

Chiral dynamics: Quo vadis?

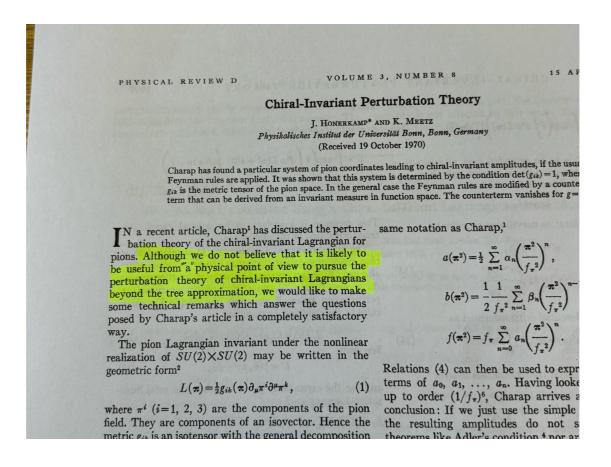
Ulf-G. Meißner, Univ. Bonn & FZ Jülich

by CAS, PIFI

by DFG, SFB 1639

by ERC, EXOTIC

by NRW-FAIR


Contents

- Introductory remarks
- Pion-pion scattering: The posterchild and its offsprings
- Novel insights into the hadron spectrum from chiral dynamics
- Chiral symmetry in nuclear interactions and nuclei
- Chiral dynamics in the Big Bang
- Summary & outlook

Introductory remarks

A small anecdote

• The first paper with "chiral perturbation theory" in the title

- Possible consequences:
 - \hookrightarrow stop the talk here

What does "chiral dynamics" mean?

Volume 24B, number 9

PHYSICS LETTERS

1 May 1967

- First used in a paper by Julian Schwinger (1967)
- Historically, this was not the accepted terminology
- My view on this:

Chiral perturbation theory (CHPT)

→ strict perturbative expansion in(a) small parameter(s)

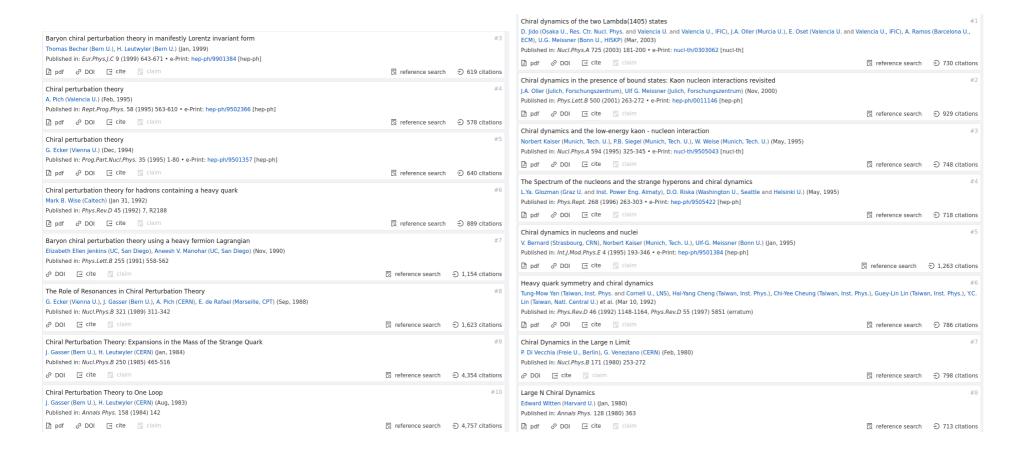
Chiral dynamics

- → involves some non-perturbative resummation
- Scan insirehep for "t chiral perturbation theory" or "t chiral dynamics" and look for the top entries
 [not to mention chiral effective Lagrangians, chiral effective field theory,...]

CHIRAL DYNAMICS

J.SCHWINGER*
Harvard University, Cambridge. Massachusetts

Received 6 April 1967


The cumbersome operator techniques and weak interaction orientation of current algebra are replaced by a non-operator method based on strong interaction phenomenology. Some new results include alternative possibilities of $\pi\pi$ scattering lengths, and a treatment of ρ and A_1 decay widths that supports the interpretation of A_1 as the axial partner of ρ .

This note was stimulated by some recent work of Weinberg [1]. He has shown how the results of current-algebra can be easily reproduced by certain calculational rules used in conjunction with an appropriate Lagrange function. Current-algebra is still considered primary, however. I propose to further this simplification and clarification by eliminating all reference to current-algebra. The non-operator method that replaces it is the phenomenological source theory now under development [2]. For our present purposes, however, it suffices to think of a numerical effective Lagrange function, the coupling terms of which are directly applicable to the corresponding processes ***.

Some statistics

Chiral perturbation theory

Chiral dynamics

→ will talk here about chiral dynamics in the broader sense

Pion-pion scattering: The posterchild and its offsprings

Elastic pion-pion scattering @ threshold

Purest process in two-flavor chiral dynamics (really light quarks)

[CD2012, CD2018]

- Scattering amplitude at threshold: two numbers (a_0, a_2)
- History of the prediction for a_0 based on CHPT:

LO (tree):
$$a_0 = 0.16$$
 Weinberg 1966

NLO (1-loop):
$$a_0 = 0.20 \pm 0.01$$
 Gasser, Leutwyler 1983

NNLO (2-loop):
$$a_0=0.217\pm0.009$$
 Bijnens et al. 1996

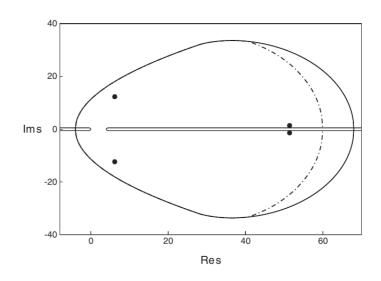
- \hookrightarrow fairly large corrections from LO to NLO \to strong final-state interactions
- \hookrightarrow still sizeable corrections at NNLO despite $(M_\pi/\Lambda_\chi)^2 \simeq 0.14^2 \simeq 0.02$
- ullet a_2 is small and exhibits very small corrections (will not be considered further)

Elastic pion-pion scattering: the first offspring

Donoghue, Gasser, Leutwyler, UGM, Truong, Pelaez, Büttiker, Ananthanarayan...

- Combine CHPT with dispersion relations to
 - extend the range of applicability
 - increase the precision
- For $\pi\pi \to \pi\pi$: match 2-loop representation to the Roy equation solution

$$a_0 = 0.220 \pm 0.005$$


ullet And more: pin down the the lowest resonance in QCD [nowadays called $f_0(500)$]

$$M_{\sigma} = 441^{+16}_{-8}\,{
m MeV}$$

$$\Gamma_{\sigma}=272^{+9}_{-13}\, ext{MeV}$$

Caprini, Colangelo, Leutwyler (2006)

Colangelo, Gasser, Leutwyler (2000)

QED + QCD

Elastic pion-pion scattering: further offsprings I

Colangelo, Gasser, Ivanov, Kubis, UGM, Raha, Rusetsky, Schweitzer, ...

- Develop NREFTs to better access low-energy $\pi\pi$ scattering
- Theory of hadronic atoms (scattering at zero energy)
- → Bound state properties with complex LECs
- \hookrightarrow Relevant for $\pi\pi$, πK , πN , πd , Kp, Kd
- Experiment for pionium:

$$|a_0 - a_2| = 0.2533^{+0.0107}_{-0.0137}$$

Adeva et al. [DIRAC Coll.] Phys. Lett. B704 (2011) 24 Schweizer, Phys. Lett. B **587** (2004) 33

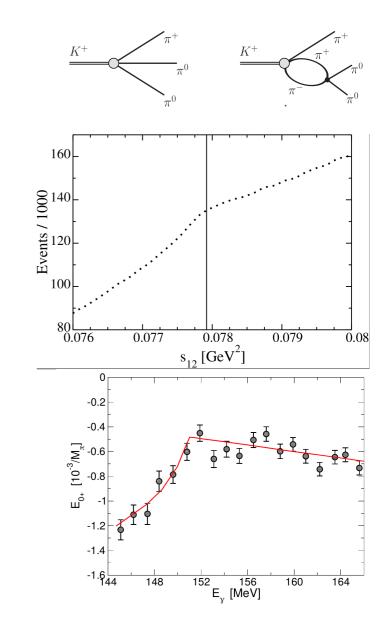
• Same for πK (a separate talk):

$$rac{1}{3}|a_0^{1/2}-a_0^{3/2}|=0.072^{+0.031}_{-0.020}$$

[CHPT: 0.073(2)]

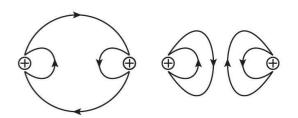
Yazkov [DIRAC Coll.] EPJ Web of Conferences **181** (2018)
Bernard, Kaiser, UGM, Nucl. Phys. B **357** (1991) 129

Elastic pion-pion scattering: further offsprings II


Budini, Fonda, Cabbibo, Colangelo, Gasser, Kubis, UGM, Rusetsky, Steininger, ...

- ullet Cusps in kaon decays using NREFT ($K o 3\pi$)

- Combine with FSI in K_{e4} decays:


$$a_0 = 0.2210 \pm 0.0047_{
m stat} \pm 0.0040_{
m sys}$$
 Batley et al. [NA48/2 Coll.] Eur. Phys. J. C **70** (2010) 635

- Experiment and chiral dynamics well aligned,
 how about the lattice? → next slide
- ullet Cusp also prominent in CHPT analysis of $\gamma p o \pi^0 p$

Elastic pion-pion scattering on the lattice - history

• The interesting observable a_0 took a **long** time (disconnected diagrams)

My talk at CD2012@JLab:
 no direct a₀ determinations

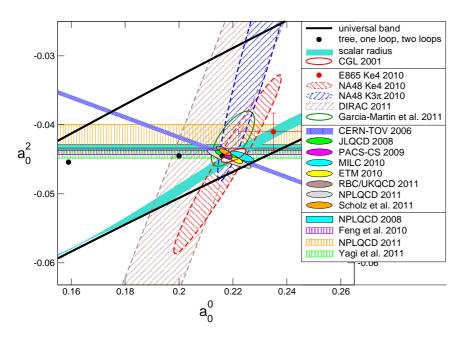
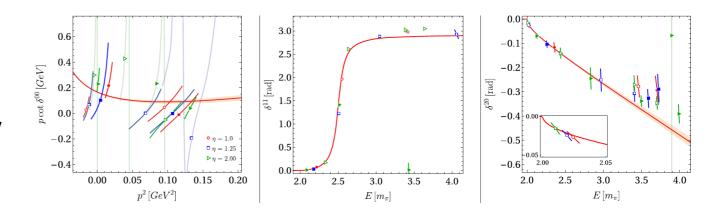


Fig. courtesy H. Leutwyler

My talk at CD2018@Duke Univ.:
 2 unquenched QCD simulations,
 but errors doubtful

Author(s)	a_0	Pion mass range
Fu	0.214(4)(7)	240 - 430 MeV
Liu et al.	0.198(9)(6)	250 - 320 MeV

Fu, Phys. Rev. D **87** (2013) 074501 Liu et al., Phys. Rev. D **96** (2017) 054516


Elastic pion-pion scattering on the lattice - now

- Now a number of better simulations available, still chiral extrapolation needed
- Focus here on the work of the GW group (S- and P-waves, incl. resonances)
- I = 0 S-wave:

$$a_0 = 0.2132^{+0.008}_{-0.009}$$

$$M_{\sigma} = 443(3) - i\,221(6)\,{\sf MeV}$$

 \hookrightarrow errors too small

Mai, Culver, Alexandru, Döring, Lee, Phys. Rev. D 100 (2019) 114514

- ullet A real problem: ho mass too small $M_
 ho=(724^{+2}_{-4}-i\,67^{+1}_{-1})\,{
 m MeV}$
- ullet A recent calc. at the physical point: $M_
 ho=796(5)(50)-i\,96(5)(16)\,{
 m MeV}$ Boyle et al., arXiv:2406.19194

Novel insights into the hadron spectrum from chiral dynamics

Hadron resonances in chiral dynamics - basics

- In CHPT, resonances are a limit, not active dofs!
- Be aware of the decoupling theorem:

Gasser, Zepeda (1980)

The leading non-analytic terms stem from Goldstone boson one-loop graphs coupled to Goldstone bosons or ground state baryons

- → Resonances saturate most of the LECs.

Donoghue, Holstein, Gasser, Leutwyler, Ecker, Pich,...

- \hookrightarrow QCD chiral and large- N_C limits do not commute
- Still, we want to go beyond the GB (+ ground state baryon octet) theory

Including hadron resonances into chiral dynamics

- There are essentially 3 ways of including resonances:
 - Inclusion as **matter fields**, mostly $\Delta(1232)$, see my talk at CD2018
 - → requires an extended power counting and/or complex-mass scheme

Jenkins, Manohar, Bernard, Kaiser, UGM, Hemmert, Holstein, Kambor, Gegelia, Phillips, Pascalutsa,...

In a few cases, CHPT combined w/ dispersion relations allows to study resonances

$$f_o(500),\, f_0(980),\,
ho(770),\, K_0^*(700),\, K^*(890), oxed{\Delta}, N^*(1440)
ight)
ightarrow$$
 next-to-next slide

Caprini, Colangelo, Leutwyler, Pelaez, Rodas, Hoferichter, Ruiz de Elvira, Kubis, UGM,...

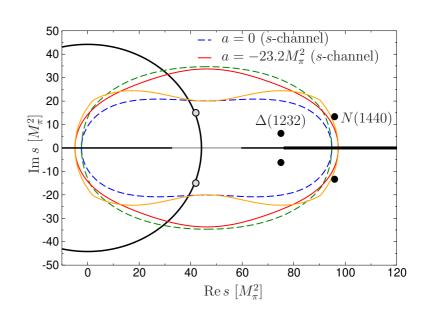
- → of course, DRs are a fine tool to study resonances in general (but limited)
- Single channel unitarization and coupled-channel chiral dynamics (non-pert. unitarity)
 - \hookrightarrow allows to study certain resonances $(\rho, \sigma,..)$

Truong, Dobado, Herrera, Oset, Oller, Pelaez, Gasser, UGM, ... **Kaiser, Siegel, Weise**, Ramos, Oset, Oller, UGM, Lutz, Kolomeitsev, Hosaka, Jido, Hyodo,...

$\pi N \to \pi N$: Dispersion relations matched to CHPT

Hoferichter, Ruiz de Elvira, Kubis, UGM; Büttiker

- The Roy equation program can also be performed in the pion-nucleon system
 - \hookrightarrow Roy-Steiner equations for $\pi N o \pi N o$ talk by J. Ruiz de Elvira
- Many results, I just list three of relevance for this talk:
 - High-precision determination of the σ term: $\sigma_{\pi N} = 59.0(3.5)\,{
 m MeV}$
 - High-precision determination of the LECs c_i [in GeV $^{-1}$] from $\mathcal{L}_{\pi N}^{(2)}$


$$c_1 = 1.10(3) , \quad c_2 = 3.57(4)$$

$$c_3 = -5.54(6)$$
, $c_4 = 4.17(4)$

the lowest nucleon resonances & couplings

$$M_{\Delta} = (1209.5(1.1) + i\,98.5(1.2))\,\mathsf{MeV}$$

$$M_R = (1374(3)(4) + i\,215(18)(8))\,{
m MeV}$$

Hadron resonances in chiral dynamics - coupled channels

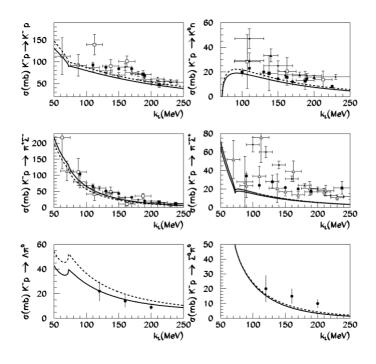
Kaiser, Siegel, Weise, Ramos, Oset, Oller, UGM, Lutz, Kolomeitsev, Hosaka, Jido, Hyodo,...

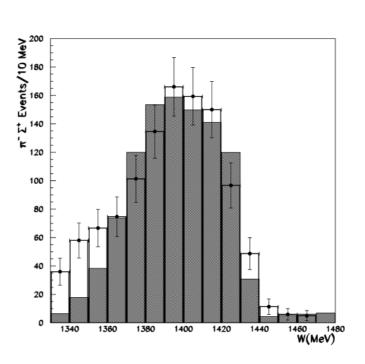
Basic idea of coupled-channel chiral dynamics:

- \hookrightarrow use CHPT to construct the potential $V = V_{LO} + V_{NLO} + ...$, then resum
- \hookrightarrow often on-shell approximation: T=V/[1+GV] [all matrices]
- \hookrightarrow generation of resonances, in particular the elusive $\boxed{\Lambda(1405)}$

Burdman, Cheng, Donoghue, Du, Guo, Hanhart, Lutz, Nieves, Wise, Yan, Yao, Zou, ...

→ talk by Lisheng Geng


A few new data since then


The first two-pole structure from chiral dynamics I

- ullet Re-analysis of coupled-channel K^-p scattering and the $\Lambda(1405)$
 - Oller, UGM Phys. Lett. B 500 (2001) 263

- A number of technical improvements:

 - Coupled-channel approach to the $\pi\Sigma$ mass distribution
 - Matching formulas to any order in chiral perturbation theory established

The first two-pole structure from chiral dynamics II

ullet Re-analysis of coupled-channel K^-p scattering and the $\Lambda(1405)$

Oller, UGM Phys. Lett. B **500** (2001) 263

• Most significant finding:

"Note that the $\Lambda(1405)$ resonance is described by **two poles** on sheets II and III with rather different imaginary parts indicating a clear departure from the Breit-Wigner situation..."

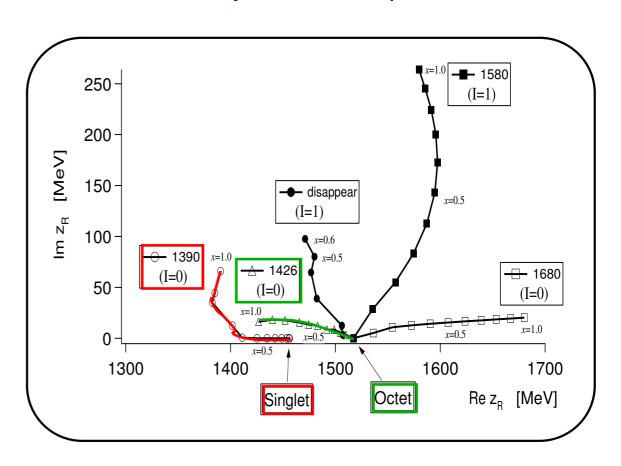
\hookrightarrow Pole locations:

Pole 1: $(1379.2 - i27.6) \mathrm{\ MeV}$ on RS II

Pole 2: (1433.7 - i11.0) MeV on RS II

Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A 725 (2003) 181

SU(3) symmetry considerations - details


Jido, Oller, Oset, Ramos, UGM, Nucl. Phys. A 725 (2003) 181

- SU(3) limit: $m_u = m_d = m_s \neq 0$
- \hookrightarrow all GB mesons have equal mass M_0 , all octet baryons have equal mass m_0
- \Rightarrow from the SU(3) limit at x=0 to the physical world w/ x=1

$$m_i(x) = m_0 + x(m_i - m_0)$$
 $M_i^2(x) = M_0^2 + x(M_i^2 - M_0^2)$ $a_i(x) = a_0 + x(a_i - a_0)$ $m_0 = 1151 \, ext{MeV}$

$$M_0=368\,\mathrm{MeV}$$

$$a_0 = -2.148$$

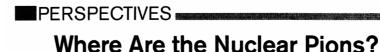
→ more details and recent developments, see UGM, Symmetry 12 (2020) 981, and talk by Geng

Chiral symmetry in nuclear interactions and nuclei

The pion in nuclei: some history

The pion was predicted as the strong force carrier by Yukawa in 1935

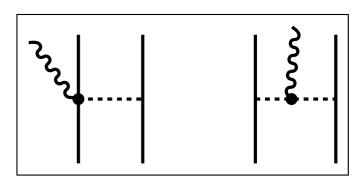
- Found in emulsion experiments in 1947
- Established in nuclei in resolving the $np \rightarrow d\gamma$ XS discrepancy


$$\sigma_{ ext{exp}} = 334.2(5)\, ext{mb}$$

$$\sigma_{\mathrm{IA}}=302.5(4.0)\,\mathrm{mb}$$

Riska, Brown (1972), Gari, Hyuga (1973)

• Then came the 1993 shock:

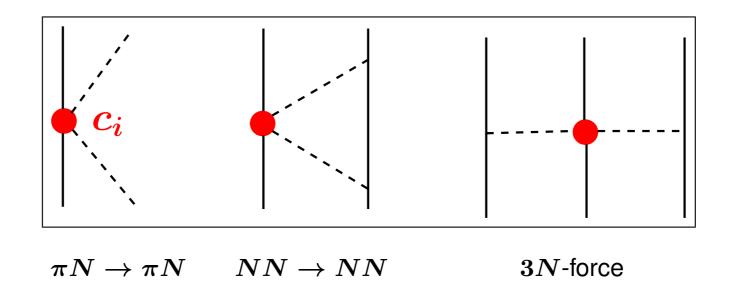


Lattes et al. (1947)

George F. Bertsch, Leonid Frankfurt, Mark Strikman

Science 259 (1993) 773

 \hookrightarrow a number of (questionable?) solutions, but let us return back to chiral symmetry!



Chiral symmetry in nuclear interactions

Chiral symmetry breaking in QCD relates many processes

Weinberg

ullet One of the best examples: dimension-two vertices from the effective πN Lagrangian ($\sim c_i$)

- ullet Strategy: Fix in $\pi N o \pi N$ and the explore in few-nucleon interactions

Hoferichter, Ruiz de Elvira, Kubis, UGM, Phys. Rev. Lett. 115 (2015) 192301; Phys. Rept. 625 (2016) 1

- → now let us see how this is reflected in the NN interaction
- → no time for the 3NFs, ask the locals: Hermann Krebs, Evgeny Epelbaum,...

Two-pion exchanges in the nuclear interactions

Has already been studied earlier, not at high orders/precision

Kaiser, Gerstendorfer, Weise, Nucl. Phys. A 637 (1998) 395,

Now let us look at N4LO and N4LO+ potentials:

Epelbaum, Krebs, UGM, Phys. Rev. Lett. 115 (2015) 122301; Reinert, Krebs, Epelbaum, Eur. Phys. J. A 54 (2018) 86

- \hookrightarrow leading two-pion exchanges $\sim c_i$ and $\sim d_i$ appear at N2LO and N4LO
- → parameter-free contributions at N2LO and N4LO from TPE

$E_{ m lab}$ bin	LO	NLO	N^2LO	N^3LO	N^4LO	N ⁴ LO+		
neutron-proton phase shifts								
0-100	73	2.2	1.2	1.08	1.07	1.08		
0–200	62	5.4	1.7	1.10	1.08	1.07		
0–300	75	14 →	4.1	2.01 →	1.16	1.06		
proton-proton phase shifts								
0-100	2290	10	2.2	0.90	0.88	0.86		
0–200	1770	90	37	1.99	1.42	0.95		
0-300	1380	91 →	41	$\textbf{3.43} \rightarrow$	1.67	1.00		

Pions in nuclear structure

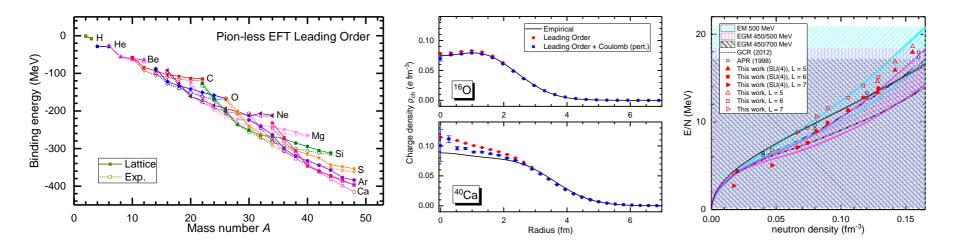
- Are pions really required?
 - \hookrightarrow many relativistic mean-field models (σ, ω, ρ) work quite well

Walecka, Serot, Ring, Schuck, Meng, Zhao, ...

 \hookrightarrow nuclear physics is close to the unitary limit \rightarrow contact interactions

Bedaque, Hammer, van Kolck, Grießhammer, König, ...

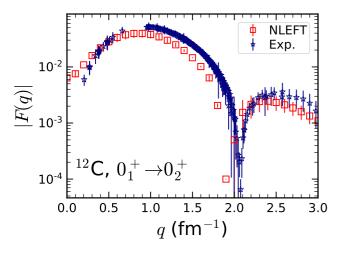
- Highly SU(4) symmetric LO action without pions, only **four** parameters

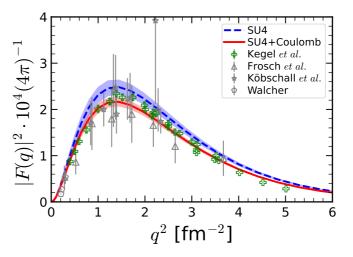

$$egin{aligned} H_{\mathrm{SU}(4)} &= H_{\mathrm{free}} + rac{1}{2!} C_2 \sum_n ilde{
ho}(n)^2 + rac{1}{3!} C_3 \sum_n ilde{
ho}(n)^3 \ ilde{
ho}(n) &= \sum_i ilde{a}_i^\dagger(n) ilde{a}_i(n) + rac{s_L}{s_L} \sum_{|n'-n|=1} \sum_i ilde{a}_i^\dagger(n') ilde{a}_i(n') \ ilde{a}_i(n) &= a_i(n) + rac{s_{NL}}{s_{NL}} \sum_{|n'-n|=1} a_i(n') \end{aligned}$$

→ describes binding energies, radii, charge densities and the EoS of neutron matter

The minimal nuclear interaction

Works astonishingly well

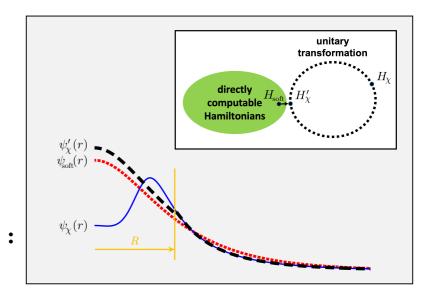

Lu, Li, Elhatisari, Epelbaum, Lee, UGM, Phys. Lett. B 797 (2019) 134863


Even works for em transitions/ solves a puzzle

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

UGM, Shen, Elhatisari, Lee, Phys. Rev. Lett. 132 (2024) 062501

Chernykh et al., Phys. Rev. Lett. 105 (2010) 022501

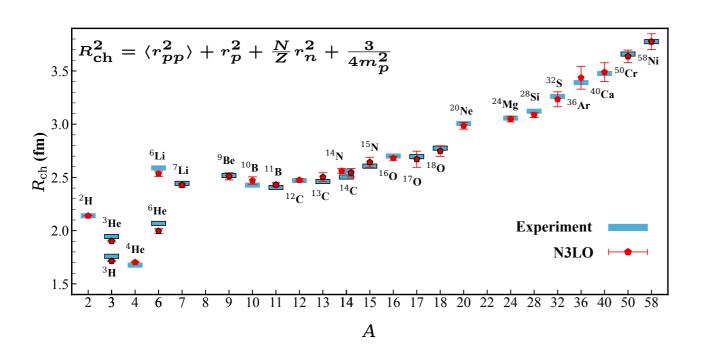

Kegel et al., Phys. Rev. Lett. 130 (2023) 152502

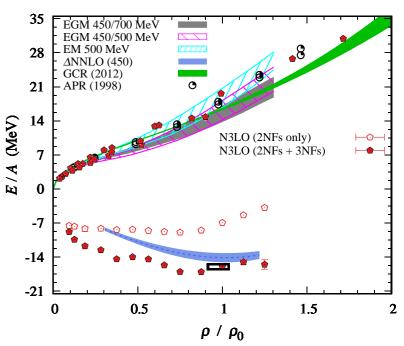
Pions strike back – wavefunction matching

- So pions don't seem to be needed?
 - → no, because there are much different nuclear systems
 - → no, the precision is limited
- Wavefunction matching at N3LO

$$H_{
m soft} = K + rac{V_{
m OPE} + V_{
m Coulomb}}{+ rac{V_{
m 3N}^{
m Q^3} + V_{
m 2N}^{
m Q^4} + W_{
m 2N}^{
m Q^4}}{{
m SU}(4) - {
m symmetric}}$$

Elhatisari et al., Nature **630** (2024) 59

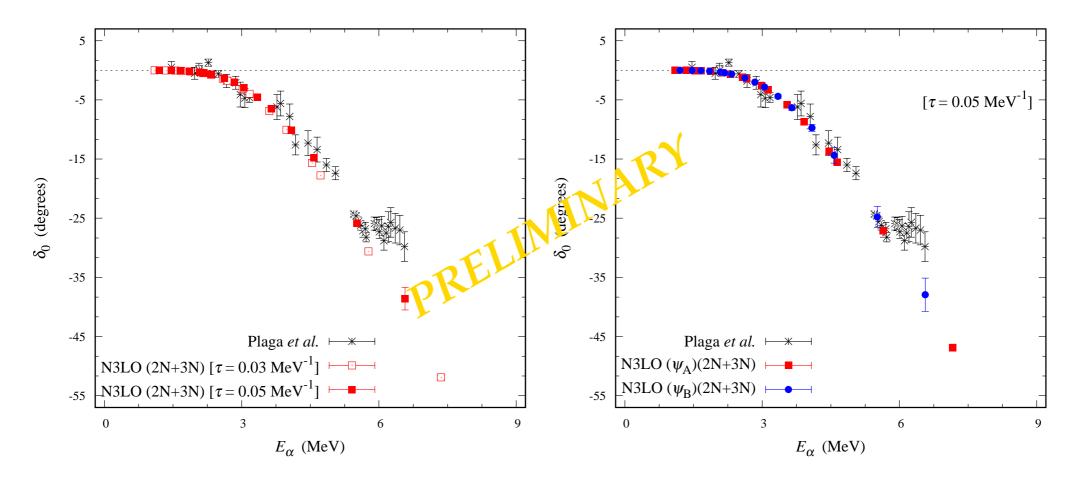



→ see also Dean Lee's talk!

- \hookrightarrow fit smeared 3NFs to g.s. energies $A = 3 58 \rightarrow$ make predictions

Predictions from wavefunction matching

Nuclear charge radii and the EoSs of nuclear and neutron matter



- → Pions to the rescue they are there!
- \hookrightarrow To do list (work in progress):
 - full chiral NN force and currents
 - 3NFs can still be improved
 - Nuclear reactions with N3LO forces, show one appetizer

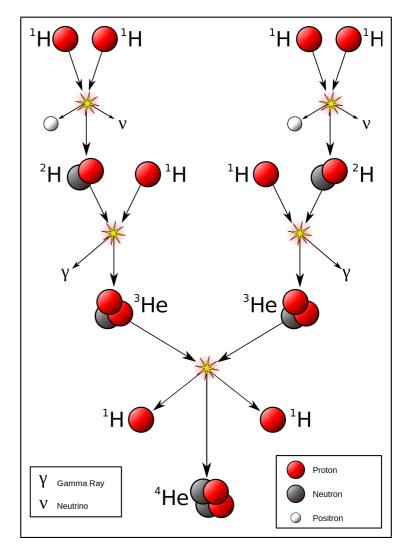
Alpha-carbon scattering at N3LO

Elhatisari, Hildenbrand, UGM, ... NLEFT, in progress

- Use the Adiabatic Projection Method, first step for the holy grail of nuclear astrophysics
 - → different Euclidean times & different initial states

Plaga et al., Nucl. Phys. A 465 (1987) 291

$$\psi_A \sim^{16}$$
O, $\psi_B \sim^{12}$ C $+^4$ He

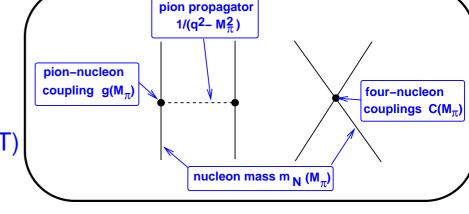

Chiral dynamics in the Big Bang

Element generation

- Elements are generated in the Big Bang & in stars through the **fusion** of protons & nuclei
 [pp chain or CNO-cycle]
- All is simple until ⁴He
- Only elements up to Be are produced in the Big Bang [BBNucleosynthesis]
- How fine-tuned is the BBNucleosythesis?
- Depends on
 - \hookrightarrow the Higgs VEV v (light quark mass)

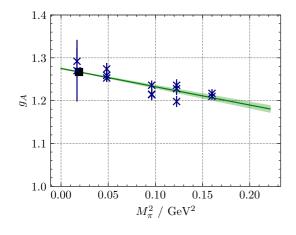
$$\left(m_f=g_f\,v
ight)$$

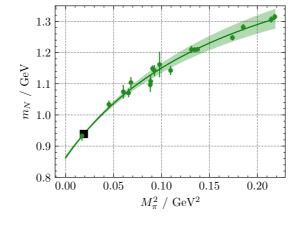
 \hookrightarrow the em fine-structure constant $\alpha_{\rm EM}$

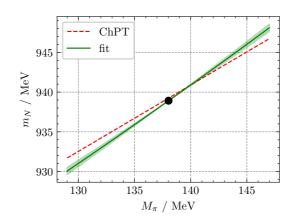


[from Wikipedia]

Pion mass dependence in nuclear systems I

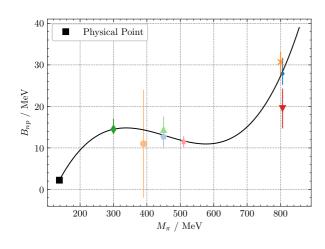

- ullet Consider M_{π} changes as *small perturbations*
- Pion mass from CHPT + LQCD
- Nucleon mass from LQCD (guided by CHPT)
- Axial-vector coupling from LQCD (or two-loop CHPT)
- Neutron-proton mass splitting from Cottingham SR

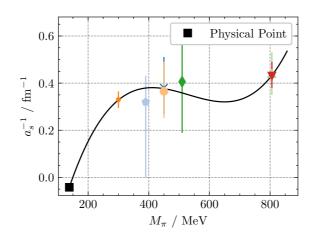

Gasser, Leutwyler, Rusetsky, Phys. Lett. B 814 (2021) 136087

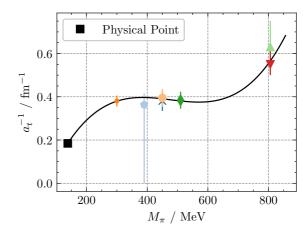


$$Q_N = m_n - m_p = (1.87 \mp 0.16) \left(1 + rac{\delta v}{v}
ight) \;\;\; ext{[as usual: keep Yukawas fixed]}$$

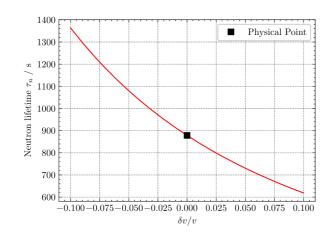
$$\hookrightarrow m_p(\delta v) = m_N(\delta v) - Q_N(\delta v)/2 \;,\;\; m_n(\delta v) = m_p(\delta v) + Q_N(\delta v)$$






Meyer, UGM, JHEP **06** (2024) 074 \rightarrow more details in Helen Meyer's talk!

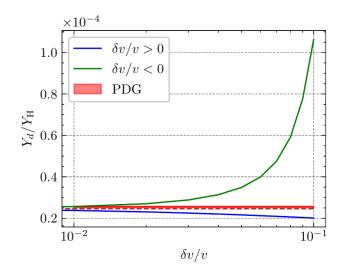
Pion mass dependence in nuclear systems II

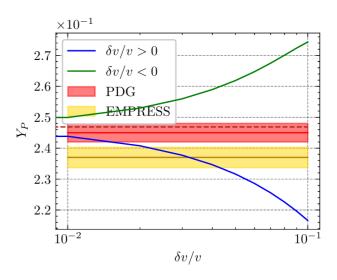

More tricky: NN contact terms and deuteron BE → resort to LQCD

• Also important: Neutron lifetime and $np o d\gamma$ (deuterium bottleneck)

 \hookrightarrow insert into the BBN network and see how abundances vary

Higgs VEV variations


ullet Study the Higgs VEV limits on $\delta v/v$ from the deuterium & 4 He abundances


	⁴ He	d
PDG	-0.014, 0.026	-0.005, -0.001
EMPRESS	0.011, 0.055	

PDG: Workman et al., Review of Particle Physics, PTEP **2022** (2022) 083C01 EMPRESS: Matsumoto et al., Astrophys. J. **941** (2022) 167

- Deuterium more stringent that ⁴He
 - → different from all earlier investigations
- Quite a fine-tuning: $\delta v/v$ less than 0.5%
- Can be improved by better NN LQCD calculations closer to (or at) the physical point
- For variations on $\alpha_{\rm EM}$, see

UGM, Metsch, Meyer, Eur. Phys. J. A 59 (2023) 223 → more details in Helen Meyer's talk!

Summary & outlook

- Hadron-hadron interactions continue to be an important playground of Chiral Dynamics
 - → strong focus on 3-pion/3-particle interactions

 Bijnens, Briceno, Döring, Hansen, Mai, Romero-Lopez, Rusetsky, Sharpe, ...
 - \hookrightarrow first LQCD calculation of the $\omega(782)$ [stressed in CD 2018]

Yan, Garafolo, Mai, UGM, C. Liu, L. Liu, Urbach

- \hookrightarrow still lots to be done, e.g. $R \to N\pi\pi$, also BSM searches in B-decays etc
- $\hookrightarrow \pi N \to \pi N$ from LQCD made progress since CD2018, but still ...

Bulava, Hanlon, Morningstar, Feng, Liu, Alexandrou, Petschlies, ...

- Ever increasing role in the hadron spectrum

 - → OPE contribution to exotic states gains relevance (pentaquarks,...)
- Pions in nuclei: they are there, but hard to quantify [indirect measures]
- New avenues of chiral dynamics:
 - \hookrightarrow axion physics

Spalinski, di Luzio, Martinelli, Cortona, Villadoro, Guo, UGM, Vonk,...

 \hookrightarrow

Final slide

Finally, can I answer the question:

"Chiral dynamics: Quo vadis?"

ightarrow Well, let us see at CD 2027 @ ... !