

## The nucleus as a quantum laboratory

#### Ulf-G. Meißner, Univ. Bonn & FZ Jülich

supported by DFG, SFB/TR-110

by CAS, PIFI

by DFG, SFB 1639

by ERC, EXOTIC



by NRW-FAIR







- Ulf-G. Meißner, The nucleus as a quantum laboratory, Peking Univ., Beijing, April 18, 2024 -

#### **Contents**

- Introductory remarks
- Chiral EFT on a lattice
- Emergent geometry and duality in the carbon nucleus
- Towards heavy nuclei and nuclear matter in NLEFT
- Ab initio calculation of hyper-neutron matter
- Summary & outlook

## Introductory remarks

- Ulf-G. Meißner, The nucleus as a quantum laboratory, Peking Univ., Beijing, April 18, 2024 -

## Why nuclear physics?



- Ulf-G. Meißner, The nucleus as a quantum laboratory, Peking Univ., Beijing, April 18, 2024 -

#### The nucleus as a quantum laboratory

- The nucleus is a challenging and fascinating many-body system
  - $\hookrightarrow$  non-perturbative strong interactions balanced by the Coulomb force
  - $\hookrightarrow$  many interesting phenonema: drip lines, clustering, reactions, ...
  - $\hookrightarrow$  a plethora of few-body/many-body methods already exists
- Macroscopic nuclear matter = neutron stars
  - $\hookrightarrow$  gained prominence again in the multi-messenger aera  $\hookrightarrow$  must be able to describe these with the same methods
- I will advocate here a new quantum many-body appraoch
  - $\hookrightarrow$  synthezies chiral EFT w/ stochastic methods
  - $\hookrightarrow$  allows to tackle nuclear structure and reactions
  - $\hookrightarrow$  allows to access the multiverse



# Chiral EFT on a lattice



ີ≌ຼີ≌ Lähde∙Meißne Lecture Notes in Physics 957 Timo A. Lähde Ulf-G. Meißner **Nuclear Lattice** 2 **Effective Field Nuclear Lattice Effective Field Theory** Theory An Introduction Deringer

T. Lähde & UGM

Nuclear Lattice Effective Field Theory - An Introduction Springer Lecture Notes in Physics **957** (2019) 1 - 396

- Ulf-G. Meißner, The nucleus as a quantum laboratory, Peking Univ., Beijing, April 18, 2024 -

## More on EFTs

#### • Much more details on EFTs in light quark physics:



#### **Effective Field Theories**

#### AUTHORS:

Ulf-G Meißner, Rheinische Friedrich-Wilhelms-Universität Bonn and Forschungszentrum Jülich Akaki Rusetsky, Rheinische Friedrich-Wilhelms-Universität Bonn DATE PUBLISHED: August 2022 AVAILABILITY: Available FORMAT: Hardback ISBN: 9781108476980 Rate & review

https://www.cambridge.org/de/academic/subjects/physics/theoretical-physics-and-mathematical-physics/effective-field-theories

## **Nuclear lattice effective field theory (NLEFT)**

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time  $V = L_s \times L_s \times L_s \times L_t$ : nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

 $\rightarrow$  see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

• typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 315 - 630\,{
m MeV}\,[{
m UV}~{
m cutoff}]$$

- strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

ullet physics independent of the lattice spacing for  $a=1\dots 2$  fm

Alarcon, Du, Klein, Lähde, Lee, Li, Lu, Luu, UGM, EPJA 53 (2017) 83; Klein, Elhatisari, Lähde, Lee, UGM, EPJA 54 (2018) 121

#### **Transfer matrix method**

- Correlation-function for A nucleons:  $Z_A(\tau) = \langle \Psi_A | \exp(-\tau H) | \Psi_A \rangle$ with  $\Psi_A$  a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]
- Transient energy

$$E_A( au) = -rac{d}{d au}\,\ln Z_A( au)$$

 $\rightarrow$  ground state:  $E_A^0 = \lim_{\tau \to \infty} E_A(\tau)$ 

• Exp. value of any normal–ordered operator  $\mathcal{O}$ 

$$Z_A^{\mathcal{O}} = raket{\Psi_A} \exp(- au H/2) \, \mathcal{O} \, \exp(- au H/2) \ket{\Psi_A}$$

$$\lim_{ au o \infty} \, rac{Z_A^{\mathcal{O}}( au)}{Z_A( au)} = \langle \Psi_A | \mathcal{O} \, | \Psi_A 
angle \, ,$$

9









 $\Rightarrow$  all *possible* configurations are sampled  $\Rightarrow$  preparation of *all possible* initial/final states

 $\Rightarrow$  clustering emerges naturally

## **Auxiliary field method**

• Represent interactions by auxiliary fields (Gaussian quadrature):



## **Computational equipment**

• Present = JUWELS (modular system) + FRONTIER + ...



Emergent geometry and duality in the carbon nucleus

#### **Short reminder of Wigner SU(4) symmetry**

Wigner, Phys. Rev. C 51 (1937) 106

• If the nuclear Hamiltonian does not depend on spin and isospin, then it is obviously invariant under SU(4) transformations [really  $U(4) = U(1) \times SU(4)$ ]:

$$egin{aligned} N 
ightarrow UN \,, & U \in SU(4) \,, & N = inom{p}{n} \ N & N 
ightarrow N \,, & \delta N = i \epsilon_{\mu
u} \sigma^\mu au^
u \, N \,, & \sigma^\mu = (1, \sigma_i) \,, & au^\mu = (1, au_i) \end{aligned}$$

• LO pionless EFT:  $\mathcal{L}_{\pi} = N^{\dagger} \left( i \partial_t + \frac{\vec{\nabla}^2}{2m_N} \right) N - \frac{1}{2} \left( C_S (N^{\dagger}N)^2 + C_T (N^{\dagger}\vec{\sigma}N)^2 \right)$ Mehen, Stewart, Wise, Phys. Rev. Lett. 83 (1999) 931

• Partial wave LECs:  $C({}^1S_0) = C_S - 3C_T$  ,  $C({}^3S_1) = C_S + C_T$ 

⇒ The operator  $(N^{\dagger}N)^2$  is invariant under Wigner SU(4), but  $(N^{\dagger}\vec{\sigma}N)^2$  is not ⇒ In the Wigner SU(4) limit, one finds:  $C(^1S_0) = C(^3S_1) \rightarrow a_{np}^{S=0} = a_{np}^{S=1}$ ⇒ The exact symmetry limit corresponds to a scale invariant non-relativistic system

#### Remarks on Wigner's SU(4) symmetry

• Wigner SU(4) spin-isospin symmetry is particularly beneficial for NLEFT

↔ suppression of sign oscillations Chen, Lee, Schäfer, Phys. Rev. Lett. 93 (2004) 242302

← provides a very much improved LO action when smearing is included Lu, Li, Elhatisari, Lee, Epelbaum, UGM, Phys. Lett. B **797** (2019) 134863

• Initimately related to  $\alpha$ -clustering in nuclei

- ← cluster states in <sup>12</sup>C like
   the famous Hoyle state
   Epelbaum, Krebs, Lee, UGM,
   Phys. Rev. Lett. **106** (2011) 192501
- → nuclear physics is close
   to a quantum phase transition
   Elhatisari et al., Phys. Rev. Lett. **117** (2016) 132501



#### Wigner's SU(4) symmetry and the carbon spectrum

 Study of the spectrum of <sup>12</sup>C Shen, Lähde, Lee, UGM, Eur. Phys.J. A 57 (2021) 276
 → spin-orbit splittings are known to be weak Hayes, Navratil, Vary, Phys. Rev. Lett. 91 (2003) 012502 Johnson, Phys. Rev. C 91 (2015) 034313

 $\hookrightarrow$  start with cluster and shell-model configurations  $\rightarrow$  next slide

• Locally and non-locally smeared SU(4) invariant interaction:

$$V = C_{2} \sum_{n',n,n''} \rho_{NL}(n') f_{s_{L}}(n'-n) f_{s_{L}}(n-n'') \rho_{NL}(n'') :, \quad f_{s_{L}}(n) = \begin{cases} 1, & |n| = 0, \\ s_{L}, & |n| = 1, \\ 0, & \text{otherwise} \end{cases}$$
$$\rho_{NL}(n) = a_{NL}^{\dagger}(n) a_{NL}(n)$$
$$a_{NL}^{(\dagger)}(n) = a^{(\dagger)}(n) + s_{NL} \sum_{|n'|=1} a^{(\dagger)}(n+n'), \quad s_{NL} = 0.2$$

 $\hookrightarrow$  only two adjustable parameters  $(C_2, s_L)$  fitted to  $E_{^4\mathrm{He}}$  &  $E_{^{12}\mathrm{C}}$ 

 $\hookrightarrow$  investigate the spectrum for  $a=1.64\,{
m fm}$  and  $a=1.97\,{
m fm}$ 

( 1

 $|\mathbf{n}| = \mathbf{0}$ 

## Configurations

#### • Cluster and shell model configurations



#### **Transient energies**

• Transient energies from cluster and shell-model configurations



## Spectrum of <sup>12</sup>C

Shen, Lähde, Lee, UGM, Eur. Phys.J. A 57 (2021) 276 [arXiv:2106.04834]

 $\bullet$  Amazingly precise description  $\rightarrow$  great starting point



 $\rightarrow$  solidifies earlier NLEFT statements about the structure of the  $0^+_2$  and  $2^+_2$  states

#### A closer look at the spectrum of $^{12}C$

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

• Include also 3NFs: 
$$V = \frac{C_2}{2!} \sum_{n} \tilde{\rho}(n)^2 + \frac{C_3}{3!} \sum_{n} \tilde{\rho}(n)^3$$

• Fit the four parameters:

$$C_{f 2}, C_{f 3}$$
 – ground state energies of  $^4$ He and  $^{12}$ C

- $s_{\rm L}$  radius of <sup>12</sup>C around 2.4 fm
- *s*<sub>NL</sub> best overall description of the transition rates
- Calculation of em transitions
   requires coupled-channel approach
   e.g. 0<sup>+</sup> and 2<sup>+</sup> states



#### Spectrum of <sup>12</sup>C reloaded

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

• Improved description when 3NFs are included, amazingly good



#### $\rightarrow$ solidifies earlier NLEFT statements about the structure of the $0^+_2$ and $2^+_2$ states

## **Electromagnetic properties**

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

• Radii (be aware of excited states), quadrupole moments & transition rates

|                           | NLEFT                          | FM                  | ID $\alpha$ clu | ster E | BEC      | RXMC    | Exp.    |          |    |
|---------------------------|--------------------------------|---------------------|-----------------|--------|----------|---------|---------|----------|----|
| $r_c(0^+_1)$ [fm]         | 2.53(1)                        | 2.5                 | 53 2.5          | 4 2    | 2.53     | 2.65    | 2.47(2) | 2)       |    |
| $r(0^+_2)$ [fm]           | 3.45(2)                        | 3.3                 | 3.7             | 1 3    | 8.83     | 4.00    | -       |          |    |
| $r(0^+_3)$ [fm]           | 3.47(1)                        | 4.6                 | 62 4.7          | 5      | _        | 4.80    | -       |          |    |
| $r(2^+_1)$ [fm]           | 2.42(1)                        | 2.5                 | 50 2.3          | 7 2    | 2.38     | _       | -       |          |    |
| $r(2^+_2)$ [fm]           | 3.30(1)                        | 4.4                 | 4.4             | 3      | —        | —       | _       |          |    |
|                           |                                |                     | NLEFT           | FMD    | $\alpha$ | cluster | NCSM    | Exp.     |    |
| $Q(2^+_1)$ [ $e{ m fm}^2$ | <sup>2</sup> ]                 |                     | 6.8(3)          | _      |          | _       | 6.3(3)  | 8.1(2.3) | 3) |
| $Q(2^+_2)$ [ $e{ m fm}^2$ | <sup>2</sup> ]                 |                     | -35(1)          | —      |          | _       | —       | —        |    |
| $M(E0,0^+_1$ –            | $ ightarrow 0^+_2)$ [ $e$ fm   | $^{2}]$             | 4.8(3)          | 6.5    |          | 6.5     | —       | 5.4(2)   | )  |
| $M(E0,0^+_1$ –            | $ ightarrow 0^+_3)$ [ $e$ fm   | [2]                 | 0.4(3)          | —      |          | —       | —       | —        |    |
| $M(E0,0^+_2$ –            | $ ightarrow 0^+_3)$ [ $e$ fm   | $\left ^{2}\right]$ | 7.4(4)          | —      |          | _       | —       | —        |    |
| $B(E2,2^+_1-$             | $ ightarrow 0^+_1)$ [ $e^2$ fm | า <sup>4</sup> ]    | 11.4(1)         | 8.7    |          | 9.2     | 8.7(9)  | 7.9(4)   | )  |
| $B(E2,2^+_1-$             | $ ightarrow 0^+_2)$ [ $e^2$ fm | า <sup>4</sup> ]    | 2.5(2)          | 3.8    |          | 0.8     | _       | 2.6(4)   | )  |

#### **Electromagnetic properties cont'd**

Shen, Elhatisari, Lähde, Lee, Lu, UGM, Nature Commun. 14 (2023) 2777

• Form factors and transition ffs [essentially parameter-free]:



Sick, McCarthy, Nucl. Phys. A 150 (1970) 631 Strehl, Z. Phys. 234 (1970) 416 Crannell et al., Nucl. Phys. A 758 (2005) 399 Chernykh et al., Phys. Rev. Lett. 105 (2010) 022501

#### **Emergence of geometry**

• Use the pinhole algorithm to measure the distribution of  $\alpha$ -clusters/matter:



• equilateral & obstuse triangles  $\rightarrow 2^+$  states are excitations of the  $0^+$  states

## **Emergence of duality**

• <sup>12</sup>C spectrum shows a cluster/shell-model duality



• dashed triangles: strong 1p-1h admixture in the wave function

#### Sanity check

- Repeat the calculations w/ the time-honored N2LO chiral interaction
  - $\hookrightarrow$  better NN phase shifts than the SU(4) interaction
  - $\hookrightarrow$  but calculations are much more difficult (sign problem)



- spectrum as before (good agreement w/ data)
- density distributions as before (more noisy, stronger sign problem)

Towards heavy nuclei and nuclear matter in NLEFT

## **Towards heavy nuclei in NLEFT**

- Two step procedure:
  - 1) Further improve the LO action
    - $\hookrightarrow$  minimize the sign oscillations
    - $\hookrightarrow$  minimize the higher-body forces
    - $\hookrightarrow$  gain an understanding of the essentials of nuclear binding
    - $\hookrightarrow$  essentially done  $\checkmark$   $\rightarrow$  next slide
  - 2) Work out the corrections to N3LO
    - $\hookrightarrow$  first on the level of the NN interaction  $\checkmark$
    - $\hookrightarrow$  new important technique: wave function matching  $\checkmark$
    - $\hookrightarrow$  second for the spectra/radii/... of nuclei (first results)  $\checkmark$
    - $\hookrightarrow$  third for nuclear reactions (nuclear astrophysics)

#### **Essential elements of nuclear binding**

Lu, Li, Elhatisari, Lee, Epelbaum, UGM, Phys. Lett. B 797 (2019) 134863

• LO smeared SU(4) symmetric action with 2NFs and 3NFs:



- Masses of 88 nuclei up to A = 48, deviation < 4% (except <sup>12</sup>C)
- Charge radii deviate by at most 5% (expect <sup>3</sup>H)
- Neutron matter EoS also consistent w/ other calculations (APR, GCR, ...)

#### **NN interaction at N3LO**

Li et al., Phys. Rev. C **98** (2018) 044002; Phys. Rev. C **99** (2019) 064001 • np phase shifts including uncertainties for a = 1.32 fm (cf. Nijmegen PWA)



- Ulf-G. Meißner, The nucleus as a quantum laboratory, Peking Univ., Beijing, April 18, 2024 -

## Wave function matching I

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]

#### • Graphical representation of w.f. matching



• W.F. matching is a "Hamiltonian translator": eigenenergies from  $H_1$  but w.f. from  $H_2 = U^{\dagger}H_1U$ 

## Wave function matching II

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]

- $\bullet$   $H_{\rm soft}$  has tolerable sign oscillations, good for many-body observables
- $H_{\chi}$  has severe sign oscillations, derived from the underlying theory
- $\hookrightarrow$  can we find a unitary trafo, that creates a chiral  $H_{\chi}$  that is pert. th'y friendly?

$$H'_{\chi} = U^{\dagger} \, H_{\chi} \, U$$

 $\Box$  Let  $|\psi^0_{
m soft}
angle$  be the lowest eigenstate of  $H_{
m soft}$ 

 $\Box$  Let  $|\psi_{\chi}^{0}
angle$  be the lowest eigenstate of  $H_{\chi}$ 

 $\Box$  Let  $|\phi_{soft}\rangle$  be the projected and normalized lowest eigenstate of  $H_{soft}$  $|\phi_{soft}\rangle = \mathcal{P} |\psi_{soft}^0\rangle/||\psi_{soft}^0\rangle||$ 

 $\Box$  Let  $|\phi_{\chi}\rangle$  be the projected and normalized lowest eigenstate of  $H_{\chi}$  $|\phi_{\chi}\rangle = \mathcal{P} |\psi_{\chi}^{0}\rangle/||\psi_{\chi}^{0}\rangle||$ 

$$\hookrightarrow U_{R',R} = \theta(r-R)\delta_{R',R} + \theta(R'-r)\theta(R-r)|\phi_{\chi}^{\perp}\rangle\langle\phi_{\rm soft}^{\perp}|$$

## Wave function matching III

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]], L. Bovermann, PhD thesis

• W.F. matching for the light nuclei

| Nucleus                                                                                                           | $B_{ m LO}$ [MeV] | B <sub>N3LO</sub> [MeV] | Exp. [MeV] |
|-------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|------------|
| $E_{oldsymbol{\chi},\mathbf{d}}$                                                                                  | 1.79              | 2.21                    | 2.22       |
| $ig  \langle \psi_{ m soft}^{0}    H_{m{\chi}, { m d}}    \psi_{ m soft}^{0}  angle  ig $                         | 0.45              | 0.62                    |            |
| $\langle \psi^0_{ m soft}    H_{\chi, m d}^{\prime}    \psi^0_{ m soft}  angle $                                  | 1.65              | 2.01                    |            |
| $\langle \psi_{ m soft}^{0}    H_{\chi, { m t}}    \psi_{ m soft}^{0}  angle$                                     | 5.96(8)           | 5.91(9)                 | 8.48       |
| $\langle \psi_{	ext{soft}}^{0}    H_{oldsymbol{\chi},	ext{t}}^{oldsymbol{\prime}}   \psi_{	ext{soft}}^{0}  angle$ | 7.97(8)           | 8.72(9)                 |            |
| $\langle \psi_{ m soft}^{0}    H_{oldsymbol{\chi}, lpha}    \psi_{ m soft}^{0}  angle$                            | 24.61(4)          | 23.84(14)               | 28.30      |
| $\langle \psi_{ m soft}^0    H_{\chi,lpha}^{\prime}    \psi_{ m soft}^0  angle $                                  | 27.74(4)          | 29.21(14)               |            |



- reasonable accuracy for the light nuclei
- Tjon-band recovered with  $H'_{\gamma}$

Platter, Hammer, UGM, Phys. Lett. B 607 (2005) 254

 $\hookrightarrow$  now let us go to larger nuclei....

## Nuclei at N3LO

#### • Binding energies of nuclei for a = 1.32 fm: Determining the 3NFs

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]



#### Charge radii at N3LO

• Prediction: Charge radii (a = 1.32 fm, statistical errors can be reduced) Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]



#### **Neutron & nuclear matter at N3LO**

#### • Prediction: EoS of pure neutron matter & nuclear matter (a = 1.32 fm)

Elhatisari et al., acc. for publication in ... [arXiv:2210.17488 [nucl-th]]



 $\hookrightarrow$  can be improved using twisted b.c.'s

Ab initio calculation of hyper-neutron matter

## **Towards hyper-neutron matter**

- Densities in the interior of neutron stars up to  $5 \cdot 
  ho_0 \ [
  ho_0 = 0.17 \ {
  m fm^{-3}}]$ 
  - $\hookrightarrow$  possible appearance of hyperons
    - $\rightarrow$  "hyperon puzzle"
  - → many possible solutions
     (3-body forces, BSM physics, modifed gravity)
  - → Neutron matter EoS plays an important role
     in multimessenger astronomy [gravitational waves]
- Can we address this topic w/ NLEFT? If so, how?
  - $\hookrightarrow \text{large densities require a small lattice spacing}$
  - $\hookrightarrow$  need to extend the minimal nuclear interaction to such densities
  - $\hookrightarrow$  need to extend the minimal nuclear interaction to the strangeness sector





#### **Pure neutron matter**

Input: S-wave phase shifts (2N)
 & symmetric nuclear matter (3N)



#### $\Rightarrow$ Output: Pure neutron matter (PNM) EoS



#### - comparable to the renowned APR EoS

Akmal, Pandharipande, Ravenhall, Phys. Rev. C 58 (1998) 1804

less stiff than the recent AFDMC one

Gandolfi et al., Eur. Phys. J. A **50** (2014) 10

→ work out consequences for neutron stars based on this PNM EoS

#### Tong, Elhatisari, UGM, in progress

#### The minimal interaction with strangeness I

Tong, Elhatisari, UGM, in progress

• Baryon-baryon interaction (consider nucleons and  $\Lambda$ 's plus non-local smearing):

$$\begin{split} & \left( V_{\Lambda N} = \mathbf{c}_{N\Lambda} \sum_{\vec{n}} \tilde{\rho}(\vec{n}) \tilde{\xi}(\vec{n}) + \mathbf{c}_{\Lambda\Lambda} \frac{1}{2} \sum_{\vec{n}} \left[ \tilde{\xi}(\vec{n}) \right]^2 \right) \\ \tilde{\rho}(\vec{n}) = \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}) \tilde{a}_{i,j}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n} - \vec{n}'|^2 = 1} \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}') \tilde{a}_{i,j}(\vec{n}') \\ \tilde{\xi}(\vec{n}) = \sum_{i=0,1} \tilde{b}_{i}^{\dagger}(\vec{n}) \tilde{b}_{i}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n} - \vec{n}'|^2 = 1} \sum_{i=0,1} \tilde{b}_{i}^{\dagger}(\vec{n}') \tilde{b}_{i}(\vec{n}') \end{split}$$

• Three-baryon forces (consider nucleons and  $\Lambda$ 's, no non-local smearing):

Petschauer, Kaiser, Haidenbauer, UGM, Weise, Phys. Rev. C 93 (2016) 014001

$$\left(V_{NN\Lambda}=oldsymbol{c_{NN\Lambda}}{1\over 2}~\sum_{ec n}\left[
ho(ec n)
ight]^2 \xi(ec n)~,~~V_{N\Lambda\Lambda}=oldsymbol{c_{N\Lambda\Lambda}}{1\over 2}~\sum_{ec n}
ho(ec n)~\left[\xi(ec n)
ight]^2
ight)
ight)$$

 $\hookrightarrow$  must determine 4 LECs! [smearing parameters from the nucleon sector]

 $\hookrightarrow$  first time that the  $\Lambda\Lambda N$  three-body force is included

## The minimal interaction with strangeness II

Tong, Elhatisari, UGM, in progress



• Three-body LECs from hyper-nuclei (separation energies):

| Nucleus                        | NLEFT [MeV] | Exp. [MeV] |
|--------------------------------|-------------|------------|
| $^{5}_{\Lambda}$ He            | 3.10(9)     | 3.10(3)    |
| $^9_{\Lambda}$ Be              | 6.64(13)    | 6.61(7)    |
| $^{13}_{\Lambda}\text{C}$      | 11.71(14)   | 11.80(16)  |
| ${}_{\Lambda\Lambda}{}^{6}$ He | 6.96(9)     | 6.91(16)   |
| $^{10}_{\Lambda\Lambda}$ Be    | 14.35(13)   | 14.70(40)  |

 $\hookrightarrow$  this defines our EoS of hyper-nuclear matter called **HMN(I)** 

- Ulf-G. Meißner, The nucleus as a quantum laboratory, Peking Univ., Beijing, April 18, 2024 -

#### **Neutron star properties**

Tong, Elhatisari, UGM, in progress

• Now solve the TOV equations for the PNM and HNM(I) EoSs:



Mass-radius relation

• Maximun neutron star mass:  $M_{
m max} = 2.18(1) \, M_{\odot}$  for PNM

 $M_{
m max} = 1.54(2) \ M_{\odot}$  for HNM(I)  $\rightarrow$  need repulsion

## **EoS of hyper-neutron matter**

Tong, Elhatisari, UGM, in progress

#### • Not surprisingly, we need more repulsion [as in the pure neutron matter case]

- $\hookrightarrow$  this will move the threshold of  $\mu_\Lambda=\mu_n$  up
- $\hookrightarrow$  take  $M_{
  m max}$  as data point:  $M_{
  m max} = 1.9 M_{\odot}$  for HNM(II)

 $M_{
m max}=2.1M_{\odot}$  for HNM(III)



#### EoS & speed of sound



## **Neutron star properties**

#### Tong, Elhatisari, UGM, in progress

Yagi, Yunes, Science 341 (2013) 365



• Mass-radius relation and *I*-Love relation:

#### • All EoSs consistent with the NICER result Miller et al., Astrophys. J. Lett. 887 (2019) L24



GW170817: Abbott et al., Phys. Rev. Lett. 121 (2018) 161101

- $\bar{I} = I/M^3$  mom. of inertia
- $\Lambda$  = tidal deformability
- First ab initio calc. of this univ. relation

#### **Summary & outlook**

- Nuclear lattice simulations: a new quantum many-body approach
  - $\rightarrow$  based on the successful continuum nuclear chiral EFT
  - $\rightarrow$  a number of highly visible results already obtained
- Recent developments
  - $\rightarrow$  minimal nuclear interaction & applications
  - $\rightarrow$  chiral interaction at 3NF, first promising results
  - $\rightarrow$  extension to hyper-nuclei & EoS in neutron stars

 $\Rightarrow$  stayed tuned for many new results!