambda, \pi\Sigma, \pi\Lambda \leftrightarrow \pi\Sigma$:

involve additional LECs: d_1 , d_2 , d_3 , b_D , b_F , b_0 , b_1 , b_2 , b_3 , b_4 fixed from resonance saturation via decuplet baryons (Σ^* (1385))

(cf. Petschauer et al., NPA 957 (2017) 347)

イロト 不得 とくほ とくほ とう

Coupled channels Lippmann-Schwinger Equation

$$T^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) = V^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) + \sum_{\rho'',\nu''} \int_0^\infty \frac{dp''p''^2}{(2\pi)^3} V^{\nu'\nu'',J}_{\rho'\rho''}(\rho',p'') \frac{2\mu_{\rho''}}{p^2 - \rho''^2 + i\eta} T^{\nu''\nu,J}_{\rho''\rho}(\rho'',\rho)$$

 $\rho', \ \rho = \Lambda N, \Sigma N \quad (\Lambda \Lambda, \Xi N, \Lambda \Sigma, \Sigma \Sigma)$

LS equation is solved for particle channels (in momentum space) Coulomb interaction is included via the Vincent-Phatak method SMS: A nonlocal regulator is applied to the contact terms

$$V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) o f^{\wedge}(
ho') V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) f^{\wedge}(
ho); \quad f^{\wedge}(
ho) = e^{-(
ho/\Lambda)^2}$$

consider values $\Lambda = 500 - 600$ MeV [guided by *NN*, achieved χ^2] NLO19 (NLO13): A a nonlocal regulator is applied to the whole potential

$$V^{
u'
u,J}_{
ho'
ho}(
ho',
ho)
ightarrow f^{\wedge}(
ho') V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) f^{\wedge}(
ho); \quad f^{\wedge}(
ho)=e^{-(
ho/\Lambda)^4}$$

with values $\Lambda = 500 - 650 \text{ MeV}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - の々で

Three-body forces

- SU(3) χ EFT 3BFs at N²LO (S. Petschauer et al., PRC 93 (2016) 014001)
- however, 5 LECs for ANN 3BF alone! (only 2 LECs for NNN)

solve coupled channel (ΛN - ΣN) Faddeev-Yakubovsky equations: $\Rightarrow \Lambda NN$ "3BF" from Σ coupling is automatically included

3BFs with inclusion of decuplet baryons (S. Petschauer et al., NPA 957 (2017) 347)

estimate $\wedge NN$ 3BF based on the Σ^* (1385) excitation (appear at NLO!)

• only 1 LEC for ANN (2 LECs for YNN in general)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ