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Hyperon physics - recent developments

Role of hyperons in neutron stars (“hyperon puzzle”)
Neutron stars with masses ≥ 2M� ⇒ stiff equation of state (EoS)
With increasing density n→ Λ⇒ softening of the EoS
⇒ Conventional explanations of observed mass-radius relation fail

New measurements of Λp cross sections by the CLAS
Collaboration at JLab
New extended measurements of ΣN observables in the E40
experiment at J-PARC
differential cross sections for Σ+p, Σ−p

Measurements of two-particle momentum correlation functions
by the STAR, HADES, and ALICE Collaborations
(Λp, ΛΛ, Ξ−p, ...)

HAL QCD: Lattice QCD simulations for YN interactions for quark
masses close to the physical point (Mπ ≈ 145 MeV)

Progress in ab initio methods like no-core shell model (NCSM)
microscopic calculations of hypernuclei up to A ≥ 10
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BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χEFT à la Weinberg (1990)

Advantages:

Power counting
systematic improvement by going to higher order

Possibility to derive two- and three-baryon forces and external current
operators in a consistent way

• degrees of freedom: octet baryons (N, Λ, Σ, Ξ), pseudoscalar mesons
(π, K , η)

• pseudoscalar-meson exchanges
• contact terms – represent unresolved short-distance dynamics

involve low-energy constants (LECs) that need to be fixed
by a fit to data

ΛN-ΣN interaction
LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244
NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24
NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91
SMS NLO, N2LO: J.H., U.-G. Meißner, A. Nogga, H. Le, EPJA 59 (2023) 63

(BB systems with strangeness S = −1 to−6)
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Extension of chiral EFT interaction up to N2LO

(Nucleon-nucleon forces in chiral EFT (E. Epelbaum))
4 E. EpelbaumNuclear χEFT in the Precision Era Evgeny Epelbaum
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Figure 2: Chiral expansion of the nuclear forces. Solid and dashed lines refer to
nucleons and pions. Solid dots, filled circles, filled squares, crossed squares and open
squares denotes vertices from the effective chiral Lagrangian of dimension ∆ = 0, 1,
2, 3 and 4, respectively.

and nucleons as the only explicit degrees of freedom and utilizing the rules of naive
dimensional analysis for few-nucleon contact operators, see [31–33] for alternative pro-
posals. We remind the reader that all diagrams shown in this and following figures
correspond to irreducible parts of the scattering amplitude and to be understood as
series of all possible time-ordered-like graphs for a given topology. As already ex-
plained before, the precise meaning of these diagrams and the resulting contributions
to the nuclear forces are scheme dependent.

The nucleon-nucleon potential has been calculated to fifth order (N4LO) in the
chiral expansion using dimensional regularization [24,34–41]. The expressions for the
leading and subleading 3NF can be found in Refs. [42–46] and [26, 27], respectively.
Apart from the contributions involving NN contact interactions, which still have to
be worked out, the N4LO terms in the 3NF can be found in Refs. [29, 47, 48]. The
leading contribution to the four-nucleon force (4NF) appears at N3LO and has been
derived in Refs. [26,27]. It is important to emphasize that the long-range parts of the
nuclear forces are completely determined by the spontaneously broken approximate
chiral symmetry of QCD along with the experimental and/or empirical information
on the pion-nucleon system needed to determined the relevant LECs in the effective
Lagrangian. In this sense, the long-range contributions to the nuclear forces and cur-
rents can be regarded as parameter-free predictions. Given that the chiral expansion
of the NN contact operators in the isospin limit contains only contributions at orders
Q2n, n = 0, 1, 2, . . ., the N2LO and the isospin-invariant N4LO corrections to the NN
potential are parameter-free. This also holds true for the N3LO contributions to the
3NF and 4NF. For calculations utilizing a formulation of chiral EFT with explicit

N2LO: no new (additional) BB LECs in the two-body sector

leading-order three-body forces (3BFs)
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NN interaction in chiral EFT
Semilocal momentum-space (SMS) regularized chiral NN potential
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(Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86) [up to N4LO (N4LO+) !!]

LO to NLO: drastic change in all partial waves

NLO to N2LO: changes mostly in P-waves and higher partial waves
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chiral YN potential up to N2LO

adopt the framework of Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86:
“Semilocal momentum-space regularized (SMS) chiral NN potentials”

• employ a regulator that minimizes artifacts from cutoff Λ

nonlocal cutoff (~q = ~p′ − ~p)

V reg
1π ∝

e−
p′4+p4

Λ4

~q2 + M2
π

→ 1
~q2 + M2

π

[
1− p′4 + p4

Λ4
+O(Λ−8)

]

local cutoff:

V reg
1π ∝

e−
~q2+M2

π
Λ2

~q2 + M2
π

→ 1
~q2 + M2

π

− 1
Λ2

+
~q2 + M2

π

Λ4
+ ...

does not affect long-range physics at any order in the 1/Λ2 expansion

applicable to 2π exchange too:

V2π =
2
π

∫ ∞
2Mπ

µdµ
ρ(µ)

~q2 + µ2
→ V reg

2π = e−
~q2

2Λ2
2
π

∫ ∞
2Mπ

µdµ
ρ(µ)

~q2 + µ2
e−

µ2

2Λ2 + ...

NN: Λ = 350-550 MeV (π) YN: Λ = 500-600 MeV (π, K , η)
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Results for SMS YN interactions
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Σ+
p -> Σ+

p

SMS YN potentials up to NLO, N2LO (with Λ = 550 MeV)
(J.H., U.-G. Meißner, A. Nogga, H. Le, EPJ A 59 (2023) 63)

NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

quality of the fit – total χ2 (36 data points):
NLO19(600): 16.0 SMS NLO: 15.2 SMS N2LO: 15.6

cross sections dominated by S-waves (are already well described at NLO)
→ (as expected) practically no change when going to N2LO

Johann Haidenbauer Hyperon-nucleon interaction



Results for SMS YN interactions
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integrated cross sections at higher energies not included in the fitting process!

Σ+p → Σ+p and Σ−p → Σ−p cross sections:

σ =
2

cos θmax − cos θmin

∫ cos θmax

cos θmin

dσ(θ)

d cos θ
d cos θ

cos θmin = −0.5; cos θmax = 0.5

fss2 ... Fujiwara et al. (constitutent quark model) Jülich 04, Nijmegen NSC97f ... meson-exchange potentials
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Results for SMS YN interactions

Σ+p

T. Nanamura et al.,
PTEP 2022 (2022) 093D01

440 ≤ plab ≤ 550 MeV/c
(Tlab ≈ 100 MeV)

550 ≤ plab ≤ 650 MeV/c
(Tlab ≈ 150 MeV)
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Σ+
p -> Σ+

p

p
lab

 = 600 MeV/c

LECs in the 1S0, 3S1-3D1 fixed from low-energy YN cross sections

SMS NLO: LECs in 3P-waves taken over from NN fit (RKE)
(strict SU(3) symmetry: VNN ≡ VΣ+p in the 1S0, 3P0,1,2 partial waves!)

SMS N2LO: LECs in P-waves fitted to the E40 data (two trials)!

data suggest a drop from 440 ≤ p ≤ 550 MeV/c to 550 ≤ p ≤ 650 MeV/c!
effect of Λpπ+ threshold (≈ 600 MeV/c)?
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Results for SMS YN interactions
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Σ−p → Λn: quite well reproduced by NLO19 (NLO13) and SMS YN potentials
Σ−p → Σ−p: behavior at forward angles remains unclear

Σ−p and Σ−p → Λn data for (550 ≤ p ≤ 650) MeV/c are reproduced with comparable
quality

• no unique determination of all P-wave LECs possible
• one needs data from additional channels (Λp, Σ−p → Σ0n, ...)
• one needs additional differential observables (polarizations, ...)
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Hypernuclei within the no-core shell model (NCSM)
Basic idea: use harmonic oscillator states and soft interactions

m-scheme uses single particle states (center-of-mass motion not separated)

antisymmetrization for nucleons easily performed (Slater determinant)

larger dimensions

(applications to p-shell hypernuclei by Wirth & Roth; A ≤ 13)

Jacobi-NCSM
uses relative (Jacobi) coordinates (Hoai Le et al., EPJA 56 (2020) 301)

explicit separation of center-of-mass motion possible

antisymmetrization for nucleons difficult but feasible for A ≤ 9

small dimensions

Soft interactions: Similarity renormalization group (SRG) (unitary transformation)

dH(s)

ds
= [[T ,H(s)],H(s)] H(s) = T + V (s) V (s) : V NN (s), V YN (s)

Flow equations are solved in momentum space

parameter (cutoff) λ =
(

4µ2
BN/s

)1/4
is a measure of the width of the interaction in momentum space

V (s) is phase equivalent to original interaction

transformation leads to induced 3BFs, 4BFs, ...

(induced 3BFs included in the work of Wirth & Roth and in our recent studies)
(induced 4BFs are most likely very small)
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Procedure

slide from Hoai Le:

7

Extrapolation in  and  spaces:ω 𝒩

‣ Eb(ω, 𝒩) = E𝒩 + κ(log(ω) − log(ωopt))2 ‣ E𝒩 = E∞ + Ae−b𝒩

4He

E𝒩

δE = E∞ − E𝒩max

‣ lowest are used for -space extrapolation  E𝒩,ωopt
𝒩

• extrapolation of energies:

‣ estimated uncertainties are rather conservative 

EFY = − 27.15 ± 0.02

E∞ = − 27.146 ± 0.062

MeV

MeV

• extrapolation of  separation energies: Λ BΛ = Enucl − Ehyp

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga EPJA 56 (2020)

NN: SMS N4LO+(450)

BΛ,𝒩 = Enucl(𝒩) − Ehypnucl(𝒩)

BΛ,𝒩 = BΛ,∞ + A1e−b1𝒩

YN: SMS N2LO(550)‣ strong correlations between Enucl(𝒩), Ehypnucl(𝒩)

λ = 7 fm−1

λYN = 7 fm−1
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Results for BΛ(A ≤ 8)

Hoai Le et al., PRC 107 (2023) 024002

• NLO13 and NLO19 are almost phase equivalent
• NLO13 characterized by a stronger ΛN-ΣN coupling potential (3S1-3D1)

Results for BΛ(A ≤ 8)

Hoai Le et al., PRC 107 (2023) 024002

13

Impact of YN interactions on BΛ(A ≤ 8)
• NLO13 and NLO19 are almost phase equivalent in the 2-body sector

• NLO13 characterised by a stronger  transition potential (especially in )  ΛN − ΣN 3S1
(J. Haidenbauer et al. NPA 915 (2019))manifest in higher-body observables 

 are fairly well described by NLO19;

NLO13 has a tendency to underestimate these systems

4
ΛH(1+), 5

ΛHe, 7
ΛLi, 8

ΛLi

M. Juric NPB 52(1973) 
M. Agnello et al. PLB 681(2009)

Experiment:

reproduced experimental values for hypertrition. The two potentials predict similar B_L for the ground state of 4HL, both

 underestimates the system. And, similarly, the NLO13 potential underbids the excited state in 4HL, the grounds states in 

?
Count.

NN:SMS +(450)N4LO

+3N: (450)N2LO

+SRG-induced YNN
+YN: NLO13,19(CSB)

NLO13 underestimates separation energies

signal for (missing) chiral YNN forces?

Johann Haidenbauer Hyperon-nucleon interaction

Experiment: M. Jurič et al. NPB 52 (1973); E.Botta et al., NPA 960 (2017) 165

NN: SMS N4LO+(450) + 3NF: N2LO(450)
YN: NLO13(19) + SRG-induced YNN force – but no chiral YNN forces!

• NLO13 underestimates separation energies
• NLO19 describes 4

ΛHe(1+), 5
ΛHe, 7

ΛLi fairly well
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Charge symmetry breaking in the ΛN interaction

CSB in the 4
ΛHe - 4

ΛH hypernuclei

Nov 16th, 2021  9

π
Λ N

Λ N

Λ N

Λ N

CSB contributions  to YN interactions

Constraints on the Λ-Neutron Interaction... Page 3 of 15   105 

Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to Λ − "0 mixing (left two
diagrams) and π0 − η mixing (right diagram).

Fig. 2 CSB contributions from K±/K 0 exchange (left) and from contact terms (right)

2.2 CSB in Chiral EFT

As noted by Dalitz and von Hippel many decades ago [1], Λ − "0 mixing leads to a long-ranged CSB
contribution to the ΛN interaction due to pion exchange, see Fig. 1. The strength of the potential can be
estimated from the electromagnetic mass matrices,

〈"0|δm|Λ〉 = [m"0 − m"+ + mp − mn]/
√

3,

〈π0|δM2|η〉 = [M2
π0 − M2

π+ + M2
K+ − M2

K 0 ]/
√

3 (1)

and subsumed in terms of an effective ΛΛπ coupling constant

fΛΛπ =
[

−2
〈"0|δm|Λ〉
m"0 − mΛ

+ 〈π0|δM2|η〉
M2

η − M2
π0

]

fΛ"π . (2)

Based on the latest PDG mass values [29], one obtains

fΛΛπ = f (Λ−"0)
ΛΛπ + f (η−π0)

ΛΛπ ≈ (−0.0297 − 0.0106) fΛ"π . (3)

In this context, let us mention that there are also lattice QCD calculations of Λ − "0 mixing [30–33].
In our implementation of CSB within chiral EFT, we follow closely the arguments given in pertinent

studies of isospin-breaking effects in the nucleon-nucleon (NN ) system, see Refs. [26–28]. According to Ref.
[27], the CSB contributions at leading order are characterized by the parameter εM2

π/Λ
2 ∼ 10−2, where

ε ≡ md−mu
md+mu

∼ 0.3 and Λ ∼ Mρ . In particular, one expects a potential strength of V CSB
BB ∼ (εM2

π/Λ
2) VBB .

At order n = 2 (NLØ in the notation of Ref. [28]), there are contributions from isospin violation in the pion-
baryon coupling constant, which in the ΛN case arise from the aforementioned "0 −Λ mixing as well as from
π0 − η mixing. In addition, there are contributions from short range forces (arising from ρ0 −ω mixing, etc.).
In chiral EFT, such forces are simply represented by contact terms involving LECs (Fig. 2 right) that need to
be fixed by a fit to data. Contributions at n = 1 (LØ) are due to a possible Coulomb interaction between the
baryons in question and due to mass differences between Mπ± and Mπ0 . Such contributions do not arise in
the ΛN system. However, in the extension to SU(3), there is CSB induced by the MK±-MK 0 mass difference,
see left side of Fig. 2. We take that into account in our calculation, since it is formally at leading order. But
because the kaon mass is rather large compared to the mass difference, its effect is actually very small. For a
general overview, we refer the reader to Table 1 in Ref. [28].
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In chiral EFT, such forces are simply represented by contact terms involving LECs (Fig. 2 right) that need to
be fixed by a fit to data. Contributions at n = 1 (LØ) are due to a possible Coulomb interaction between the
baryons in question and due to mass differences between Mπ± and Mπ0 . Such contributions do not arise in
the ΛN system. However, in the extension to SU(3), there is CSB induced by the MK±-MK 0 mass difference,
see left side of Fig. 2. We take that into account in our calculation, since it is formally at leading order. But
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• formally leading contributions: 
Goldstone boson mass difference 

      —  very small due to the small  
      relative difference of kaon masses

• subleading but most important  
— effective CSB  ΛΛπ coupling constant (Dalitz, van Hippel, 1964) 

• so far less considered, but equally important 
   —   CSB contact interactions (for singlet and triplet) 

Aim: use A=4 hypernuclei to determine the two unknown 
   CSB LECs and predict Λn scattering 
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• sub-leading contributions are dominant:

(Dalitz, von Hippel, 1964)
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Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to Λ − "0 mixing (left two
diagrams) and π0 − η mixing (right diagram).

Fig. 2 CSB contributions from K±/K 0 exchange (left) and from contact terms (right)
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As noted by Dalitz and von Hippel many decades ago [1], Λ − "0 mixing leads to a long-ranged CSB
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fΛΛπ = f (Λ−"0)
ΛΛπ + f (η−π0)

ΛΛπ ≈ (−0.0297 − 0.0106) fΛ"π . (3)

In this context, let us mention that there are also lattice QCD calculations of Λ − "0 mixing [30–33].
In our implementation of CSB within chiral EFT, we follow closely the arguments given in pertinent

studies of isospin-breaking effects in the nucleon-nucleon (NN ) system, see Refs. [26–28]. According to Ref.
[27], the CSB contributions at leading order are characterized by the parameter εM2

π/Λ
2 ∼ 10−2, where

ε ≡ md−mu
md+mu

∼ 0.3 and Λ ∼ Mρ . In particular, one expects a potential strength of V CSB
BB ∼ (εM2

π/Λ
2) VBB .

At order n = 2 (NLØ in the notation of Ref. [28]), there are contributions from isospin violation in the pion-
baryon coupling constant, which in the ΛN case arise from the aforementioned "0 −Λ mixing as well as from
π0 − η mixing. In addition, there are contributions from short range forces (arising from ρ0 −ω mixing, etc.).
In chiral EFT, such forces are simply represented by contact terms involving LECs (Fig. 2 right) that need to
be fixed by a fit to data. Contributions at n = 1 (LØ) are due to a possible Coulomb interaction between the
baryons in question and due to mass differences between Mπ± and Mπ0 . Such contributions do not arise in
the ΛN system. However, in the extension to SU(3), there is CSB induced by the MK±-MK 0 mass difference,
see left side of Fig. 2. We take that into account in our calculation, since it is formally at leading order. But
because the kaon mass is rather large compared to the mass difference, its effect is actually very small. For a
general overview, we refer the reader to Table 1 in Ref. [28].
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• formally leading contributions: 
Goldstone boson mass difference 

      —  very small due to the small  
      relative difference of kaon masses

• subleading but most important  
— effective CSB  ΛΛπ coupling constant (Dalitz, van Hippel, 1964) 

• so far less considered, but equally important 
   —   CSB contact interactions (for singlet and triplet) 

Aim: use A=4 hypernuclei to determine the two unknown 
   CSB LECs and predict Λn scattering 
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Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1],
due to ⇤�⌃0 mixing (left two diagrams) and ⇡0 � ⌘ mixing (right diagram).
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Fig. 2 CSB contributions from K±/K0 exchange (left) and from contact terms (right).

and subsumed in terms of an e↵ective ⇤⇤⇡ coupling constant

f⇤⇤⇡ =


�2

h⌃0|�m|⇤i
m⌃0 � m⇤

+
h⇡0|�M2|⌘i
M2

⌘ � M2
⇡0

�
f⇤⌃⇡ . (2)

Based on the latest PDG mass values [29], one obtains

f⇤⇤⇡ = f
(⇤�⌃0)
⇤⇤⇡ + f

(⌘�⇡0)
⇤⇤⇡ ⇡ (�0.0297 � 0.0106) f⇤⌃⇡ . (3)

In this context, let us mention that there are also lattice QCD calculations of
⇤�⌃0 mixing [30–33].

In our implementation of CSB within chiral EFT, we follow closely the ar-
guments given in pertinent studies of isospin-breaking e↵ects in the nucleon-
nucleon (NN) system, see Refs. [26–28]. According to Ref. [27], the CSB contribu-
tions at leading order are characterized by the parameter ✏M2

⇡/⇤2 ⇠ 10�2, where
✏ ⌘ md�mu

md+mu
⇠ 0.3 and ⇤ ⇠ M⇢. In particular, one expects a potential strength

of V CSB
BB ⇠ (✏M2

⇡/⇤2)VBB . At order n = 2 (NLØ in the notation of Ref. [28]),
there are contributions from isospin violation in the pion-baryon coupling con-
stant, which in the ⇤N case arise from the aforementioned ⌃0 � ⇤ mixing as well
as from ⇡0 �⌘ mixing. In addition, there are contributions from short range forces
(arising from ⇢0 � ! mixing, etc.). In chiral EFT, such forces are simply repre-
sented by contact terms involving LECs (Fig. 2 right) that need to be fixed by a
fit to data. Contributions at n = 1 (LØ) are due to a possible Coulomb interaction
between the baryons in question and due to mass di↵erences between M⇡± and
M⇡0 . Such contributions do not arise in the ⇤N system. However, in the extension
to SU(3), there is CSB induced by the MK± -MK0 mass di↵erence, see left side of
Fig. 2. We take that into account in our calculation, since it is formally at leading
order. But because the kaon mass is rather large compared to the mass di↵erence,
its e↵ect is actually very small. For a general overview, we refer the reader to
Table I in Ref. [28].

 adjusted to CCSB
s , CCSB

t ΔE(0+, 1+)
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Table 3 Probability of finding ⇤p and ⇤n pairs in the A=4-8 wavefunctions computed using
the YN NLO19(500) potential. The SRG-induced YNN interaction is also included in the
calculations for 4

⇤He/4
⇤H. The A=7,8 wavefunctions were computed at the magic SRG-flow

parameter of �magic = 0.823 fm-1

1S0
3S1 hV Y N i

⇤p ⇤n ⇤p ⇤n 1S0
3S1

4
⇤He(0+) 13.92 27.60 44.54 0.42 -4.383 -3.916
4
⇤H(0+) 27.1 13.66 0.41 43.79 -4.091 -3.604

4
⇤He(1+) 14.48 13.44 42.47 27.07 -1.383 -5.743
4
⇤H(1+)

7
⇤Be 11.13 7.22 33.25 21.67 -3.728 -9.36
7
⇤Li⇤ 9.17 9.17 27.44 27.44 -3.767 -9.319

8
⇤Be 9.49 12.23 28.68 19.34 -5.467 -9.848
8
⇤Li

Table 4 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5

⇤He, B⇤(5⇤He, NLO13) = 2.22±0.06

and B⇤(5⇤He, NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

(fm//keV) a⇤p
s a⇤n

s �as a⇤p
t a⇤n

t �at

NLO19(500)
-2.91 -2.91 0 -1.42 -1.41 -0.01

no CSB

CSB(500) -2.65 -3.20 0.55 -1.58 -1.47 -0.11

CSB(550) -2.64 -3.21 0.57 -1.52 -1.41 -0.11

CSB(600) -2.63 -3.23 0.6 -1.47 -1.36 -0.09

CSB(650) -2.62 -3.23 0.61 -1.46 -1.37 -0.09

4.2 NCSM results for A=7

Table ?? provides selected results for the separation energies of the 1/2+ mirror
hypernuclei 7

⇤He, 7
⇤Li⇤, and 7

⇤Be, without CSB. The chiral and SRG-induced 3N
as well as the SRG-induced YNN interactions are included in the calculations.
In Table ?? we provide the separation energies for the A=7 isotriplet computed
using the NN interaction N4LO + (450) in combination with the YN potentials
NLO13(500) and NLO19(500), SRG-evolved to the respective magic SRG-flow pa-
rameters for which the 5

⇤He separation energy agrees with the full result including
the SRG-induced YNN force.

Table ?? provides an overview of results for CSB1, when the full 3N and
the SRG-induced YNN interactions are taken into account. Table ?? provides

cutoff (and YN) independent prediction for a(Λn)

Coulomb ΔM( p, n)

difference in Lp -Ln scattering lengths is large for 1S0, its is smaller, and of opposite sign for 1S0.
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CSB results for A=4,7,8 hypernuclei

Hoai Le, J.H., U.-G. Meißner, A. Nogga, PRC 107 (2023) 024002
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CSB results in A=4-8

3He
1/2+

4
ΛH

• NLO13 & NLO19 CSB results for A=7 are comparable to experiment.     

• two potentials predict a somewhat larger CSB in A=8 doublet as compared to experiment 

‣ experimental CS splitting for A=8 could be larger than  keV?40 ± 60
‣  CSB estimated for A=4 could still be too large or have different spin-dependence?

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga PRC 107(2023)


NN:SMS +(450)N4LO

+3N: (450)N2LO

+YN: NLO13,19(CSB)

+SRG-induced YNN

• CSB estimate for A = 4 too large? different spin-dependence?
STAR Collaboration (M. Abdallah et al., PLB 834 (2022) 137449)
∆BΛ(4

ΛHe - 4
ΛH; 0+) = 160± 140 keV; ∆BΛ(4

ΛHe - 4
ΛH; 1+) = −160± 140 keV

Johann Haidenbauer Hyperon-nucleon interaction



Separation energies for A=3-8 Λ hypernuclei (MeV)
• NLO13(19), SMS NLO,N2LO are phase equivalent (χ2 ≈ 16 for 36 YN data points)
• NLO13 characterized by a stronger ΛN-ΣN coupling potential (3S1-3D1)

3
ΛH [Faddeev] 4

ΛHe(0+) 4
ΛHe(1+) 5

ΛHe 7
ΛLi 8

ΛLi

NLO13 0.090 1.48± 0.02 0.58± 0.02 2.22± 0.06 5.28± 0.68 5.75± 1.08

NLO19 0.091 1.46± 0.02 1.06± 0.02 3.32± 0.03 6.04± 0.30 7.33± 1.15

SMS NLO 0.124 2.10± 0.02 1.10± 0.02 3.34± 0.01

SMS N2LO 0.139 2.02± 0.02 1.25± 0.02 3.71± 0.01

Exp.∗ 0.164± 0.04 2.347± 0.036 0.942± 0.036 3.102± 0.03 5.85± 0.13 6.80± 0.03

5.58± 0.03

NLO19 (600): 4
ΛHe(1+), 5

ΛHe, 7
ΛLi fairly well described

NLO13 (600) underestimates most separation energies
SMS NLO,N2LO (550): 4

ΛHe(0+, 1+), 5
ΛHe fairly well described

(3
ΛH is used to constrain the strength of the ΛN singlet/triplet interaction!)

are the variations due to (missing) chiral YNN forces?
chiral YNN forces appear at N2LO
⇒ estimate size of YNN forces from truncation error in the chiral expansion

∗Chart of Hypernuclides https://hypernuclei.kph.uni-mainz.de/
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Uncertainty quantification for EFTs

Uncertainty for a given observable X(p):
(EKM: Epelbaum, Krebs, Meißner, EPJA 51 (2015) 53, S. Binder et al., PRC 93 (2016) 044002)

estimate uncertainty via
• the expected size of higher-order corrections• the actual size of higher-order corrections

∆XLO = Q2|XLO | (XNLO ≈ Q2XLO ) expansion parameter : Q ∼ Mπ/Λb ≈ 140/600

∆XNLO = max
(

Q3|XLO |,Q1|δXNLO |
)

; δXNLO = XNLO−XLO

∆XN2LO = max
(

Q4|XLO |,Q2|δXNLO |,Q1|δXN2LO |
)

; δXN2LO = XN2LO−XNLO

...

Bayesian approach (Furnstahl, Klco, Phillips, Melendez):
(Furnstahl et al., PRC 92 (2015) 024005; Melendez et al., PRC 100 (2019) 044001)

X (k) = X (0) +
k∑

i=2

δX (i) =: Xref (c0 + c2Q2 + c3Q3 + ...)

∆X (k) = Xref

 ∞∑
n=k+1

cnQn

 ; cn ∼ O(1); cn|c̄2 ∼ N (0, c̄2); c̄2 ∼ χ−2(ν0, τ
2
0 )

c̄2 ... marginal variance; v0 ... prior degrees-of-freedom; τ2
0 ... prior scale (pointwise model)

Q, c̄2, etc. ... deduced from order-by-order calculations, prior expectations, consistency plots

Johann Haidenbauer Hyperon-nucleon interaction



Truncation error within the Bayesian approach

Hoai Le et al., arXiv:2308.01756
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• NN: SMS LO - N4LO+ (+ N2LO NNN force)
• YN: SMS LO, NLO, N2LO

• excellent convergence for NN interaction
• uncertainty is dominated by the truncation in YN interaction

• effect of YNN 3BF ' half of 68% DoB interval for NLO result
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Truncation error for separation energies BΛ (MeV)

Truncation error at NLO provides an estimate (upper limit) for the
contribution of the leading order ΛNN (and ΣNN) 3BF to the
separation energies BΛ

∆X NLO ∼ |X N2LO
YN − X NLO

YN |, |X N2LO
YNN |

Bayesian approach EKM
∆68(NN) ∆68(YN) ∆(NN) ∆(YN) ∆(NN) ∆(YN)

Q = 0.31 Q = 0.40
3
ΛH 0.01 0.02 0.01 0.02 0.01 0.02
4
ΛHe (0+) 0.16 0.24 0.06 0.30 0.13 0.39
4
ΛHe (1+) 0.11 0.21 0.07 0.36 0.09 0.47
5
ΛHe 0.53 0.88 0.64 1.1 0.83 1.4

⇒ expect YNN 3BF contributions of 20 keV (3
ΛH), 250 keV (4

ΛH, 4
ΛHe), 900 keV (5

ΛHe)

Johann Haidenbauer Hyperon-nucleon interaction



Situation for the hypertriton
Experiment: 164± 40 keV (Mainz), 406± 120 keV (STAR), 102± 63 keV (ALICE)

Bayesian approach: ∆BΛ (3BF) ≤ 20 keV

(a) cutoff variation: ∆BΛ (3BF) ≤ 50 keV
(b) “pseudo 3BF” from ΛN-ΣN coupling:

switch off ΛN-ΣN coupling
in Faddeev-Yakubovsky equations:
∆BΛ (3BF) ≈ 10 keV

N Λ N

N Λ N

Λ✉ ✉
✉ ✉

N Λ N

N Λ N

Σ✉ ✉
✉ ✉

(a) (b)

N Λ N

N Λ N

Σ✉ ✉
✉✉

N Λ N

N Λ N

Σ∗✉ ✉
✉ ✉

(c) (d)

(c) 3H: 3NF ∼ Q3 |〈VNN〉|3H ∼ 650 keV
( |〈VNN〉|3H ∼ 50 MeV; Q ∼ Mπ/Λb ; Λb ' 600 MeV )

3
Λ H: |〈VΛN〉|3

Λ
H ∼ 3 MeV→ ∆BΛ (3BF) ≈ Q3 |〈VΛN〉|3

Λ
H ' 40 keV

Kamada et al. (PRC 108 (2023) 024004): explicit inclusion of 2π exchange ΛNN 3BF
⇒ ∆BΛ ≈ 20 keV (and repulsive!) (based on NLO13, NLO19)

Jülich-Bonn-Munich: BΛ(3
ΛH) is used as constraint to fix the relative strength of the ΛN

interaction in the singlet (1S0) and triplet (3S1) states
⇒ justified since the 3BF contribution is small

Note: root-mean-square radius of 3
Λ H:

√
〈r2〉 ≈ 5 fm (deuteron:

√
〈r2〉 ≈ 2 fm)

⇒ most of the time Λ and two Ns are outside of the range of a standard 3BF!
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Three-body forces are not observables!

two-body off-shell ambiguities⇔ three-body forces (Polyzou & Glöckle, 1990)

depend on degrees of freedom considered in the calculations
(N, Λ only ... or Σ, ∆, Σ∗, ...)

different degrees of freedom in the effective field theory 21

pionless chiral chiral+∆

LO — —

NLO — —

N2LO

FIG. 23 Order of 3NF contributions in pionless and chiral EFT and in EFT with explicit ∆ degrees of freedom (chiral+∆).
Open vertices in the last column indicate the differences of the low-energy constants in chiral and chiral+∆ EFT.

lengths, subleading three-body forces are suppressed by
two orders and enter only at N2LO. Some higher-order
calculations of few-nucleon observables exist but much
remains to be investigated in this sector. Particularly
interesting are the application of pionless EFT to halo
nuclei and low-energy electroweak reactions. Halo nuclei
are the most promising candidates for observing Efimov
physics in nuclei, while precise calculations of low-energy
reactions are relevant for nuclear astrophysics and neu-
trino physics. In particular, 3NFs play a prominent role
in two-neutron halo nuclei and larger halo systems. Pio-
nless EFT also predicts universal three-body correlations
that can be explored in nuclear reactions in this regime
and to test the consistency of different theoretical calcu-
lations (similar to the Tjon line/band).

In chiral EFT discussed in Sections IV, V and VI,
3NFs are suppressed compared to NN interactions. This
explains the phenomenological success of weaker three-
body forces of the Fujita-Miyazawa type. As summarized
in Fig. 23, 3NFs enter at N2LO, and their relative contri-
butions to observables can be understood based on the
power counting. Because the operator structure of the
leading 3NFs is strongly constrained, a global analysis
of few-body scattering and bound-state data with theo-
retical uncertainties appears feasible in the framework of
chiral EFT. This would allow for a determination of the
long-range ci couplings in the three-body sector. In addi-
tion, a consistent determination of two- and three-body
forces from such an analysis may help to resolve the Ay

puzzle in few-body scattering.
For applications of chiral EFT interactions to nuclear

structure, 3NFs play a central role, as discussed for light
and medium-mass nuclei and for nuclear matter. For
these many-body calculations, the RG/SRG evolution
leads to greatly improved convergence. A consistent evo-
lution of chiral 3NFs has been achieved in a harmonic-
oscillator basis and recently in momentum space. Impor-
tant open problems are an understanding of the 3NFs
induced by the SRG and to control higher-body forces,

which is necessary for the desired accuracy in nuclear
structure.

If ∆(1232) degrees of freedom are included, part of
the physics contained in the low-energy constants in chi-
ral EFT is made explicit in lower orders. As a conse-
quence, a 3NF of the Fujita-Miyazawa type appears al-
ready at NLO as shown in Fig. 23. Improved convergence
of the chiral expansion with explicit ∆ degrees of free-
dom is expected, but a full analysis of few-nucleon data
remains to be carried out. In addition, a chiral EFT
with explicit ∆’s would naturally explain why the con-
tributions from the long-range two-pion-exchange parts
of 3NFs dominate over the shorter-range parts in appli-
cations to neutron-rich nuclei and nuclear matter.

Three-nucleon forces are a frontier in the physics of nu-
clei that connects the systematic development of nuclear
forces in chiral EFT with the exploration of neutron-rich
nuclei at rare isotope beam facilities. The subleading
3NFs at N3LO are predicted in chiral EFT, without free
parameters, as is the case for N3LO 4N forces. In many
present calculations, the uncertainty of the leading 3NFs
likely dominates the theoretical uncertainties of the pre-
dicted observables. The derivation of N3LO 3NFs has
only been completed recently, and no calculation exists
with N3LO 3N or 4N forces beyond few-body systems.
Therefore, there is a window of opportunity to make key
discoveries and predictions. In addition to advancing mi-
croscopic calculations with 3NFs to larger and neutron-
rich nuclei, an important problem is to understand the
impact of 3NFs on global nuclear structure predictions,
e.g., for key regions in the r-process path where system-
atic theoretical predictions of extreme nuclei, often not
accessible in the laboratory, are needed.

Electroweak interaction processes are unique probes of
the physics of nuclei and fundamental symmetries, and
play a central role in astrophysics. Chiral EFT provides
a systematic basis for nuclear forces and consistent elec-
troweak currents, where pion couplings contribute both
to electroweak currents and to 3NFs. This opens up

• different counting schemes
• different hierarchy of 3BFs

(Hammer, Nogga, Schwenk, Rev. Mod. Phys. 85 (2013) 197)
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Three-baryon forces in chiral EFTThree-nucleon force in chiral EFTHierarchy of nuclear forces

2N Force 3N Force

LO —

NLO —

N2LO · · ·

[van Kolck, Phys.Rev.C49, 1994]
[Epelbaum, Nogga, Glöckle, Kamada, Meißner, Witała, Phys.Rev.C66, 2002]

[Epelbaum, Hammer, Meißner, Rev.Mod.Phys.81, 2008]

Stefan Petschauer (TUM) Baryonic forces in SU(3) chiral effective field theory 10/14
2 new LECs in 3N force: cD , cE → have to be fixed in 3N sector
(e.g., 3H binding energy + 4He binding energy)

(2π exchange 3N force: c1, c3, c4 ... fixed from πN scattering)

(number of new LECs small because of the Pauli principle)

Johann Haidenbauer Hyperon-nucleon interaction

3N force (van Kolck, PRC 49 (1994) 2932; ... E. Epelbaum et al., PRC 66 (2002) 064001)

2 LECs in 3N force: D (cD), E (cE )→ have to be fixed in 3N sector
(e.g., 3H binding energy + 4He binding energy)

(2π exchange 3N force: c1, c3, c4 ... fixed from πN scattering)

number of LECs small because of the Pauli principle

BBB force in SU(3) chiral EFT (S. Petschauer et al., PRC 93 (2016) 014001)

BBB contact terms: 18 LECs (ΛNN: 3 LECs)
one-meson exchange terms: 14 LECs (ΛNN: 2 LECs)
two-meson exchange terms: 10 LECs ... (b0, bD , bF , b1,2,3,4, d1,2,3)
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Three-baryon forces with decuplet baryonsThree-baryon force including decuplet baryons

3B Force with decuplet baryons

LO —

NLO

N2LO + · · ·
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Stefan Petschauer (TUM) Baryonic forces in SU(3) chiral effective field theory 11/14
NNN: inclusion of the ∆(1232) resonance

Epelbaum, Krebs, Meißner, NPA 806 (2008) 65; Epelbaum, Hammer, Meißner, Rev. Mod. Phys. 81 (2009) 1773
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Decuplet (resonance) saturation + SU(3) symmetry
Resonance saturation + SU(3) symmetry

Three-baryon forces and explicit decuplet baryons
new vertices:

one constant (C = 3
4gA ≈ 1 from ∆→ Nπ)

two constants (Pauli-forbidden in nucleonic sector)

tensor products in flavor space and in spin space
final state 10⊗ 8 = 35⊕ 27⊕ 10⊕ 8 3/2⊗ 1/2 = 1⊕ 2
initial state 8⊗ 8 = 27⊕ 8s ⊕ 1︸ ︷︷ ︸

symmetric

⊕ 10⊕ 10⊕ 8a︸ ︷︷ ︸
antisymmetric

1/2⊗ 1/2 = 0︸︷︷︸
a.sym.

⊕ 1︸︷︷︸
sym.

estimate chiral three-baryon forces via decuplet saturation:

≈ , ≈ + , ≈ +

presently implemented into hypertriton calculations (A. Nogga)
Norbert Kaiser (TUM) Chiral effective field theory of hyperon-nucleon interactions 18/19

Johann Haidenbauer Hyperon-nucleon interaction

ΛNN: 1 LEC (ΛN ↔ Σ(1385)N contact term)
ΛNN-ΣNN, ΣNN: 1 additional LEC (ΣN ↔ Σ(1385)N contact term)

⇒ 3BF involves only 2 LECs ... to be fixed from BΛ(4
ΛH), ...
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Summary
Hyperon-nucleon interaction within chiral EFT

ΛN-ΣN interaction within semilocal momentum-space regularized chiral EFT
confirm our previous YN results (up to NLO) based on a nonlocal regulator
successful extension to N2LO
new Σ±p differential cross sections around plab ≈ 500 MeV/c can be described
unique determination of the P-waves is not yet possible

Hypernuclei

three-body forces: are small for 3
ΛH, as expected

moderate for 4
ΛH, 4

ΛHe, 5
ΛHe ... needs to be quantified/confirmed by explicit

inclusion of 3BFs
→ LECs of 3BF could be fixed from B(4

ΛH), ...

charge-symmetry breaking in 4
ΛH – 4

ΛHe
can be reproduced when taking into account the full leading CSB potential within
chiral EFT
charge-symmetry breaking in A = 7− 8 Λ-hypernuclei
predicted CSB splitting for 7

ΛBe, 7
ΛLi∗, 7

ΛHe is in line with experiments
CSB splitting for 8

ΛBe, 8
ΛLi is overestimated

Λp momentum correlation functions
ALICE: is the Λp interaction possibly somewhat weaker than what the cross
section data from the 1960ies suggest (Mihaylov, Korwieser, EPJC 83 (2023) 590)

Johann Haidenbauer Hyperon-nucleon interaction
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Consider new Star measurement

STAR Collaboration (M. Abdallah et al.), PLB 834 (2022) 137449

18

Fitting LECs to new Star measurement

3He
1/2+

4
ΛH

Δ E(0+) = BΛ(4
ΛHe, 0+) − BΛ(4

ΛH, 0+)

= 233 ± 92 keV ⇒ (CSB)

Δ E(1+) = BΛ(4
ΛHe, 1+) − BΛ(4

ΛH, 1+)

= − 83 ± 94 keV ⇒ (CSB)

= − 160 ± 140 ± 100 keV ⇒ (CSB*)

= 160 ± 140 ± 100 keV ⇒ (CSB*)

 STAR Collaboration PLB 834 (2022)*

8 Hoai Le et al.

Table 7 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

with 3BFs with 2BFs Experiment

NLO19 NLO13 NLO19 NLO13

� = 0.823 � = 0.765
7
⇤Be 5.54 ± 0.22 4.30 ± 0.47 5.44 ± 0.03 4.53 ± 0.34 5.16 ± 0.08
7
⇤Li⇤ 5.64 ± 0.28 4.42 ± 0.58 5.49 ± 0.04 4.59 ± 0.34 5.26 ± 0.03 5.53 ± 0.13
7
⇤He 5.64 ± 0.27 4.39 ± 0.54 5.43 ± 0.06 4.45 ± 0.35 5.55 ± 0.1

Table 8 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) NLO13(500) Exp.

emulsion counter

7
⇤Be 5.54 ± 0.22 4.30 ± 0.47 5.16 ± 0.08

7
⇤Li⇤ 5.64 ± 0.28 4.42 ± 0.58 5.26 ± 0.03 5.53 ± 0.13

7
⇤He 5.64 ± 0.27 4.39 ± 0.54 5.55 ± 0.1

Table 9 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) CSB1 CSB1A

a⇤p
s -2.91 -2.65 -2.58

a⇤n
s -2.91 -3.20 -3.29

�as 0 0.55 0.71

a⇤p
t -1.42 -1.57 -1.52

a⇤n
t -1.41 -1.45 -1.49

�at -0.01 -0.12 -0.03

Hiyama’s A = 7 calculation [?] is performed within a four-body cluster model
(⇤+N+N+↵). Her results without CSB force are included in Table 9 and are
quite well in line with the experimental evidence, as far as the CSB splitting is
concerned. Her results with the CSB force included are 0.15 MeV for 7

⇤Be-7⇤Li and
0.13 MeV for 7

⇤Li-7⇤He according to the figures (0.2 MeV according to the text).
However, she fitted her CSB potential to the old but outdated splittings in the
A = 4 system, i.e. to the scenario CSB2. We know from our study [?] that this leads
to a di↵erent trend for the ⇤p and ⇤n singlet interactions and to a sizable e↵ect in
the triplet state. Gal [?] emphasized that her calculation failed to reproduce the

*

How does the STAR measurement affect the predictions of CSB in A=7,8 multiplets ? 

Recent Star measurement suggests somewhat different CSB in A=4:

 increases while  decreasesδa(1S0) δa(3S1)
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Impact of Star measurement on CSB in A=7,8

19

3He
1/2+

4
ΛH

• CSB in A=4( ) and A=8, and in A=4( ) and A=7 are correlated0+ 1+

star measurement 

Impact of Star measurement on CSB in A=7,8

λNN = 1.6 fm−1

λopt
YN = 0.823 fm−1

NN:SMS +(450)N4LO

  +YN: NLO13,19(CSB)

BΛ(5
ΛHe, λopt

YN ) = BΛ(5
ΛHe,3BFs)

accurate CSB in A=7 & 8 systems will allow for an independent check of A=4 CSB

• CSB* fit predicts reasonable CSB in both A=7 and A=8 systems 
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Estimate of truncation error
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• filled symbols: actual estimates for SMS LO, NLO, N2LO YN potentials
• opaque symbols: anticipated results when YNN 3BFs are included

• 3
ΛH: used as constraint! Conclusions on true uncertainty are not possible
• Q: Q = Meff

π /Λb ≈ 200/650 (Epelbaum et al., for light nuclei)
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A=3-5 Λ hypernuclei with SRG-induced YNN force

Hoai Le, EPJ Web Conf. 271 (2022) 01004 (HYP2022)
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8

A=3-5 hypernuclei with SRG-induced YNN

4
ΛH(0+,1/2) 5

ΛHe(1/2+,0)

contributions of SRG-induced YNNN forces to  are negligible BΛ(4
ΛH, 5

ΛHe)

NN:SMS +(450)N4LO
3N: (450)N2LO

3
ΛH(1/2+,0) 3

ΛH(1/2+,0)

(R. Wirth, R. Roth PRL117 (2016), PRC100 (2019))

⇒ contributions of SRG-induced YNNN forces are negligible
(R. Wirth, R. Roth, PRL 117 (2016); PRC 100 (2019))

Johann Haidenbauer Hyperon-nucleon interaction



Two-particle correlation function

Koonin-Pratt formalism

Correlation function for identical particles (ΛΛ, Σ+Σ+, ...)

C(k) ' 1− 1
2

exp(−4k2R2) +
1
2

∫ ∞
0

4πr2 dr S12(r)
[
|ψ(k , r)|2 − |j0(kr)|2

]
Correlation function for non-identical particles (Λp, Ξ−p, K−p, ...)

C(k) ' 1 +

∫ ∞
0

4πr2 dr S12(r)
[
|ψ(k , r)|2 − |j0(kr)|2

]
Extension to multi-channel problem

|ψ(k , r)|2 →
∑
β

ωβ |ψβα(kα, r)|2

Cα(kα) ' 1 +
∑
β

ωβ

∫ ∞
0

4πr2 dr Sβ(r)
[∣∣ψβα(kα, r)

∣∣2 − δβα |j0(kαr)|2
]

∑
β ... over all two-body intermediate states that couple to α

ωβ ... weights of the various components (often put to 1)

assume a static and spherical Gaussian source with radius R:
S12(r) = exp(−r2/4R2)/(2

√
πR)3
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Λp momentum correlation function at
√

s = 13 TeVpΛ interaction: sensitivity to pΣ0 interaction

11

- Assuming a negligible pΣ0 
interaction
→ nσ reduced to 2.2

Further improvement of 
the model is possible!

2.2 σ3.2 σ

ALICE Coll. PLB 833 (2022), 137272

ALICE Collaboration: pp collisions at 13 TeV (S. Acharya et al., PLB 833 (2022) 137272)

⇒ prediction of NLO19 is fairly well in line with data
sensitive to the assumption about the contribution of the Σ0p feed-down
Λp : Slightly weaker energy dependence? Reduced overall strength?
Mihaylov & Gonzalez ( EPJC 83 (2023) 590): at = −1.15± 0.07 fm
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Reduced strength of the ΛN interaction in the 3S1 state

100 200 300 400 500 600 700 800 900

p
lab

 (MeV/c)

0

100

200

300

σ 
(m

b
) 

Sechi-Zorn et al.
Alexander et al.
Hauptman et al.

Piekenbrock

NLO19(600) is used as starting point
at = −1.41 fm ⇒ at = −1.30 fm [−1.15 fm]

χ
2 = 2.09 ⇒ χ

2 = 3.45 [7.14] (Sechi− Zorn)

χ
2 = 1.29 ⇒ χ

2 = 1.15 [6.00] (Alexander)

nσ = 3.2 ⇒ nσ = 2.2 (with residual Σ0p interaction included)

(reduction in the 1S0 state is limited since we want/need the 3
ΛH to be bound!)
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SU(3) structure of contact terms for BB
SU(3) structure for scattering of two octet baryons→
8 ⊗ 8 = 1 ⊕ 8a ⊕ 8s ⊕ 10∗ ⊕ 10 ⊕ 27

BB interaction can be given in terms of LECs corresponding to the SU(3)f irreducible
representations: C1, C8a , C8s , C10∗ , C10, C27

Channel I Vα Vβ Vβ→α
S = 0 NN → NN 0 – C10∗

β –

NN → NN 1 C27
α – –

S = −1 ΛN → ΛN 1
2

1
10

(
9C27

α + C8s
α

)
1
2

(
C8a
β + C10∗

β

)
−C8sa

ΛN → ΣN 1
2

3
10

(
−C27

α + C8s
α

)
1
2

(
−C8a

β + C10∗
β

)
−3C8sa

C8sa

ΣN → ΣN 1
2

1
10

(
C27
α + 9C8s

α

)
1
2

(
C8a
β + C10∗

β

)
3C8sa

ΣN → ΣN 3
2 C27

α C10
β –

α = 1S0,
3 P0,

3 P1,
3 P2, β = 3S1,

3 S1 −3 D1,
1 P1

No. of contact terms: LO: 2 (NN) + 3 (YN) + 1 (YY )
NLO: 7 (NN) + 11 (YN) + 4 (YY )

(No. of spin-isospin channels in NN+YN: 10 S = −2,−3,−4: 27)

Johann Haidenbauer Hyperon-nucleon interaction



Contact terms for YN – partial-wave projected

spin-momentum structure up to NLO

V (1S0) = C̃1S0
+ C1S0

(p2 + p′2)

V (3S1) = C̃3S1
+ C3S1

(p2 + p′2)

V (α) = Cα p p′ α =̂ 1P1,
3P0,

3P1,
3P2

V (3D1 − 3S1) = C3S1− 3D1
p′2

V (1P1 − 3P1) = C1P1− 3P1
p p′

V (3P1 − 1P1) = C3P1− 1P1
p p′

(antisymmetric spin-orbit force: (~σ1 − ~σ2) · (~q × ~k))

• C̃α, Cα ... low-energy constants (LECs)
• need to be fixed by a fit to (NN, YN, ...) data
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chiral YN potential up to N2LO

Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86
• Λ: 350− 550 MeV ... 450 MeV give best results

YN interaction: approximate SU(3) flavor symmetry
mπ = 138 MeV, mK = 495 MeV, mη = 547 MeV

want to keep effects from SU(3) symmetry breaking generated by the
single-meson exchange contributions
⇒ Λ: 500− 600 MeV

two-meson exchange contributions: πK , πη, ... are represented by
contact terms

⇒ some SU(3) symmetry breaking in the YN LECs
(S. Petschauer, N. Kaiser, NPA 916 (2013) 1)

V cont = C̃α + Cα(p2 + p′2) + Cχ(m2
K −m2

π)

C̃α , Cα , α = {27}, {10∗}, {10}, {8s}, {8a}, {1}, ... “regular” contact terms in SU(3) chiral EFT
Cχi : SU(3) symmetry breaking contact terms

(in NLO13 and NLO19 ΛN-ΣN potentials we assumed that Cχi = 0)
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chiral YN potential up to N2LO
adopt the framework of Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86:

“Semilocal momentum-space regularized (SMS) chiral NN potentials”

• employ a regulator that minimizes artifacts from cutoff Λ

nonlocal cutoff (~q = ~p′ − ~p)

V reg
1π ∝

e−
p′4+p4

Λ4

~q2 + m2
π

→ 1
~q2 + m2

π

[
1− p′4 + p4

Λ4
+O(Λ−8)

]

local cutoff:

V reg
1π ∝

e−
~q2+m2

π
Λ2

~q2 + m2
π

→ 1
~q2 + m2

π

− 1
Λ2

+
~q2 + m2

π

Λ4
+ ...

does not affect long-range physics at any order in the 1/Λ2 expansion

applicable to 2π exchange too:

V2π =
2
π

∫ ∞
2mπ

µdµ
ρ(µ)

~q2 + µ2
→ V reg

2π = e−
~q2

2Λ2
2
π

∫ ∞
2mπ

µdµ
ρ(µ)

~q2 + µ2
e−

µ2

2Λ2 + ...
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chiral YN interaction up to N2LO

• no new BB contact terms (no additional LECs) enter

• sub-leading meson-baryon vertices enter at N2LO

Chiral potentials up to NNLO

March 22, 2016

1 Potentials
1.1 Dispersion relations
Relations between the real and the imaginary parts of the potentials using subtracted dispersion
relations, with a cutoff Λ̃ (spectral function regularization):

VC,S(q) = 2q4

π

∫ Λ̃

2m
dµ Im VC,S(iµ)

µ3(µ2 + q2)

VT (q) = −2q2

π

∫ Λ̃

2m
dµ Im VT (iµ)

µ(µ2 + q2)

In the following we give the imaginary parts of the two-meson-exchange potentials for two
different exchanged mesons m1,m2 and for the special case m1 = m2 = m. The corresponding
real potentials are derived for two equal meson masses m1 = m2 = m with a cutoff Λ̃.

The potentials for equal meson masses are expressed in terms of the (regularized) logarithmic
loop function

L(Λ̃, q) = w

2q ln Λ̃2(2m2 + q2)− 2m2q2 + qwΛ̃
√

Λ̃2 − 4m2

2m2(Λ̃2 + q2)
(1)

with w =
√

4m2 + q2 and of the loop function

A(Λ̃, q) = 1
2q arctan q(Λ̃− 2m)

q2 + 2Λ̃m
, (2)

1

πN: fixed from calculating pion-nucleon scattering in chiral perturbation
theory
sub-leading (up to Q2) πN LECs: c1 = −0.74; c3 = −3.61; c4 = 2.44
(cf. RKE 2018)

πΛ, πΣ, πΛ↔ πΣ:
involve additional LECs: d1, d2, d3, bD , bF , b0, b1, b2, b3, b4

fixed from resonance saturation via decuplet baryons (Σ∗(1385))
(cf. Petschauer et al., NPA 957 (2017) 347)
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Coupled channels Lippmann-Schwinger Equation

Tν
′ν,J

ρ′ρ (p′, p) = Vν
′ν,J

ρ′ρ (p′, p)

+
∑
ρ′′,ν′′

∫ ∞
0

dp′′p′′2

(2π)3
Vν
′ν′′,J

ρ′ρ′′ (p′, p′′)
2µρ′′

p2 − p′′2 + iη
Tν
′′ν,J

ρ′′ρ (p′′, p)

ρ′, ρ = ΛN, ΣN (ΛΛ, ΞN, ΛΣ, ΣΣ)

LS equation is solved for particle channels (in momentum space)

Coulomb interaction is included via the Vincent-Phatak method

SMS: A nonlocal regulator is applied to the contact terms

Vν
′ν,J

ρ′ρ (p′, p)→ f Λ(p′)Vν
′ν,J

ρ′ρ (p′, p)f Λ(p); f Λ(p) = e−(p/Λ)2

consider values Λ = 500 - 600 MeV [guided by NN, achieved χ2]

NLO19 (NLO13): A a nonlocal regulator is applied to the whole potential

Vν
′ν,J

ρ′ρ (p′, p)→ f Λ(p′)Vν
′ν,J

ρ′ρ (p′, p)f Λ(p); f Λ(p) = e−(p/Λ)4

with values Λ = 500 - 650 MeV
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Three-body forces

• SU(3) χEFT 3BFs at N2LO (S. Petschauer et al., PRC 93 (2016) 014001)

• however, 5 LECs for ΛNN 3BF alone! (only 2 LECs for NNN)

SU(3) χEFT : (at LO!) :

Three-body forces

N Λ N

N Λ N

u y u

N Λ N

N Λ N

u y

N Λ N

N Λ N

y

(a) (b) (c)

N Λ N

N Λ N

Σ∗u u
u u

N Λ N

N Λ N

Σu u
u u

(d) (e)

(a) - (c) appear at N2LO
(d) appears at NLO – in EFT that includes decuplet baryons

(e) is already included by solving coupled-channel Faddeev equations

Johann Haidenbauer Baryon-baryon interactions

solve coupled channel (ΛN-ΣN) Faddeev-Yakubovsky equations:
⇒ ΛNN “3BF” from Σ coupling is automatically included

• 3BFs with inclusion of decuplet baryons (S. Petschauer et al., NPA 957 (2017) 347)

estimate ΛNN 3BF based on the Σ∗(1385) excitation (appear at NLO!)

• only 1 LEC for ΛNN (2 LECs for YNN in general)

Johann Haidenbauer Hyperon-nucleon interaction
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