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BB interaction in chiral effective field theory

Baryon-baryon interaction in SU(3) χEFT à la Weinberg (1990)

Advantages:

Power counting
systematic improvement by going to higher order

Possibility to derive two- and three-baryon forces and external
current operators in a consistent way

• degrees of freedom: octet baryons (N, Λ, Σ, Ξ), pseudoscalar
mesons (π, K , η)

• pseudoscalar-meson exchanges
• contact terms – represent unresolved short-distance dynamics

involve low-energy constants (LECs) that need to be fixed
by a fit to data

ΛN-ΣN interaction
LO: H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244
NLO13: J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24
NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

(BB systems with strangeness S = −1 to−6)
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New ΣN data from E40 Collaboration at J-PARC

Σ+p: T. Nanamura et al., arXiv:2203:08393
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fss2

NSC97f

EFT NLO13 (cutoff 600MeV) χ
EFT NLO19 (cutoff 600MeV)χ

ESC08 (0.55 GeV/c)

E289 data (0.35<p(GeV/c)<0.75)

E251 data (0.3<p(GeV/c)<0.6)

present work

(Σ−p: K. Miwa et al., PRC 104 (2021) 045204; Σ−p → Λn: K. Miwa et al., PRL 128 (2021) 072501)

plab = 500 MeV/c (Elab = 100.7 MeV); plab = 600 MeV/c (Elab = 142.8 MeV)

beyond of validity of NLO interaction?; role of higher partial waves?
(Λpπ+ threshold is at plab ≈ 600 MeV/c)
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Extension of chiral EFT interaction up to NNLO

(Nucleon-nucleon forces in chiral EFT (E. Epelbaum))
4 E. EpelbaumNuclear χEFT in the Precision Era Evgeny Epelbaum
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.

4

(short-range loop contribu-
tions still to be worked out)

have not been worked 
out yet
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Figure 2: Chiral expansion of the nuclear forces. Solid and dashed lines refer to
nucleons and pions. Solid dots, filled circles, filled squares, crossed squares and open
squares denotes vertices from the effective chiral Lagrangian of dimension ∆ = 0, 1,
2, 3 and 4, respectively.

and nucleons as the only explicit degrees of freedom and utilizing the rules of naive
dimensional analysis for few-nucleon contact operators, see [31–33] for alternative pro-
posals. We remind the reader that all diagrams shown in this and following figures
correspond to irreducible parts of the scattering amplitude and to be understood as
series of all possible time-ordered-like graphs for a given topology. As already ex-
plained before, the precise meaning of these diagrams and the resulting contributions
to the nuclear forces are scheme dependent.

The nucleon-nucleon potential has been calculated to fifth order (N4LO) in the
chiral expansion using dimensional regularization [24,34–41]. The expressions for the
leading and subleading 3NF can be found in Refs. [42–46] and [26, 27], respectively.
Apart from the contributions involving NN contact interactions, which still have to
be worked out, the N4LO terms in the 3NF can be found in Refs. [29, 47, 48]. The
leading contribution to the four-nucleon force (4NF) appears at N3LO and has been
derived in Refs. [26,27]. It is important to emphasize that the long-range parts of the
nuclear forces are completely determined by the spontaneously broken approximate
chiral symmetry of QCD along with the experimental and/or empirical information
on the pion-nucleon system needed to determined the relevant LECs in the effective
Lagrangian. In this sense, the long-range contributions to the nuclear forces and cur-
rents can be regarded as parameter-free predictions. Given that the chiral expansion
of the NN contact operators in the isospin limit contains only contributions at orders
Q2n, n = 0, 1, 2, . . ., the N2LO and the isospin-invariant N4LO corrections to the NN
potential are parameter-free. This also holds true for the N3LO contributions to the
3NF and 4NF. For calculations utilizing a formulation of chiral EFT with explicit

N2LO: no new (additional) LECs in the two-body sector

leading-order three-body forces (3BFs)
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NN interaction in chiral EFT
Semilocal momentum-space (SMS) regularized chiral NN potential
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(Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86) [up to N4LO (N4LO+) !!]

LO to NLO: drastic change in all partial waves

NLO to N2LO: changes mostly in P-waves and higher partial waves
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chiral YN potential up to NNLO
adopt the framework of Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86:

“Semilocal momentum-space regularized (SMS) chiral NN potentials”

• employ a regulator that minimizes artifacts from cutoff Λ

nonlocal cutoff (~q = ~p′ − ~p)

V reg
1π ∝

e−
p′4+p4

Λ4

~q2 + m2
π

→ 1
~q2 + m2

π

[
1− p′4 + p4

Λ4
+O(Λ−8)

]

local cutoff:

V reg
1π ∝

e−
~q2+m2

π
Λ2

~q2 + m2
π

→ 1
~q2 + m2

π

− 1
Λ2

+
~q2 + m2

π

Λ4
+ ...

does not affect long-range physics at any order in the 1/Λ2 expansion

applicable to 2π exchange too:

V2π =
2
π

∫ ∞
2mπ

µdµ
ρ(µ)

~q2 + µ2
→ V reg

2π = e−
~q2

2Λ2
2
π

∫ ∞
2mπ

µdµ
ρ(µ)

~q2 + µ2
e−

µ2

2Λ2 + ...
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Preliminary results for SMS chiral YN interactions
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Σ+
p -> Σ+

p

SMS YN potentials up to NLO, NNLO (with Λ = 550 MeV)
NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

quality of the fit – total χ2 (36 data points):
NLO19(600): 16.0 SMS NLO: 15.2 SMS NNLO: 15.6

cross sections dominated by S-waves (are already well described at NLO)
→ (as expected) practically no change when going to NNLO
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Preliminary results for SMS YN interactions
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fss2
NSC97f
Jülich 04

Σ+
p -> Σ+

p

integrated cross sections at higher energies not included in the fitting process!

Σ+p → Σ+p and Σ−p → Σ−p cross sections:

σ =
2

cos θmax − cos θmin

∫ cos θmax

cos θmin

dσ(θ)

d cos θ
d cos θ

cos θmin = −0.5; cos θmax = 0.5

fss2 ... Fujiwara et al. (constitutent quark model) Jülich 04, Nijmegen NSC97f ... meson-exchange potentials
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Preliminary results for SMS YN interactions
Σ+p (T. Nanamura et al., arXiv:2203:08393)
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LECs in the 1S0, 3S1-3D1 fixed from low-energy cross sections

SMS NLO: LECs in 3P-waves taken over from NN fit (RKE)
(strict SU(3) symmetry: VNN ≡ VΣ+p in the 1S0, 3P0,1,2 partial waves!)

SMS NNLO: LECs in P-waves fitted to the E40 data (two examples)!

data for (550 ≤ p ≤ 650) MeV/c are overestimated (influence of Λpπ+ threshold?)

Johann Haidenbauer Hyperon-nucleon interaction



Preliminary results for SMS YN interactions
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Σ−p → Λn: quite well reproduced by NLO19 (NLO13) and SMS YN potentials
Σ−p → Σ−p: behavior at forward angles remains unclear

Σ−p and Σ−p → Λn data for (550 ≤ p ≤ 650) MeV/c are reproduced with comparable
quality

• no unique determination of all P-wave LECs possible
• one needs data from additional channels (Λp, Σ−p → Σ0n, ...)
• one needs additional differential observables (polarizations, ...)
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Charge symmetry breaking in the ΛN interaction

π0

δM

Λ

Σ0

Λ N

N

u
u

u
π0

δM

Λ

Σ0

Λ N

N

u
u u

η π0

δm2

Λ

Λ N

N

u u u

CSB due to Λ− Σ0 mixing leads to a long-ranged contribution to the ΛN interaction
(R.H. Dalitz & F. von Hippel, PL 10 (1964) 153)

Strength can be estimated from the electromagnetic mass matrix:
〈Σ0|δM|Λ〉 = [MΣ0 −MΣ+ + Mp −Mn]/

√
3

〈π0|δm2|η〉 = [m2
π0 −m2

π+ + m2
K + −m2

K 0 ]/
√

3

fΛΛπ = [−2 〈Σ
0|δM|Λ〉

M
Σ0−MΛ

+ 〈π0|δm2|η〉
m2
η−m2

π0
] fΛΣπ

latest PDG mass values ⇒

fΛΛπ ≈ (−0.0297− 0.0106) fΛΣπ ≈ −0.0403 fΛΣπ
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CSB in 4
Λ H, 4

Λ He by Gazda and Gal

D. Gazda and A. Gal, NPA 954 (2016) 161: assume that

V CSB
ΛN→ΛN = −2 〈Σ

0|δM|Λ〉
M

Σ0−MΛ
τNz

1√
3

VΛN→ΣN τNz = 1(p); −1(n)

use our LO YN interaction (calculations in the no-core shell model)

450 500 550 600 650 700
Λ [MeV]

0.0

0.5
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E
Λ
 (

M
e
V

) 4

ΛH
4

ΛHe

J
P
=1

+
J

P
=1

+

J
P
=0

+

• splitting for the 1+ state somewhat too large
• fairly strong cutoff dependence

⇒ EFT: the latter signals that something is missing!
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CSB in chiral EFT

CSB (CIB) in χEFT: worked out for pp, nn (and np) scattering
Walzl, Meißner, Epelbaum, NPA 693 (2001) 663; Epelbaum, Glöckle, Meißner, NPA 747 (2005) 362
J. Friar et al., PRC 68 (2003) 024003
LØ: Coulomb interaction, m

π0 -m
π± in OPE NLØ: isospin breaking in fNNπ , leading-order contact terms

p Λ

Λ p

K+✉ ✉
n Λ

Λ n

K0✉ ✉

✉
✉

✉
✉Λ p

Λ p

Σ+ n

π−

π− ✉ ✉
✉ ✉

Λ n

Λ n

Σ− p

π+

π+ ✉
✉ ✉

✉Λ p

Λ p

Σ− n

π+

π+ ✉ ✉
✉ ✉

Λ n

Λ n

Σ+ p

π−

π−

✉ ✉✉
Λ N

Λ N

ω ρ0

δm2
· · · ✉

Λ p

Λ p

✉
Λ n

Λ n

Gazda/Gal results: short-distance dynamics is relevant
→ one has to account for that by appropriate contact terms
(in line with the power counting)

NN 1S0: app − ann ≈ 1.5 fm
mostly due to short-range forces (ρ0-ω mixing, a0

1-f1 mixing)

Faddeev-Yakubovsky calculation for NLO13 and NLO19 interactions
with CSB forces including contact terms:
(J.H., U.-G. Meißner, A. Nogga, FBS 62 (2021) 105)
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Charge symmetry breaking in 4
ΛH-4

ΛHe
• ∆E(0+) = E0+

Λ (4
ΛHe)− E0+

Λ (4
ΛH)

= 233± 92 keV
• ∆E(1+) = E1+

Λ (4
ΛHe)− E1+

Λ (4
ΛH)

= −83± 94 keV

adjust CSB contact terms to ∆E ’s

Nov 16th, 2021


CSB contributions in ￼4ΛHe

￼11

• perturbative calculations of CSB 

• breakdown in kinetic energy, YN and NN interaction

• kinetic energy less important for chiral interactions

Title Suppressed Due to Excessive Length 13

Table 6 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the 0+

state based on 4
⇤He wave functions for scenario CSB1. The SMS N4LO+ (450) NN interaction

[40] was used in all cases. The contributions of the kinetic energy hT iCSB, the Y N interaction
hVY N iCSB and the contribution of the nuclear core V CSB

NN = hVNN iCSB � E(3He) + E(3H)

are separated and combined to the total CSB �Epert
⇤ . The direct comparison of separation

energies for full calculations of 4
⇤He and 4

⇤H, �E⇤, is also given. All energies are in keV.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 44 200 16 261 265

NLO13(550) 46 191 20 257 261

NLO13(600) 44 187 20 252 256

NLO13(650) 38 189 18 245 249

NLO19(500) 14 224 5 243 249

NLO19(550) 14 226 7 247 252

NLO19(600) 22 204 12 238 243

NLO19(650) 26 207 12 245 250

Table 7 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the

1+ state based on 4
⇤He wave functions for scenario CSB1. Same interactions and notations as

in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53

NLO13(650) 3 -80 17 -59 -55

NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E⇤

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

⇤He wave functions for the evaluation of the expectation
values. Results for 4

⇤H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the ⇤p and ⇤n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.

Title Suppressed Due to Excessive Length 13

Table 6 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the 0+

state based on 4
⇤He wave functions for scenario CSB1. The SMS N4LO+ (450) NN interaction

[40] was used in all cases. The contributions of the kinetic energy hT iCSB, the Y N interaction
hVY N iCSB and the contribution of the nuclear core V CSB

NN = hVNN iCSB � E(3He) + E(3H)

are separated and combined to the total CSB �Epert
⇤ . The direct comparison of separation

energies for full calculations of 4
⇤He and 4

⇤H, �E⇤, is also given. All energies are in keV.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 44 200 16 261 265

NLO13(550) 46 191 20 257 261

NLO13(600) 44 187 20 252 256

NLO13(650) 38 189 18 245 249

NLO19(500) 14 224 5 243 249

NLO19(550) 14 226 7 247 252

NLO19(600) 22 204 12 238 243

NLO19(650) 26 207 12 245 250

Table 7 Perturbative estimate of di↵erent contributions to the CSB of 4
⇤He and 4

⇤H for the

1+ state based on 4
⇤He wave functions for scenario CSB1. Same interactions and notations as

in Table 6.

interaction hT iCSB hVY N iCSB V CSB
NN �Epert

⇤ �E⇤

NLO13(500) 5 -90 15 -71 -66

NLO13(550) 5 -86 18 -63 -56

NLO13(600) 4 -83 19 -59 -53

NLO13(650) 3 -80 17 -59 -55

NLO19(500) 1 -84 3 -80 -75

NLO19(550) 2 -81 2 -77 -72

NLO19(600) 4 -82 6 -71 -67

NLO19(650) 4 -79 9 -66 -69

LECs, the Y N potential provides the by far largest contribution to the CSB.
The total CSB is by construction fairly independent of the Y N interaction. The
comparison of the perturbative estimate to the direct result for the CSB �E⇤

shows that both calculations agree well with each other. We note that this is also
so because we chose 4

⇤He wave functions for the evaluation of the expectation
values. Results for 4

⇤H reproduce the full calculation with slightly lower accuracy.

As already seen in Table 3, also the predictions for the ⇤p and ⇤n scattering
lengths are largely independent of the interaction. The latter property is not trivial
and suggests that the CSB of the scattering lengths can be indeed determined using
A = 4 data.

How model-dependent are predictions for the ￼  scattering length?Λn

A1 Collaboration / Nuclear Physics A 954 (2016) 149–160 159

Fig. 6. Level schemes of the mirror hypernuclei 4!H and 4!He in terms of ! binding energy. For the ground state binding 
energy of 4!H the MAMI data were used, for that of 4!He data from past emulsion experiments [3] with a systematic 
error estimate of 40 keV [22]. The B! values for the excited states were obtained from the 1+

exc → 0+
g.s. γ -ray transition 

energies [4].

6. Conclusions

The ! separation energy of 4
!H has been measured for the second time by high-precision 

decay-pion spectroscopy at MAMI. The pions were observed in two independent spectrometers 
using two targets of different thicknesses, confirming the previous results in a consistent analysis 
of both experiments. Moreover, the results proved to be consistent after further calibration of the 
absolute momentum as well as in systematic studies of the used cut conditions.

When compared to the 4
!He binding energy measured with the emulsion technique and 

adding the information from γ -ray spectroscopy the MAMI data of 4
!H lead to the level 

schemes of 4
!H and 4

!He as shown in Fig. 6. Here, the systematic error estimate of 40 keV 
from Ref. [22] for the emulsion value was used. While the ground state binding energy dif-
ference of #B 4

!(0+
g.s.) = B!(4

!He(0+
g.s.)) − B!(4

!H(0+
g.s.)) = 233 ± 92 keV is smaller as mea-

sured by the emulsion technique it still supports a sizable CSB effect in the !N interaction. 
Furthermore, it suggests a negative binding energy difference between the excited states of 
#B 4

!(1+
exc) = B!(4

!He(1+
exc)) − B!(4

!H(1+
exc)) = −83 ± 94 keV.

Most calculations performed so far resulted in much smaller binding energy differences than 
observed. Gazda and Gal have recently reported on ab initio no-core shell model calculations 
of the mirror pair using the charge-symmetric Bonn–Jülich leading-order chiral effective field 
theory hyperon–nucleon potentials plus a charge symmetry breaking !–$0 mixing vertex [13]. 
These calculations predict a large CSB ground state splitting and a CSB splitting of opposite sign 
for the excited states.

During the last years the MAMI accelerator was the only place worldwide where a precise and 
intense continuous electron beam was available for hypernuclear physics. While the total error 
of the MAMI binding energy data is of the same order than that of the compiled results from the 
emulsion technique, it is currently dominated by the systematic uncertainty of the absolute mo-
mentum calibration, which can be improved further. Current developments at MAMI are aiming 
at a higher accuracy of the calibration, which could reduce the error on the binding energy by a 
factor of four.

Together with prospects for a precise measurement of the γ transition energy of 4
!H at 

J-PARC [23], the 4
!H level scheme could become the most accurate among hypernuclei and 

provide further guidance for theory and for investigating the origin of CSB in the !N interac-
tion.

(Schulz et al.,2016; Yamamoto, 2015)

0+

1+

0+

(Schulz et al., 2016; Yamamoto et al., 2015)

(fm // keV) aΛp
s aΛn

s aΛp
t aΛn

t ∆E(0+) ∆E(1+)

NLO19(500) -2.649 -3.202 -1.580 -1.467 249 -75
NLO19(550) -2.640 -3.205 -1.524 -1.407 252 -72
NLO19(600) -2.632 -3.227 -1.473 -1.362 243 -67
NLO19(650) -2.620 -3.225 -1.464 -1.365 250 -69

CSB in singlet (1S0) much larger than in triplet (3S1)
practically independent of cutoff; same results for NLO13
without CSB: aΛp

s ≈ aΛn
s ≈ −2.9 fm

• CSB in A = 7, 8 Λ-hypernuclei, see talk of Hoai Le
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Selected results for the ΞN system

(J.K. Ahn et al., PLB 633 (2006) 214; S. Aoki et al., NPA 644 (1998) 365)
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Ξ−
p ->  Ξ0
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Ξ−
p ->  ΛΛ,Ξ0

n,Σ0Λ

ΞN scattering lengths [in fm]:

I = 0, 1S0 I = 1, 1S0 I = 0, 3S1 I = 1, 3S1

potential as as rs at rt at rt
NLO (500) -7.71- i 2.03 0.37 -4.80 -0.33 -6.86 -1.17 3.44
NLO (550) -7.24- i 20.79 0.39 -4.95 -0.39 -1.77 -1.15 3.80
NLO (600) -10.89- i 14.91 0.34 -7.20 -0.62 1.00 -1.13 3.95
NLO (650) -8.14- i 2.43 0.31 -9.16 -0.85 1.42 -0.90 4.27

• scattering lengths |a| . 1 fm, except for I = 0, 1S0• ΞN interaction is fairly weak

J.H., U.-G. Meißner, EPJA 58 (2019) 23
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ΞN: Comparison with HAL QCD results
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HAL QCD Collaboration (almost at physical point, mπ ≈ 145 MeV):
open circles from E. Hiyama et al., PRL 124 (2020) 092501 (no ΛΣ, ΣΣ)
filled squares from M. Kohno & K. Miyagawa, PTEP 2021 (2021) 103D04
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Nuclear matter properties
UΞ(pΞ = 0) [in MeV] at saturation density, kF = 1.35 fm−1 (ρ0 = 0.166 fm−3)

potential I 1S0
3S1 S-waves P-waves total

NLO (500) 0 −2.6 −3.3

1 12.7 −11.8 −5.0 -0.4 −5.5

NLO (550) 0 −2.9 −3.1

1 12.4 −9.5 −3.1 -0.7 −3.8

NLO (550)∗ 0 -3.15 -3.24

1 9.64 -11.0 -7.7 -1.1 −8.8

HAL QCD 0 -3.15 -5.36

1 7.12 -2.41 -4.11 - −4.11

Ehime 0 -0.80 0.47

(1.82) 1 -1.5 −8.6 −10.43 -11.4 −21.8

“traditional” value for the depth of the Ξ single-particle potential: ≈ −15 MeV

E. Friedman & A. Gal (optical potential, PLB 820 (2021) 136555): UΞ≤ −20 MeV
Y. Tanimura et al. (relativistic mean field, PRC 105 (2022) 044324): UΞ≈ −12 MeV
(from analyzing 15

Ξ C and 12
Ξ Be events)

NLO (550)∗: M. Kohno, PRC 100 (2019) 024313 (continuous prescription)

HAL QCD: T. Inoue, AIP Conf. Proc. 2130 (2019) 020002

Ehime: M. Yamaguchi et al., PTP 105 (2001) 627
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ΞN: two-particle momentum correlation functions
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Cth(k) = 1
4 C1S0

(k) + 3
4 C3S1

(k); Cα(k) ' 1 +
∫∞

0 4πr2 dr S12(r)
[
|ψ(k, r)|2 − |j0(kr)|2

]
C(k) = (a + b k) (1 + λ (Cth(k)− 1)); S12(r) = exp(−r2/4R2)/(2

√
πR)3

a, b, λ, R ... additional parameters that need to be determined (→ talk of Yuki Kamiya)

ALICE Collaboration: p-Pb at 5.02 TeV (PRL 123 (2019) 112002) pp at 13 TeV (Nature 588 (2020) 232)

R = 1.427 fm; λ = 0.513 R = 1.02 fm; λ = 1

we adopt R = 1.427 fm & 1.18 fm, respectively
(same source radii as found in corresponding fits to pp correlation functions)

(J.H., U.-G. Meißner, arXiv:2201.08238)

Y. Kamiya et al., PRC 105 (2022) 014915, using HAL QCD potential: R = 1.27 fm & 1.05 fm
Z.-W. Liu et al., arXiv:2201.04997, cov. χEFT mimicking the HAL QCD potential: R = 1.427 fm & 1.182 fm
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Summary

Hyperon-nucleon interaction within chiral EFT

ΛN-ΣN interaction within semilocal momentum-space regularized chiral EFT
confirm our previous YN results (up to NLO) based on a nonlocal regulator
successful extension to NNLO
new Σ±p differential cross sections around plab ≈ 500 MeV/c can be described
unique determination of the P-waves is not yet possible

Charge symmetry breaking within chiral EFT
regulator independent results require pertinent contact terms
CSB splittings in 4

ΛHe-4
ΛH (∆E(0+) = 233± 92 keV; ∆E(1+) = −83± 94 keV)

imply aΛp − aΛn = 0.62± 0.08 fm for 1S0 state
however, hypernuclei.kph.uni-mainz.de: 178± 55 keV; −139± 58 keV

Elena Botta, HYP2018: 140± 120 keV

ΞN interaction should be fairly weak as suggested by
the few existing experimental constraints on the ΞN cross sections
measurements of ΞN two-particle momentum correlations
lattice QCD simulations close to the physical point
light Ξ-hypernuclei (A ≥ 4) could still exist→ see talk of Hoai Le

next step: calculate 3
ΛH, 4

ΛHe, 4
ΛH, ... with inclusion of three-body forces
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Preliminary results for SMS YN interactions
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SMS YN potentials up to NLO, NNLO (with Λ = 550 MeV)
NLO19: J.H., U.-G. Meißner, A. Nogga, EPJA 56 (2020) 91

quality of the fit – total χ2 (36 data points):
NLO19(600): 16.0 SMS NLO: 15.2 SMS NNLO: 15.6

cross sections dominated by S-waves (are already well described at NLO)
→ (as expected) practically no change when going to NNLO
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Preliminary results for SMS YN interactions
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Σ−p → Σ−p: behavior at forward angles remains unclear
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Femtoscopic studies by ALICE at LHC/CERN

Λp momentum correlation function measured in pp collisions at
√

s = 13 TeV
Exploring the NΛ–NΣ system with high precision correlation techniques ALICE Collaboration
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Figure 1: Upper panels: pΛ correlation function (circles) with statistical (vertical bars) and systematic (grey
boxes) uncertainties. Middle panels: zoom on the region with the cusp-like signal at k∗ = 289 MeV/c due to the
NΣ↔ NΛ coupling. Lower panels: The deviation between data and predictions, expressed in terms of nσ . The fit
is performed using NLO13 (red) and NLO19 (cyan) χEFT potentials with a cut-off parameter of 600 MeV [2, 3]
and using a cubic baseline (dark grey). The residual p–Ξ−⊕ p–Ξ0 (pink) and p–Σ0 (royal blue) correlations are
modelled using, respectively, a lattice potential from the HAL QCD collaboration [37,54] and a χEFT potential [2].
Both contributions are plotted relative to the baseline, while in panels b) and d) the strong interaction of p–Σ0 is
neglected.

the relative amount of NΣ and pΛ initial state pairs leading to the final state (measured) pΛ pairs. The
amount of initial state pairs was fixed by the above-mentioned Σ:Λ ratio, enabling the direct test of the
strong interaction. The LO chiral calculation [1], predicting a smaller NΣ cusp with respect to the NLO,
was already ruled out from scattering data, and the results shown in Fig. 1 confirm this. The updated
NLO19 calculation with a cut-off parameter of 600 MeV gives the best description of the pΛ correlation
function, in particular of the cusp, independently of the assumed pΣ0 interaction and of the baseline. The
assumption of a constant baseline leads to the same conclusions and similar nσ values. For both NLO13
and NLO19 the best agreement with the data is achieved at the same cut-off value (550–650 MeV)
which also provide the best description of the available scattering and hypertriton data [2, 3]. However,
unlike the previously existing experimental data, the present results have the sensitivity to discriminate
between the NLO13 and NLO19 version of χEFT, showing a slight preference towards the latter. The
best nσ = 3.7 achieved by χEFT suggests that further improvements in the theory are needed. The main
discrepancy stems from the slight difference in the slope of the experimental and theoretical correlations
at low k∗. The χEFT NLO19 potential seems to still predict a too large two-body pΛ attraction with
respect to the present experimental data. Possibly, an even weaker coupling to NΣ could be needed in
order to reduce the disagreement, but it would lead to an overestimation of the Λ single-particle potential
in nuclear matter, necessitating an increased three-body repulsion that can be modelled approximately
by the theory. In turn, this would disfavour the production of these strange hadrons in neutron stars and
result in a stiffer EoS [4]. Nevertheless, the same kinematic region at low k∗ is influenced by the p–Σ0

residual correlation and the compatibility to the data can be improved by assuming a weaker (flat) pΣ0

interaction (nσ = 1.6). At present the pΛ and p–Σ0 signals cannot be disentangled in a model independent
way due to the insufficient precision of the direct p–Σ0 measurement [31]. The situation will improve in
the upcoming LHC Run 3 due to the expected increase in statistics [57].

In conclusion, two-particle correlation techniques were used to study the final state interaction in the
NΣ↔ NΛ coupled system. This was achieved by studying the pΛ correlation function at low relative

6

ALICE Collaboration (Shreyasi Acharya et al.), arXiv:2104.04427

⇒ prediction of NLO19 is fairly well in line with data
sensitive to the assumption about the contribution of the Σ0p feed-down
“true” Λp amplitude could have slightly weaker energy dependence
(at could be about 10− 15 % smaller; '− 1.3 fm instead of '− 1.5 fm )

Johann Haidenbauer Hyperon-nucleon interaction



Selected results for S = −2
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(c) Ξ−
p ->  ΛΛ

--->

--->

ΛΛ effective range parameters

NLO LO

Λ 500 550 600 650 550 600 650 700

a1S0 −0.62 −0.61 −0.66 −0.70 −1.52 −1.52 −1.54 −1.67

r1S0 7.00 6.06 5.05 4.56 0.82 0.59 0.31 0.34

empirical: aΛΛ = -1.2± 0.6 fm (Gasparyan et al.) −1.92 < aΛΛ < −0.50 fm (A. Ohnishi et al.)

J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273
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SU(3) structure of contact terms for BB
SU(3) structure for scattering of two octet baryons→
8 ⊗ 8 = 1 ⊕ 8a ⊕ 8s ⊕ 10∗ ⊕ 10 ⊕ 27

BB interaction can be given in terms of LECs corresponding to the SU(3)f irreducible
representations: C1, C8a , C8s , C10∗ , C10, C27

Channel I Vα Vβ Vβ→α
S = 0 NN → NN 0 – C10∗

β –

NN → NN 1 C27
α – –

S = −1 ΛN → ΛN 1
2

1
10

(
9C27

α + C8s
α

)
1
2

(
C8a
β + C10∗

β

)
−C8sa

ΛN → ΣN 1
2

3
10

(
−C27

α + C8s
α

)
1
2

(
−C8a

β + C10∗
β

)
−3C8sa

C8sa

ΣN → ΣN 1
2

1
10

(
C27
α + 9C8s

α

)
1
2

(
C8a
β + C10∗

β

)
3C8sa

ΣN → ΣN 3
2 C27

α C10
β –

α = 1S0,
3 P0,

3 P1,
3 P2, β = 3S1,

3 S1 −3 D1,
1 P1

No. of contact terms: LO: 2 (NN) + 3 (YN) + 1 (YY )
NLO: 7 (NN) + 11 (YN) + 4 (YY )

(No. of spin-isospin channels in NN+YN: 10 S = −2,−3,−4: 27)
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Contact terms for YN – partial-wave projected

spin-momentum structure up to NLO

V (1S0) = C̃1S0
+ C1S0

(p2 + p′2)

V (3S1) = C̃3S1
+ C3S1

(p2 + p′2)

V (α) = Cα p p′ α =̂ 1P1,
3P0,

3P1,
3P2

V (3D1 − 3S1) = C3S1− 3D1
p′2

V (1P1 − 3P1) = C1P1− 3P1
p p′

V (3P1 − 1P1) = C3P1− 1P1
p p′

(antisymmetric spin-orbit force: (~σ1 − ~σ2) · (~q × ~k))

• C̃α, Cα ... low-energy constants (LECs)
• need to be fixed by a fit to (NN, YN, ...) data
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chiral YN potential up to NNLO

Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86
• Λ: 350− 550 MeV ... 450 MeV give best results

YN interaction: approximate SU(3) flavor symmetry
mπ = 138 MeV, mK = 495 MeV, mη = 547 MeV

want to keep effects from SU(3) symmetry breaking generated by the
single-meson exchange contributions
⇒ Λ: 500− 600 MeV

two-meson exchange contributions: πK , πη, ... are represented by
contact terms

⇒ some SU(3) symmetry breaking in the YN LECs
(S. Petschauer, N. Kaiser, NPA 916 (2013) 1)

V cont = C̃α + Cα(p2 + p′2) + Cχ(m2
K −m2

π)

C̃α , Cα , α = {27}, {10∗}, {10}, {8s}, {8a}, {1}, ... “regular” contact terms in SU(3) chiral EFT
Cχi : SU(3) symmetry breaking contact terms

(in NLO13 and NLO19 ΛN-ΣN potentials we assumed that Cχi = 0)
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chiral YN interaction up to NNLO

• no new BB contact terms (no additional LECs) enter

• sub-leading meson-baryon vertices enter at NNLO

Chiral potentials up to NNLO

March 22, 2016

1 Potentials
1.1 Dispersion relations
Relations between the real and the imaginary parts of the potentials using subtracted dispersion
relations, with a cutoff Λ̃ (spectral function regularization):

VC,S(q) = 2q4

π

∫ Λ̃

2m
dµ Im VC,S(iµ)

µ3(µ2 + q2)

VT (q) = −2q2

π

∫ Λ̃

2m
dµ Im VT (iµ)

µ(µ2 + q2)

In the following we give the imaginary parts of the two-meson-exchange potentials for two
different exchanged mesons m1,m2 and for the special case m1 = m2 = m. The corresponding
real potentials are derived for two equal meson masses m1 = m2 = m with a cutoff Λ̃.

The potentials for equal meson masses are expressed in terms of the (regularized) logarithmic
loop function

L(Λ̃, q) = w

2q ln Λ̃2(2m2 + q2)− 2m2q2 + qwΛ̃
√

Λ̃2 − 4m2

2m2(Λ̃2 + q2)
(1)

with w =
√

4m2 + q2 and of the loop function

A(Λ̃, q) = 1
2q arctan q(Λ̃− 2m)

q2 + 2Λ̃m
, (2)

1

πN: fixed from calculating pion-nucleon scattering in chiral perturbation
theory
sub-leading (up to Q2) πN LECs: c1 = −0.74; c3 = −3.61; c4 = 2.44
(cf. RKE 2018)

πΛ, πΣ, πΛ↔ πΣ:
involve additional LECs: d1, d2, d3, bD , bF , b0, b1, b2, b3, b4

fixed from resonance saturation via decuplet baryons (Σ∗(1385))
(cf. Petschauer et al., NPA 957 (2017) 347)
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Coupled channels Lippmann-Schwinger Equation

Tν
′ν,J

ρ′ρ (p′, p) = Vν
′ν,J

ρ′ρ (p′, p)

+
∑
ρ′′,ν′′

∫ ∞
0

dp′′p′′2

(2π)3
Vν
′ν′′,J

ρ′ρ′′ (p′, p′′)
2µρ′′

p2 − p′′2 + iη
Tν
′′ν,J

ρ′′ρ (p′′, p)

ρ′, ρ = ΛN, ΣN (ΛΛ, ΞN, ΛΣ, ΣΣ)

LS equation is solved for particle channels (in momentum space)

Coulomb interaction is included via the Vincent-Phatak method

SMS: A nonlocal regulator is applied to the contact terms

Vν
′ν,J

ρ′ρ (p′, p)→ f Λ(p′)Vν
′ν,J

ρ′ρ (p′, p)f Λ(p); f Λ(p) = e−(p/Λ)2

consider values Λ = 500 - 600 MeV [guided by NN, achieved χ2]

NLO19 (NLO13): A a nonlocal regulator is applied to the whole potential

Vν
′ν,J

ρ′ρ (p′, p)→ f Λ(p′)Vν
′ν,J

ρ′ρ (p′, p)f Λ(p); f Λ(p) = e−(p/Λ)4

with values Λ = 500 - 650 MeV
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Femtoscopic studies by ALICE at LHC/CERN

Σ0p momentum correlation function measured in pp collisions at
√

s = 13 TeVALICE Collaboration / Physics Letters B 805 (2020) 135419 5

Fig. 2. Measured correlation function of p–p ⊕ p–p . Statistical (bars) and systematic 
uncertainties (boxes) are shown separately. The width of the band corresponds to 
one standard deviation of the systematic uncertainty of the fit.

k∗ ∈ [0, 375] MeV/c to determine simultaneously the femtoscopic 
radius r0 and the parameters of the baseline. To assess the sys-
tematic uncertainties on r0 related to the fitting procedure the 
upper limit of the fit region is varied within k∗ ∈ [350, 400] MeV/c. 
The baseline is modeled as a polynomial of zeroth, first, and sec-
ond order. Additionally, as discussed above, all three models for 
the p–� residual correlation function are employed, and the in-
put to the λ parameters is modified by ±20% while maintaining 
a constant sum of the primary and secondary fractions. The p–p
correlation function is shown in Fig. 2, where the width of the 
bands corresponds to one standard deviation of the total system-
atic uncertainty of the fit. The inset shows a zoom of the p–p
correlation function at intermediate k∗ , where the effect of re-
pulsion becomes apparent. The femtoscopic fit yields a radius of 
r0 = 1.249 ± 0.008 (stat) +0.024

−0.021 (syst) fm.
Analyses of π–π and K–K correlation functions at ultrarelativis-

tic energies in elementary [56] and heavy-ion collisions [57] indi-
cate a source distribution significantly deviating from a Gaussian. 
Indeed, strongly decaying resonances are known to introduce sig-
nificant exponential tails to the source distribution, especially for 
π–π pairs [47–49]. This becomes evident when studying the cor-
responding resonance contributions obtained from the statistical 
hadronization model within the canonical approach [58]. The main 
resonances feeding to pions, ρ and ω, are significantly longer-lived 
than those feeding to protons (�) and �0 (�(1405)). Hence, it is 
not surprising that the source distribution for π–π deviates from 
a Gaussian. These conclusions are underlined when fitting the p–p
correlation function with a Lévy-stable source distribution [59,60]. 
Leaving both the femtoscopic radius and the stability parameter α
for the fit to determine, the Gaussian source shape (α = 2) is re-
covered. Employing a Cauchy-type source distribution (α = 1), the 
data cannot be satisfactorily described. Therefore, the premise of a 
Gaussian source holds for baryon–baryon pairs.

Accordingly, a Gaussian source with femtoscopic radius r0 is 
used to fit the p–�0 correlation function. The parameters of the 
linear baseline are obtained from a fit to the p–(�γ ) correlation 
function in k∗ ∈ [250, 600] MeV/c, where it is consistent and kine-
matically comparable with p–�0, however featuring significantly 
smaller uncertainties. The experimental p–�0 correlation function 
is then fitted in the range k∗ < 550 MeV/c, and varied during the 
fitting procedure within k∗ ∈ [500, 600] MeV/c to determine the 
systematic uncertainty. Additionally, the input to the λ parame-
ters is modified by ±20% while maintaining a constant sum of 
the primary and secondary fractions. The parameters of the base-

Fig. 3. Measured correlation function of p–�0 ⊕ p–�0. Statistical (bars) and system-
atic uncertainties (boxes) are shown separately. The gray band denotes the p–(�γ )

baseline. The data are compared with different theoretical models. The correspond-
ing correlation functions are computed using CATS [46] for χEFT [20], NSC97f [26]
and ESC16 [23], and using the Lednický–Lyuboshits approach [51,52] for fss2 [24]. 
The width of the bands corresponds to one standard deviation of the systematic 
uncertainty of the fit. The absolute correlated uncertainty due to the modeling of 
the p–(�γ ) baseline is shown separately as the hatched area at the bottom of the 
figure.

line are varied within 1σ of their uncertainties considering their 
correlation, including the case of a constant baseline. Finally, the 
femtoscopic radius is varied according to its uncertainties. Possible 
variations of the p–�0 source due to contributions of mT scaling 
and strong decays are incorporated by decreasing r0 by 15%, sim-
ilarly as in [28,29]. The corresponding resonance yields are taken 
from the statistical hadronization model within the canonical ap-
proach [58].

All correlation functions resulting from the above mentioned 
variations of the selection criteria are fitted during the procedure, 
additionally considering variations of the mass window to extract 
the p–(�γ ) baseline. The width of the bands in Fig. 3 corresponds 
to one standard deviation of the total systematic uncertainty of the 
fit. The absolute correlated uncertainty due to the modeling of the 
p–(�γ ) baseline correlation function is shown separately at the 
bottom of the figure.

4. Results

The experimental p–�0 ⊕ p–�0 correlation function is shown 
in Fig. 3. The k∗ value of the data points is chosen according to the 
〈k∗〉 of the same event distribution Nsame(k∗) in the correspond-
ing interval. Therefore, due to the low number of counts in the 
first bin, the data point is shifted with respect to the bin centre. 
Since the uncertainties of the data are sizable, a direct determina-
tion of scattering parameters via a femtoscopic fit is not feasible. 
Instead, the data are directly compared with the various models of 
the interaction. These include, on the one hand, meson-exchange 
models, such as fss2 [24] and two versions of soft-core Nijmegen 
models (ESC16 [23], NSC97f [61]), and on the other hand results of 
χEFT at Next-to-Leading Order (NLO) [20]. The correlation function 
is modeled using the Lednický–Lyuboshits approach [51] consider-
ing the couplings of the p–�0 system to p–� and n-�+ [52] with 
scattering parameters extracted from the fss2 model. For the case 
of ESC16, NSC97f and χEFT, the wave function of the p–�0 system, 
including the couplings, is used as an input to CATS to compute the 
correlation function. The degree of consistency of the data with the 
discussed models is expressed by the number of standard devia-
tions nσ , computed in the range k∗ < 150 MeV/c from the p-value 

ALICE Collaboration (Shreyasi Acharya et al.), PLB 805 (2020) 135419

open channels (Σ+n, Λp) make theoretical analysis more complicated,

cf. J.H., NPA 981 (2019) 1
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ΞN: two-particle momentum correlation functions
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− − − ... result for ΞN interaction that produces UΞ ≈ −15 MeV

Johann Haidenbauer Hyperon-nucleon interaction



Results for S = −2: Ξ−p
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Moe Isshiki (STAR Collaboration) at SQM 2021 (arXiv:2109.10953): Au+Au at 200 GeV

only preliminary results available so far
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Results for S = −3: ΛΞ−

Λ–Ξ interaction in proton–proton collisions ALICE Collaboration

The dotted black line in Fig. 2 represents the result of the baseline fit assuming no Λ–Ξ− strong interac-
tion, for which a = 0.95 and b = 2.4×10−10 (MeV/c)−3 are obtained. The compatibility with the data
is evaluated in terms of the number of standard deviations nσ , which were obtained from the p-value
computed in the range k∗< 200 MeV/c. The uncertainties of the data were considered by adding the sta-
tistical and systematic uncertainties in quadrature. The result for the "no strong interaction" assumption
is nσ = 0.78 showing that in the low relative momentum region, where femtoscopic effects are expected,
data do not deviate significantly from the baseline.
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Figure 2: Experimental Λ–Ξ− correlation function with statistical (vertical black lines) and systematic (gray
boxes) uncertainties. The square brackets show the bin width of the measurement and the horizontal black lines
represent the statistical uncertainty in the determination of the mean k∗ for each bin. Left panel: Comparison to
LO [11] and NLO [16] χEFT and NSC97a [12] potentials evaluated with the Lednický–Lyuboshits model [40, 41].
In the χEFT models the darker and light version corresponds to the version with the lower and higher cut-off value,
respectively. Right panel: Comparison with Lattice QCD calculations by the HAL QCD Collaboration [2] using an
effective potential including the coupling to Σ–Ξ (orange) and the Λ–Ξ− elastic potential alone (red). The width of
the bands in both panels correspond to the systematic uncertainties of the fit as described in the text. The baseline
is the average baseline of all fit variations and models.

The dark blue and light blue bands in the left panel of Fig. 2 represent the correlation function evaluated
from LO χEFT [11] for a regulator function cut-off of 550 and 700 MeV, respectively. The genuine Λ–Ξ−
correlation function is evaluated by using the LL model with the scattering parameters for ΛΞ provided
in Ref. [11]. The scattering length in this case indicates a rather strong attraction in the singlet channel
and a mild repulsion in the triplet channel. The predicted values depend strongly on the cut-off choice,
which is reflected in the correlation function. The curve corresponding to the LO χEFT potential with
550 MeV cut-off, with rather large scattering length, is not compatible with the experimental correlation
function. On the other hand, the result for the potential with cut-off 700 MeV is close to the data.
However, this interaction implies the presence of a shallow ΛΞ bound state with a binding energy of
just 0.43 MeV. Such bound states are not seen anymore in the extrapolation of the NLO interactions
from S =−2 [14, 15] to S =−3 [16], where effects from SU(3) symmetry breaking have been properly
accounted for, in line with the power counting. They are also not supported by the available lattice
QCD simulations close to the physical point [2]. The correlation functions expected from the NLO
calculations, based on NLO16 [14] and NLO19 [15], are represented by the magenta and green bands in
the left panel of Fig. 2, respectively. The dark and light bands represent the interactions with regulator
function cut-offs of 500 and 650 MeV, respectively, for both potentials. The correlation function was
evaluated by using the LL model with the scattering lengths1 provided in Ref. [16]. The NLO19 potential

1For the triplet state in NLO16 the effective range is set to d0 = 0 fm. This is necessary since the LL does not provide stable
results for the large effective ranges predicted by the theory (see Table 1) in combination with the small source radius.
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ALICE Collaboration, arXiv:2204.10258: pp at 13 TeV

R = 1.03 fm; λ = 0.36

LO potential (J.H., U.-G. Meißner, PLB 684 (2010) 275):
produces a bound state→ not supported by measurement

LO rel. χEFT potential (Z.-W. Liu et al., PRC 103 (2021) 025201): likewise too attractive

NLO19:
as = −0.99· · · − 0.89 fm, rs = 4.63· · ·5.77 fm; at = −0.42· · ·−1.66 fm, rt = 6.33· · ·1.49 fm

NLO16:
as = −0.99· · · − 0.89 fm, rs = 4.63· · ·5.77 fm; at = 0.026· · ·−0.12 fm, rt = 32.0· · ·702 fm

(J.H., U.-G. Meißner, arXiv:2201.08238)
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Results for S = −4: Ξ−Ξ−
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Moe Isshiki (STAR Collaboration) at SQM 2021 (arXiv:2109.10953): Au+Au at 200 GeV

only preliminary results: R = 2.5− 5 fm; λ = ??

use for calculation: R = 2.5 fm; λ = 1

as = −7.04 fm (no SU(3) breaking) −1.71 fm (moderate SU(3) breaking) −0.71 fm (strong SU(3) breaking)
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Three-body forces

• SU(3) χEFT 3BFs at NNLO (S. Petschauer et al., PRC 93 (2016) 014001)

• however, 5 LECs for ΛNN 3BF alone! (only 2 LECs for NNN)

SU(3) χEFT : (at LO!) :

Three-body forces

N Λ N

N Λ N

u y u

N Λ N

N Λ N

u y

N Λ N

N Λ N

y

(a) (b) (c)

N Λ N

N Λ N

Σ∗u u
u u

N Λ N

N Λ N

Σu u
u u

(d) (e)

(a) - (c) appear at N2LO
(d) appears at NLO – in EFT that includes decuplet baryons

(e) is already included by solving coupled-channel Faddeev equations

Johann Haidenbauer Baryon-baryon interactions

solve coupled channel (ΛN-ΣN) Faddeev-Yakubovsky equations:
⇒ ΛNN “3BF” from Σ coupling is automatically included

• 3BFs with inclusion of decuplet baryons (S. Petschauer et al., NPA 957 (2017) 347)

estimate ΛNN 3BF based on the Σ∗(1385) excitation (appear at NLO!)

• only 1 LEC for ΛNN (2 LECs for YNN in general)
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Estimation of 3BFs based on NLO results

3
Λ H
(a) cutoff variation: ∆EΛ (3BF) ≤ 50 keV
(b) “3BF” from ΛN-ΣN coupling:

switch off ΛN-ΣN coupling
in Faddeev-Yakubovsky equations:
∆EΛ (3BF) ≈ 10 keV
expect similar/smaller ∆EΛ from Σ∗(1385) excitation

N Λ N

N Λ N

Λ✉ ✉
✉ ✉

N Λ N

N Λ N

Σ✉ ✉
✉ ✉

(a) (b)

N Λ N

N Λ N

Σ✉ ✉
✉✉

N Λ N

N Λ N

Σ∗✉ ✉
✉ ✉

(c) (d)

(c) 3H: 3NF ∼ Q3 |〈VNN〉|3H ∼ 650 keV
( |〈VNN〉|3H ∼ 50 MeV; Q ∼ mπ/Λb ; Λb ' 600 MeV )

3
Λ H: |〈VΛN〉|3

Λ
H ∼ 3 MeV→ ∆EΛ (3BF) ≈ Q3 |〈VΛN〉|3

Λ
H ' 40 keV

4
Λ H, 4

Λ He
(a) cutoff variation: ∆EΛ (3BF) ≈ 200 keV (0+) and ≈ 300 keV (1+)
(b) “3BF” from ΛN-ΣN coupling:
∆EΛ (3BF) ≈ 230− 340 keV (0+), ≈ 150− 180 keV (1+)

3
Λ H and 4

Λ H(He) calculations with explicit inclusion of 3BFs utilizing the decuplet

saturation are planned for the future
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