Status of the hyperon-nucleon interaction in chiral effective field theory

Johann Haidenbauer

IAS, Forschungszentrum Jülich, Germany

HYP2022, Prague, Czech Republic, June 27 - July 1, 2022

(Hoai Le, Ulf-G. Meißner, Andreas Nogga)

- Charge symmetry breaking
- 4 Strangeness S = -2

Johann Haidenbauer Hyperon-nucleon interaction

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χ EFT à la Weinberg (1990) Advantages:

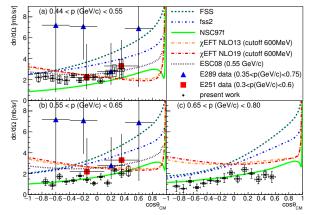
Power counting

systematic improvement by going to higher order

 Possibility to derive two- and three-baryon forces and external current operators in a consistent way

• degrees of freedom: octet baryons (N, Λ , Σ , Ξ), pseudoscalar mesons (π , K, η)

- pseudoscalar-meson exchanges
- contact terms represent unresolved short-distance dynamics involve low-energy constants (LECs) that need to be fixed by a fit to data

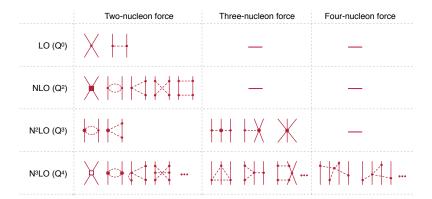

Λ*N*-Σ*N* interaction
LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244
NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24
NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

(*BB* systems with strangeness S = -1 to -6)

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

New ΣN data from E40 Collaboration at J-PARC

Σ⁺*p*: T. Nanamura et al., arXiv:2203:08393

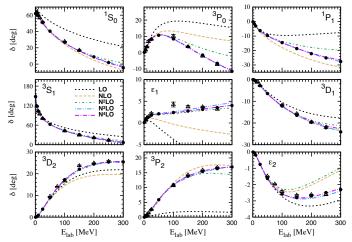


 $(\Sigma^{-}p: K. Miwa et al., PRC 104 (2021) 045204; \Sigma^{-}p \rightarrow \Lambda n: K. Miwa et al., PRL 128 (2021) 072501)$

 $p_{lab} = 500 \text{ MeV/c} (E_{lab} = 100.7 \text{ MeV}); p_{lab} = 600 \text{ MeV/c} (E_{lab} = 142.8 \text{ MeV})$ beyond of validity of NLO interaction?; role of higher partial waves? ($\Lambda p\pi^+$ threshold is at $p_{lab} \approx 600 \text{ MeV/c}$)

Extension of chiral EFT interaction up to NNLO

(Nucleon-nucleon forces in chiral EFT (E. Epelbaum))


N²LO: no new (additional) LECs in the two-body sector

```
leading-order three-body forces (3BFs)
```

イロト イポト イヨト イヨト 二日

NN interaction in chiral EFT

Semilocal momentum-space (SMS) regularized chiral NN potential

(Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86) [up to N⁴LO (N⁴LO⁺) !!]

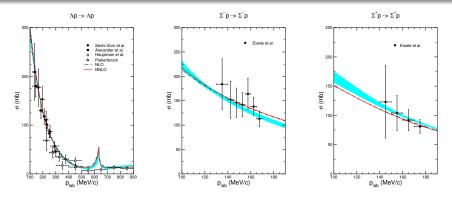
LO to NLO: drastic change in all partial waves

NLO to N²LO: changes mostly in *P*-waves and higher partial waves

chiral YN potential up to NNLO

adopt the framework of Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86: "Semilocal momentum-space regularized (SMS) chiral NN potentials"

• employ a regulator that minimizes artifacts from cutoff Λ nonlocal cutoff $(\vec{q} = \vec{p}' - \vec{p})$

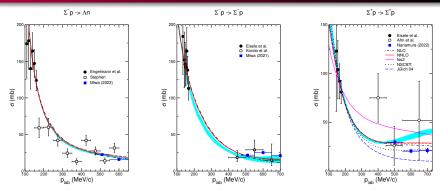

$$V_{1\pi}^{\text{reg}} \propto \frac{e^{-\frac{p'^4 + p^4}{\Lambda^4}}}{\vec{q}^2 + m_{\pi}^2} \to \frac{1}{\vec{q}^2 + m_{\pi}^2} \left[1 - \frac{p'^4 + p^4}{\Lambda^4} + \mathcal{O}(\Lambda^{-8}) \right]$$

local cutoff:

$$V_{1\pi}^{\rm reg} \propto \frac{e^{-\frac{\vec{q}^2 + m_{\pi}^2}{\Lambda^2}}}{\vec{q}^2 + m_{\pi}^2} \to \frac{1}{\vec{q}^2 + m_{\pi}^2} - \frac{1}{\Lambda^2} + \frac{\vec{q}^2 + m_{\pi}^2}{\Lambda^4} + \dots$$

does not affect long-range physics at any order in the $1/\Lambda^2$ expansion applicable to 2π exchange too:

$$V_{2\pi} = \frac{2}{\pi} \int_{2m_{\pi}}^{\infty} \mu d\mu \frac{\rho(\mu)}{\vec{q}^2 + \mu^2} \rightarrow V_{2\pi}^{\text{reg}} = \frac{e^{-\frac{\vec{q}^2}{2\Lambda^2}}}{\pi} \frac{2}{\pi} \int_{2m_{\pi}}^{\infty} \mu d\mu \frac{\rho(\mu)}{\vec{q}^2 + \mu^2} e^{-\frac{\mu^2}{2\Lambda^2}} + \dots$$



SMS YN potentials up to NLO, NNLO (with $\Lambda = 550$ MeV) NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

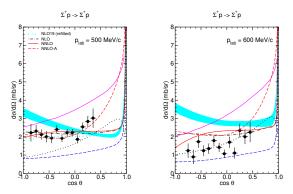
quality of the fit – total χ^2 (36 data points): NLO19(600): 16.0 SMS NLO: 15.2 SMS NNLO: 15.6

cross sections dominated by S-waves (are already well described at NLO) \rightarrow (as expected) practically no change when going to NNLO

ヘロア 人間 アメヨアメ

integrated cross sections at higher energies not included in the fitting process!

 $\Sigma^+ \rho \rightarrow \Sigma^+ \rho$ and $\Sigma^- \rho \rightarrow \Sigma^- \rho$ cross sections:

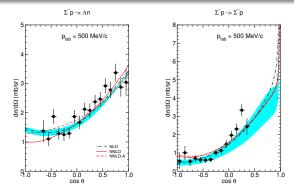

$$\sigma = \frac{2}{\cos \theta_{\max} - \cos \theta_{\min}} \int_{\cos \theta_{\min}}^{\cos \theta_{\max}} \frac{d\sigma(\theta)}{d\cos \theta} d\cos \theta$$

 $\cos \theta_{\min} = -0.5; \cos \theta_{\max} = 0.5$

fss2 ... Fujiwara et al. (constitutent quark model) Jülich 04, Nijmegen NSC97f ... meson-exchange potentials

イロト 不得 とくき とくきとうき

Σ⁺*p* (T. Nanamura et al., arXiv:2203:08393)

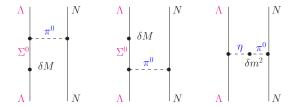


LECs in the ${}^{1}S_{0}$, ${}^{3}S_{1}$ - ${}^{3}D_{1}$ fixed from low-energy cross sections

SMS NLO: LECs in ³*P*-waves taken over from *NN* fit (RKE) (strict SU(3) symmetry: $V_{NN} \equiv V_{\Sigma^+ p}$ in the ¹ S_0 , ³ $P_{0,1,2}$ partial waves!)

SMS NNLO: LECs in P-waves fitted to the E40 data (two examples)!

data for (550 $\leq p \leq$ 650) MeV/c are overestimated (influence of Λp_{π}^{+} threshold?)



 $\Sigma^- p \rightarrow \Lambda n$: quite well reproduced by NLO19 (NLO13) and SMS YN potentials $\Sigma^- p \rightarrow \Sigma^- p$: behavior at forward angles remains unclear

 $\Sigma^- p$ and $\Sigma^- p \to \Lambda n$ data for (550 $\leq p \leq$ 650) MeV/c are reproduced with comparable quality

- no unique determination of all *P*-wave LECs possible
- one needs data from additional channels ($\Lambda p, \Sigma^- p \rightarrow \Sigma^0 n, ...$)
- one needs additional differential observables (polarizations, ...)

Charge symmetry breaking in the ΛN interaction

CSB due to $\Lambda - \Sigma^0$ mixing leads to a long-ranged contribution to the ΛN interaction (R.H. Dalitz & F. von Hippel, PL 10 (1964) 153)

Strength can be estimated from the electromagnetic mass matrix:

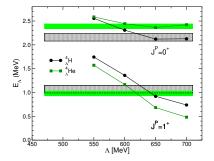
$$\begin{aligned} \langle \Sigma^0 | \delta M | \Lambda \rangle &= [M_{\Sigma^0} - M_{\Sigma^+} + M_\rho - M_n] / \sqrt{3} \\ \langle \pi^0 | \delta m^2 | \eta \rangle &= [m_{\pi^0}^2 - m_{\pi^+}^2 + m_{K^+}^2 - m_{K^0}^2] / \sqrt{3} \end{aligned}$$

$$f_{\Lambda\Lambda\pi} = \left[-2\frac{\langle \Sigma^{0}|\delta M|\Lambda\rangle}{M_{\Sigma^{0}} - M_{\Lambda}} + \frac{\langle \pi^{0}|\delta m^{2}|\eta\rangle}{m_{\eta}^{2} - m_{\pi^{0}}^{2}}\right] f_{\Lambda\Sigma\pi}$$

latest PDG mass values \Rightarrow

$$f_{\Lambda\Lambda\pi} \approx (-0.0297 - 0.0106) f_{\Lambda\Sigma\pi} \approx -0.0403 f_{\Lambda\Sigma\pi}$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト


ъ

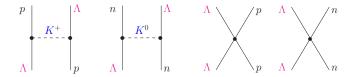
CSB in ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He by Gazda and Gal

D. Gazda and A. Gal, NPA 954 (2016) 161: assume that

$$V^{CSB}_{\Lambda N \to \Lambda N} = -2 \frac{\langle \Sigma^0 | \delta M | \Lambda \rangle}{M_{\Sigma^0} - M_{\Lambda}} \tau_{N_z} \frac{1}{\sqrt{3}} V_{\Lambda N \to \Sigma N} \qquad \tau_{N_z} = 1(p); -1(n)$$

use our LO YN interaction (calculations in the no-core shell model)

- splitting for the 1⁺ state somewhat too large
- fairly strong cutoff dependence
- \Rightarrow EFT: the latter signals that something is missing!


ъ

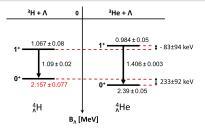
CSB in chiral EFT

CSB (CIB) in χ EFT: worked out for *pp*, *nn* (and *np*) scattering

Walzl, Meißner, Epelbaum, NPA 693 (2001) 663; Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362 J. Friar et al., PRC 68 (2003) 024003

LØ: Coulomb interaction, $m_{\pi^0} - m_{\pi^{\pm}}$ in OPE NLØ: isospin breaking in $f_{NN\pi}$, leading-order contact terms

Gazda/Gal results: short-distance dynamics is relevant


 \rightarrow one has to account for that by appropriate contact terms (in line with the power counting)

NN ¹*S*₀: $a_{pp} - a_{nn} \approx 1.5$ fm mostly due to short-range forces (ρ^0 - ω mixing, a_1^0 - f_1 mixing)

Faddeev-Yakubovsky calculation for NLO13 and NLO19 interactions with CSB forces including contact terms: (J.H., U.-G. Meißner, A. Nogga, FBS 62 (2021) 105)

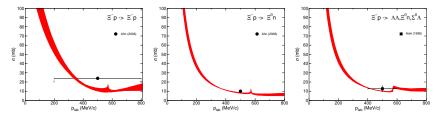
Charge symmetry breaking in ⁴₀H-⁴₀He

- $\Delta E(0^+) = E_{\Lambda}^{0^+} ({}^4_{\Lambda} \text{He}) E_{\Lambda}^{0^+} ({}^4_{\Lambda} \text{H})$ = 233 ± 92 keV
- $\Delta E(1^+) = E_{\Lambda}^{1^+} ({}_{\Lambda}^{4}\text{He}) E_{\Lambda}^{1^+} ({}_{\Lambda}^{4}\text{H})$ = -83 ± 94 keV

adjust CSB contact terms to ΔE 's

(Schulz et al., 2016; Yamamoto et al., 2015)

ヘロン 人間 とくほ とくほ とう

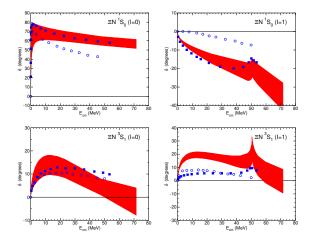

(fm // keV)	$a_s^{\wedge p}$	a _s ^n	$a_t^{\Lambda p}$	$a_t^{\wedge n}$	$\Delta E(0^+)$	$\Delta E(1^+)$
NLO19(500)	-2.649	-3.202	-1.580	-1.467	249	-75
NLO19(550)	-2.640	-3.205	-1.524	-1.407	252	-72
NLO19(600)	-2.632	-3.227	-1.473	-1.362	243	-67
NLO19(650)	-2.620	-3.225	-1.464	-1.365	250	-69

CSB in singlet (¹S₀) much larger than in triplet (³S₁) practically independent of cutoff; same results for NLO13 without CSB: $a_s^{Ap} \approx a_s^{An} \approx -2.9$ fm

• CSB in A = 7, 8 A-hypernuclei, see talk of Hoai Le

Selected results for the $\equiv N$ system

(J.K. Ahn et al., PLB 633 (2006) 214; S. Aoki et al., NPA 644 (1998) 365)


 $\equiv N$ scattering lengths [in fm]:

	$I = 0, {}^{1}S_{0}$	$I = 1, {}^{1}S_{0}$		$I = 0, {}^{3}S_{1}$		$I = 1, {}^{3}S_{1}$	
potential	as	as	rs	at	rt	a _t	r _t
NLO (500)	-7.71-i2.03	0.37	-4.80	-0.33	-6.86	-1.17	3.44
NLO (550)	-7.24-i 20.79	0.39	-4.95	-0.39	-1.77	-1.15	3.80
NLO (600)	-10.89-i14.91	0.34	-7.20	-0.62	1.00	-1.13	3.95
NLO (650)	-8.14-i2.43	0.31	-9.16	-0.85	1.42	-0.90	4.27

- scattering lengths $|a| \lesssim 1$ fm, except for I = 0, ¹ S_0
- ΞN interaction is fairly weak

J.H., U.-G. Meißner, EPJA 58 (2019) 23

EN: Comparison with HAL QCD results

HAL QCD Collaboration (almost at physical point, $m_{\pi} \approx 145$ MeV): open circles from E. Hiyama et al., PRL 124 (2020) 092501 (no $\Lambda \Sigma, \Sigma \Sigma$) filled squares from M. Kohno & K. Miyagawa, PTEP 2021 (2021) 103D04

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

ъ

Nuclear matter properties

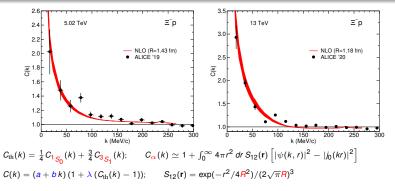
 $U_{\Xi}(\rho_{\Xi} = 0)$ [in MeV] at saturation density, $k_F = 1.35 \text{ fm}^{-1}$ ($\rho_0 = 0.166 \text{ fm}^{-3}$)

potential	1	¹ S ₀	³ S ₁	S-waves	P-waves	total
NLO (500)	0	-2.6	-3.3			
	1	12.7	-11.8	-5.0	-0.4	-5.5
NLO (550)	0	-2.9	-3.1			
	1	12.4	-9.5	-3.1	-0.7	-3.8
NLO (550)*	0	-3.15	-3.24			
	1	9.64	-11.0	-7.7	-1.1	-8.8
HAL QCD	0	-3.15	-5.36			
	1	7.12	-2.41	-4.11	-	-4.11
Ehime	0	-0.80	0.47			
(1.82)	1	-1.5	-8.6	-10.43	-11.4	-21.8

"traditional" value for the depth of the \equiv single-particle potential: ≈ -15 MeV

E. Friedman & A. Gal (optical potential, PLB 820 (2021) 136555): $U_{\Xi} \leq -20$ MeV

Y. Tanimura et al. (relativistic mean field, PRC 105 (2022) 044324): $U_{\Xi} \approx -12 \text{ MeV}$ (from analyzing $\frac{15}{2}$ C and $\frac{12}{2}$ Be events)


NLO (550)*: M. Kohno, PRC 100 (2019) 024313 (continuous prescription)

HAL QCD: T. Inoue, AIP Conf. Proc. 2130 (2019) 020002

Ehime: M. Yamaguchi et al., PTP 105 (2001) 627

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つくぐ

EN: two-particle momentum correlation functions

a, b, λ , R ... additional parameters that need to be determined (\rightarrow talk of Yuki Kamiya)

 ALICE Collaboration: p-Pb at 5.02 TeV (PRL 123 (2019) 112002)
 pp at 13 TeV (Nature 588 (2020) 232)

 R = 1.427 fm; $\lambda = 0.513$ R = 1.02 fm; $\lambda = 1$

we adopt R = 1.427 fm & 1.18 fm, respectively (same source radii as found in corresponding fits to *pp* correlation functions) (J.H., U.-G. Meißner, arXiv:2201.08238)

Y. Kamiya et al., PRC 105 (2022) 014915, using HAL QCD potential: R = 1.27 fm & 1.05 fm Z.-W. Liu et al., arXiv:2201.04997, cov. χ EFT mimicking the HAL QCD potential: R = 1.427 fm & 1.182 fm

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

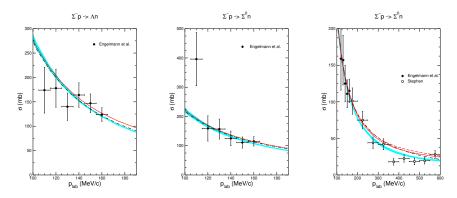
(4) (2) (4) (3) (4)

Hyperon-nucleon interaction within chiral EFT

- ΛN-ΣN interaction within semilocal momentum-space regularized chiral EFT confirm our previous YN results (up to NLO) based on a nonlocal regulator successful extension to NNLO new Σ[±]p differential cross sections around p_{lab} ≈ 500 MeV/c can be described unique determination of the P-waves is not yet possible
- Charge symmetry breaking within chiral EFT regulator independent results require pertinent contact terms CSB splittings in ${}^{A}_{\Lambda}$ He- ${}^{A}_{\Lambda}$ H ($\Delta E(0^+) = 233 \pm 92$ keV; $\Delta E(1^+) = -83 \pm 94$ keV) imply $a_{\Lambda p} - a_{\Lambda n} = 0.62 \pm 0.08$ fm for ${}^{1}S_{0}$ state however, hypernuclei.kph.uni-mainz.de: 178 ± 55 keV; -139 ± 58 keV Elena Botta, HYP2018: 140 ± 120 keV
- Ξ*N* interaction should be fairly weak as suggested by the few existing experimental constraints on the Ξ*N* cross sections measurements of Ξ*N* two-particle momentum correlations lattice QCD simulations close to the physical point

light \equiv -hypernuclei ($A \geq 4$) could still exist \rightarrow see talk of Hoai Le

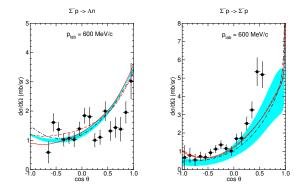
• next step: calculate ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He, ${}^{4}_{\Lambda}$ H, ... with inclusion of three-body forces


・ロト ・ 日 ト ・ 日 ト ・ 日 ト

backup slides

Johann Haidenbauer Hyperon-nucleon interaction

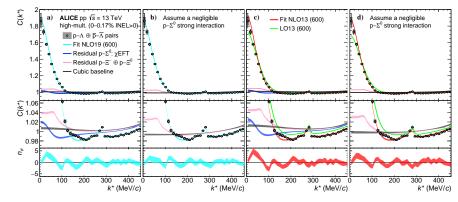
<ロト < 回 > < 回 > < 回 > 、


æ

SMS YN potentials up to NLO, NNLO (with $\Lambda = 550$ MeV) NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

quality of the fit – total χ^2 (36 data points):NLO19(600): 16.0SMS NLO: 15.2SMS NNLO: 15.2

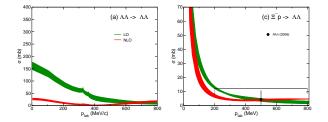
cross sections dominated by S-waves (are already well described at NLO) \rightarrow (as expected) practically no change when going to NNLO


 $\Sigma^- \rho \rightarrow \Sigma^- \rho$: behavior at forward angles remains unclear

・ロン ・ 一 レ ・ 日 と ・ 日 と

ъ

Femtoscopic studies by ALICE at LHC/CERN


 Λp momentum correlation function measured in pp collisions at $\sqrt{s} = 13$ TeV

ALICE Collaboration (Shreyasi Acharya et al.), arXiv:2104.04427

⇒ prediction of NLO19 is fairly well in line with data sensitive to the assumption about the contribution of the Σ⁰p feed-down "true" ∧p amplitude could have slightly weaker energy dependence (a_t could be about 10 - 15 % smaller; ≃ - 1.3 fm instead of ≃ - 1.5 fm)

Selected results for S = -2

$\Lambda\Lambda$ effective range parameters

		NL	.0		LO			
^	500	550	600	650	550	600	650	700
a _{1S0}	-0.62	-0.61	-0.66	-0.70	-1.52	-1.52	-1.54	-1.67
r _{1S0}	7.00	6.06	5.05	4.56	0.82	0.59	0.31	0.34

empirical: $a_{\Lambda\Lambda} = -1.2 \pm 0.6$ fm (Gasparyan et al.) $-1.92 < a_{\Lambda\Lambda} < -0.50$ fm (A. Ohnishi et al.)

J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273

structure of contact terms for BB

SU(3) structure for scattering of two octet baryons \rightarrow

 $8 \otimes 8 = 1 \oplus 8_a \oplus 8_s \oplus 10^* \oplus 10 \oplus 27$

BB interaction can be given in terms of LECs corresponding to the SU(3), irreducible representations: C¹, C⁸*a*, C⁸*s*, C^{10*}, C¹⁰, C²⁷

	Channel	I	V _α	V_{eta}	$V_{\beta \to \alpha}$
<i>S</i> = 0	NN ightarrow NN	0	-	$C^{10^*}_{eta}$	-
	NN ightarrow NN	1	C_{α}^{27}	-	-
<i>S</i> = -1	$\Lambda N \to \Lambda N$	$\frac{1}{2}$		$\frac{1}{2}\left(C_{\beta}^{8_a}+C_{\beta}^{10^*}\right)$	- <i>C</i> ⁸ sa
	$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{3}{10}\left(-C_{\alpha}^{27}+C_{\alpha}^{8_{s}}\right)$	$\frac{\frac{1}{2}\left(\boldsymbol{C}_{\beta}^{\boldsymbol{8}_{\boldsymbol{a}}}+\boldsymbol{C}_{\beta}^{\boldsymbol{10}^{*}}\right)}{\frac{1}{2}\left(-\boldsymbol{C}_{\beta}^{\boldsymbol{8}_{\boldsymbol{a}}}+\boldsymbol{C}_{\beta}^{\boldsymbol{10}^{*}}\right)}$	-3 <i>C</i> ⁸ sa
					C ⁸ sa
	$\Sigma N \rightarrow \Sigma N$	$\frac{1}{2}$	$\frac{1}{10}\left(C_{\alpha}^{27}+9C_{\alpha}^{8_{s}}\right)$	$rac{1}{2}\left(\mathcal{C}_{eta}^{8a}+\mathcal{C}_{eta}^{10^{st}} ight)$	3 <i>C⁸sa</i>
	$\Sigma N \rightarrow \Sigma N$	3 2	C_{α}^{27}	C_{β}^{10}	-

 $\alpha = {}^{1}S_{0}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}, \quad \beta = {}^{3}S_{1}, {}^{3}S_{1}, {}^{-3}D_{1}, {}^{1}P_{1}$

No. of contact terms: LO: 2(NN) + 3(YN) + 1(YY)NLO: 7 (NN) + 11 (YN) + 4 (YY)

(No. of spin-isospin channels in *NN*+*YN*: 10 S = -2, -3, -4: 27)

(3)

Contact terms for YN – partial-wave projected

spin-momentum structure up to NLO

$$V({}^{1}S_{0}) = \tilde{C}_{1S_{0}} + C_{1S_{0}}(p^{2} + p'^{2})$$

$$V({}^{3}S_{1}) = \tilde{C}_{3S_{1}} + C_{3S_{1}}(p^{2} + p'^{2})$$

$$V(\alpha) = C_{\alpha}pp' \qquad \alpha \triangleq {}^{1}P_{1}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$$

$$V({}^{3}D_{1} - {}^{3}S_{1}) = C_{3S_{1} - {}^{3}D_{1}}p'^{2}$$

$$V({}^{1}P_{1} - {}^{3}P_{1}) = C_{1P_{1} - 3P_{1}} p p'$$

$$V({}^{3}P_{1} - {}^{1}P_{1}) = C_{3P_{1} - 1P_{1}} p p'$$

(antisymmetric spin-orbit force: $(\vec{\sigma}_1 - \vec{\sigma}_2) \cdot (\vec{q} \times \vec{k})$)

C
 ^α
 ^α

イロン 不得 とくほ とくほ とうほ

chiral YN potential up to NNLO

Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86

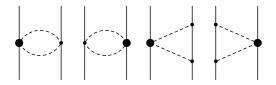
Λ: 350 – 550 MeV ... 450 MeV give best results

YN interaction: approximate SU(3) flavor symmetry $m_{\pi} = 138$ MeV, $m_{K} = 495$ MeV, $m_{\eta} = 547$ MeV

want to keep effects from SU(3) symmetry breaking generated by the single-meson exchange contributions $\Rightarrow \Lambda: 500 - 600 \text{ MeV}$

two-meson exchange contributions: πK , $\pi \eta$, ... are represented by contact terms

 \Rightarrow some SU(3) symmetry breaking in the YN LECs


(S. Petschauer, N. Kaiser, NPA 916 (2013) 1)

$$V^{cont} = \tilde{C}^{\alpha} + \frac{C^{\alpha}(p^2 + p'^2)}{C^{\chi}(m_K^2 - m_\pi^2)}$$

 $\tilde{C}^{\alpha}, C^{\alpha}, \alpha = \{27\}, \{10^*\}, \{10\}, \{8_s\}, \{8_a\}, \{1\}, \dots$ "regular" contact terms in SU(3) chiral EFT C_i^{χ} : SU(3) symmetry breaking contact terms (in NLO13 and NLO19 ΛN - ΣN potentials we assumed that $C_i^{\chi} = 0$)

chiral YN interaction up to NNLO

- no new BB contact terms (no additional LECs) enter
- sub-leading meson-baryon vertices enter at NNLO

 πN : fixed from calculating pion-nucleon scattering in chiral perturbation theory

sub-leading (up to Q^2) πN LECs: $c_1 = -0.74$; $c_3 = -3.61$; $c_4 = 2.44$ (cf. RKE 2018)

 $\pi\Lambda, \pi\Sigma, \pi\Lambda \leftrightarrow \pi\Sigma$:

involve additional LECs: d_1 , d_2 , d_3 , b_D , b_F , b_0 , b_1 , b_2 , b_3 , b_4 fixed from resonance saturation via decuplet baryons (Σ^* (1385))

(cf. Petschauer et al., NPA 957 (2017) 347)

イロト 不得 とくほ とくほ とう

Coupled channels Lippmann-Schwinger Equation

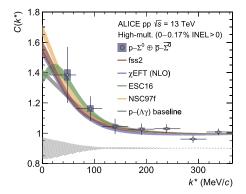
$$\begin{split} T^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) &= V^{\nu'\nu,J}_{\rho'\rho}(\rho',\rho) \\ &+ \sum_{\rho'',\nu''} \int_0^\infty \frac{dp''p''^2}{(2\pi)^3} \, V^{\nu'\nu'',J}_{\rho'\rho''}(\rho',p'') \frac{2\mu_{\rho''}}{p^2 - p''^2 + i\eta} \, T^{\nu''\nu,J}_{\rho''\rho}(\rho'',\rho) \end{split}$$

 $\rho', \ \rho = \Lambda N, \Sigma N \quad (\Lambda \Lambda, \Xi N, \Lambda \Sigma, \Sigma \Sigma)$

LS equation is solved for particle channels (in momentum space) Coulomb interaction is included via the Vincent-Phatak method SMS: A nonlocal regulator is applied to the contact terms

$$V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) o f^{\wedge}(
ho') V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) f^{\wedge}(
ho); \quad f^{\wedge}(
ho) = e^{-(
ho/\Lambda)^2}$$

consider values $\Lambda = 500 - 600$ MeV [guided by *NN*, achieved χ^2] NLO19 (NLO13): A a nonlocal regulator is applied to the whole potential

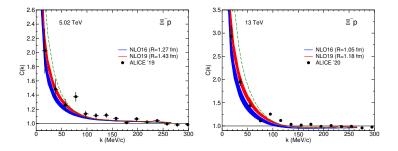

$$V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) o f^{\wedge}(
ho') V^{
u'
u,J}_{
ho'
ho}(
ho',
ho) f^{\wedge}(
ho); \quad f^{\wedge}(
ho) = e^{-(
ho/\Lambda)^4}$$

with values $\Lambda = 500 - 650 \text{ MeV}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - の々で

Femtoscopic studies by ALICE at LHC/CERN

 $\Sigma^0 p$ momentum correlation function measured in *pp* collisions at $\sqrt{s} = 13$ TeV

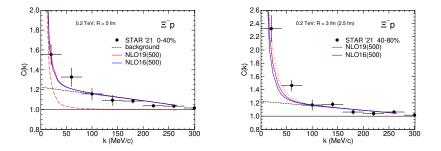

ALICE Collaboration (Shreyasi Acharya et al.), PLB 805 (2020) 135419

open channels (Σ^+ *n*, Λp) make theoretical analysis more complicated, cf. J.H., NPA 981 (2019) 1

ヘロト ヘヨト ヘヨト

 $< \pm >$

$\equiv N$: two-particle momentum correlation functions

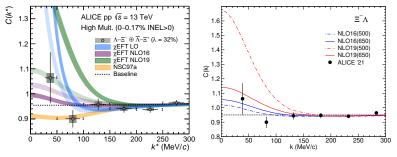


- - ... result for $\equiv N$ interaction that produces $U_{\equiv} \approx -15$ MeV

イロト 不同 トイヨト イヨト

ъ

Results for S = -2: $\Xi^- p$


Moe Isshiki (STAR Collaboration) at SQM 2021 (arXiv:2109.10953): Au+Au at 200 GeV only preliminary results available so far

Johann Haidenbauer Hyperon-nucleon interaction

イロト イポト イヨト イヨト

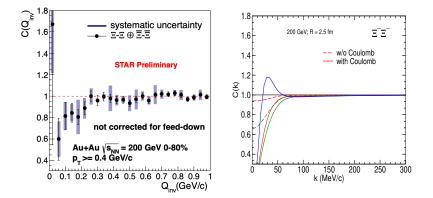
ъ

Results for S = -3: $\Lambda \Xi^-$

ALICE Collaboration, arXiv:2204.10258: pp at 13 TeV

 $R = 1.03 \text{ fm}; \lambda = 0.36$

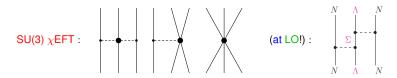
LO potential (J.H., U.-G. Meißner, PLB 684 (2010) 275): produces a bound state \rightarrow not supported by measurement


LO rel. xEFT potential (Z.-W. Liu et al., PRC 103 (2021) 025201): likewise too attractive

NLO19: $a_s = -0.99 \cdots - 0.89 \text{ fm}, r_s = 4.63 \cdots 5.77 \text{ fm}; a_t = -0.42 \cdots -1.66 \text{ fm}, r_t = 6.33 \cdots 1.49 \text{ fm}$ NLO16: $a_s = -0.99 \cdots - 0.89 \text{ fm}, r_s = 4.63 \cdots 5.77 \text{ fm}; a_t = 0.026 \cdots -0.12 \text{ fm}, r_t = 32.0 \cdots 702 \text{ fm}$ (J.H., U.-G. Meißner, arXiv:2201.08238)

イロト 不得 とくほ とくほとう

3


Results for S = -4: $\Xi^-\Xi^-$

Moe Isshiki (STAR Collaboration) at SQM 2021 (arXiv:2109.10953): Au+Au at 200 GeV only preliminary results: R = 2.5 - 5 fm; $\lambda = ?$? use for calculation: R = 2.5 fm; $\lambda = 1$ $a_s = -7.04$ fm (no SU(3) breaking) -1.71 fm (moderate SU(3) breaking) -0.71 fm (strong SU(3) breaking)

Three-body forces

- SU(3) χ EFT 3BFs at NNLO (S. Petschauer et al., PRC 93 (2016) 014001)
- however, 5 LECs for ANN 3BF alone! (only 2 LECs for NNN)

solve coupled channel (ΛN - ΣN) Faddeev-Yakubovsky equations: $\Rightarrow \Lambda NN$ "3BF" from Σ coupling is automatically included

• 3BFs with inclusion of decuplet baryons (S. Petschauer et al., NPA 957 (2017) 347)

estimate $\wedge NN$ 3BF based on the Σ^* (1385) excitation (appear at NLO!)

• only 1 LEC for ANN (2 LECs for YNN in general)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Estimation of 3BFs based on NLO results

● ³_∧H

(a) cutoff variation: ΔE_{Λ} (3BF) \leq 50 keV (b) "3BF" from ΛN - ΣN coupling:

> switch off ΛN - ΣN coupling in Faddeev-Yakubovsky equations: ΔE_{Λ} (3BF) \approx 10 keV expect similar/smaller ΔE_{Λ} from Σ^* (1385) excitation

イロト 不同 とくほ とくほ とう

ъ

$$\begin{array}{l} \text{(c)} \ {}^{3}\text{H} : \underbrace{\text{3NF}}_{} \sim \mathcal{Q}^{3} \left| \langle V_{NN} \rangle \right|_{^{3}\text{H}} \sim 650 \text{ keV} \\ (\left| \langle V_{NN} \rangle \right|_{^{3}\text{H}} \sim 50 \text{ MeV}; \ \mathcal{Q} \sim m_{\pi} / \Lambda_{\text{b}}; \ \Lambda_{\text{b}} \simeq 600 \text{ MeV}) \\ {}^{3}_{\Lambda}\text{H} : \left| \langle V_{\Lambda N} \rangle \right|_{^{3}_{\Lambda}\text{H}} \sim 3 \text{ MeV} \rightarrow \Delta E_{\Lambda} \ (3\text{BF}) \approx \mathcal{Q}^{3} \left| \langle V_{\Lambda N} \rangle \right|_{^{3}_{\Lambda}\text{H}} \simeq 40 \text{ keV} \end{array}$$

• ${}^{A}_{\Lambda}$ H, ${}^{A}_{\Lambda}$ He (a) cutoff variation: ΔE_{Λ} (3BF) \approx 200 keV (0⁺) and \approx 300 keV (1⁺) (b) "3BF" from ΛN - ΣN coupling: ΔE_{Λ} (3BF) \approx 230 - 340 keV (0⁺), \approx 150 - 180 keV (1⁺)

 $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H(He) calculations with explicit inclusion of 3BFs utilizing the decuplet saturation are planned for the future