HYPERTRITON LIFETIME IN EFT

16.09.2022 | Fabian Hildenbrand | IAS-4

Member of the Helmholtz Association

Shallow S-Wave State

 $J^P = \frac{1}{2}^+$

Distinguishable

- Two-Body Picture Works
- Calculate Lifetime in a Theory with Fundamental Deuteron
- Focus on *B*_∧ Dependence

³H Channels and Isospin Rule

- Two-Body Picture Works
- Calculate Lifetime in a Theory with Fundamental Deuteron
- Focus on *B*_Λ Dependence

Leptonic and Non-Mesonic Decays are Negligible

³H Thresholds and Feynman Diagrams

³H Thresholds and Feynman Diagrams

Deuteron Final State

Thresholds and Feynman Diagrams

Trinucleon Final State

Deuteron Final State

$^{3}_{\Lambda}$ H Hypertriton Width and Branching Ratios

- $\Gamma_{\Lambda H}^{3}$ Barely Depends on B_{Λ}
- Final State
 Interactions are
 Important
- $\Gamma_{^{3}\text{He}}/(\Gamma_{^{3}\text{He}}+\Gamma_{pd})$ Depends Strongly on B_{Λ}
- STAR Branching ratio 0.32(5)(8)

³/_AH Pionic Final State Interaction

Work by Perez-Obiol and Gal suggest significant contribution from Pionic final states Perez-Obiol (2020),Gal(2019)

Different Type of calcalution only has 2 body decay channel uses Branching ratio as input Contribution $0.10 - 0.15\Gamma_{\Lambda}$

- only two particles in FSI
- FSI is momentum locked
- not much data available
- direct comparison possible

Watson-Migdal approach for FSI adds interaction between ${}^{3}\text{He}$ and π^{-}

$$\begin{split} \Gamma_{3_{\mathrm{H}}} = & \frac{G_{F}^{2} M_{\pi}^{4}}{\pi} \frac{\bar{k} M_{3_{\mathrm{H}}}}{M_{3_{\mathrm{H}}} + \omega_{\bar{k}}} \tilde{Z}_{3_{\mathrm{H}}}(B_{\Lambda}) \tilde{Z}_{3_{\mathrm{H}}}\left(B_{3_{\mathrm{H}}}\right) \left(A_{\pi}^{2} + \frac{1}{9} \left(\frac{B_{\pi}}{M_{\Lambda} + m}\right)^{2} \bar{k}^{2}\right) \left|I_{q}\left(\bar{k}, B_{\Lambda}\right)\right|^{2} \\ & \int_{Loop} \left|g^{2} G_{\pi t}\left(\Delta - m_{\pi}, 0\right)\right|^{2} \end{split}$$

with
$$iG_{\pi t}(p_0, \mathbf{p}) = \frac{\pi}{\mu_{\pi t}g^2} \frac{-i}{-\gamma_{\pi t} + \sqrt{-2\mu_{\pi t} \left(p_0 - \frac{\mathbf{p}^2}{2(M_{\pi} + M_{He})} + i\epsilon\right)}} \Rightarrow \Gamma_{3H}^{\pi FSI} = (1 + \text{cor})\Gamma_{3H} \quad \text{cor} = 0.06 \text{ Maximal}$$

contribution

Our Results:

$$\Gamma_{_{\Lambda}H}(0.13) = (1.03 \pm 0.15)\Gamma_{\Lambda}$$

•
$$\Gamma_{\Lambda H}^{3}(0.41) = (1.03 \pm 0.25)\Gamma_{\Lambda}$$

- $\blacksquare R(0.13) = 0.38 \pm 0.05$
- $R(0.41) = 0.57 \pm 0.11$

Our Results:

$$\Gamma_{_{\Lambda}H}(0.13) = (1.03 \pm 0.15)\Gamma_{\Lambda}$$

•
$$\Gamma_{_{\Lambda}^{3}H}(0.41) = (1.03 \pm 0.25)\Gamma_{\Lambda}$$

- $\blacksquare R(0.13) = 0.38 \pm 0.05$
- $R(0.41) = 0.57 \pm 0.11$

Consistent:

- Calculation by Congleton for Γ and R
- Calculation by Kamada for F and R
- Emulsion Data $0.05 \text{MeV} \lesssim B_{\Lambda} \lesssim 0.2 \text{MeV}$

Our Results:

$$\Gamma_{_{\Lambda}H}(0.13) = (1.03 \pm 0.15)\Gamma_{\Lambda}$$

•
$$\Gamma_{\Lambda H}^{3}(0.41) = (1.03 \pm 0.25)\Gamma_{\Lambda}$$

$$R(0.13) = 0.38 \pm 0.05$$

$$R(0.41) = 0.57 \pm 0.11$$

Slight Tension:

• STAR results Branching ratio $R = 0.32 \pm 0.05 \pm 0.08$

Consistent:

- Calculation by Congleton for Γ and R
- Calculation by Kamada for F and R
- Emulsion Data $0.05 \text{MeV} \lesssim B_{\Lambda} \lesssim 0.2 \text{MeV}$

$^{3}_{\Lambda}$ H Hypertriton Width and Branching Ratios

Our Results:

•
$$\Gamma_{_{\Lambda}^{3}H}(0.13) = (1.03 \pm 0.15)\Gamma_{\Lambda}$$

•
$$\Gamma_{\Lambda H}^{3}(0.41) = (1.03 \pm 0.25)\Gamma_{\Lambda}$$

- $R(0.13) = 0.38 \pm 0.05$
- $R(0.41) = 0.57 \pm 0.11$

Slight Tension:

• STAR results Branching ratio $R = 0.32 \pm 0.05 \pm 0.08$

Consistent:

- Calculation by Congleton for Γ and R
- Calculation by Kamada for F and R
- Emulsion Data $0.05 \text{MeV} \lesssim B_{\Lambda} \lesssim 0.2 \text{MeV}$

Good part:

- EFT systematic improvment possible
- Go to NLO or three-body

Summary

- Elegant theory with few input parameters
- Branching ratio as results and not as input
- Consistent results with a fundamental deuteron including the full three-body phase space
- Branching ratio favors small binding energies
- Systematic improvement possible in the future

