Big Bang Nucleosynthesis and Deuteron-Deuteron reactions Frontiers in Nuclear Lattice EFT: From Ab Initio Nuclear Structure to Reactions

Helen Meyer

01.03.2025

Helmholtz-Institut für Strahlen- und Kernphysik

Introduction ●O		
Motivation		

- Fundamental constants: show up in every discipline of science
- We know them to precisions given units of parts per 10⁹¹

permeability of free space	μ ₀	$4\pi \times 10^{-7} \ {\rm N} \ {\rm A}^{-2} = 12.566 \ 370 \ 614 \ \ldots \ \times 10^{-7} \ {\rm N} \ {\rm A}^{-2}$	exact
fine-structure constant	$\alpha = e^2/4\pi\epsilon_0\hbar c$	$7.297\;352\;5664(17) \times 10^{-3} = 1/137.035\;999\;139(31)^{\dagger}$	0.23, 0.23
classical electron radius $(e^{-} \text{ Compton wavelength})/2\pi$ Stefan-Boltzmann constant	$ \begin{aligned} r_e &= e^2 / 4 \pi \epsilon_0 m_e c^2 \\ \chi_e &= \hbar / m_e c = r_e \alpha^{-1} \\ \sigma &= \pi^2 k^4 / 60 \hbar^3 c^2 \end{aligned} $	$\begin{array}{c} 2.817 \ 940 \ 3227(19) \times 10^{-15} \ \mathrm{m} \\ 3.861 \ 592 \ 6764(18) \times 10^{-13} \ \mathrm{m} \\ \overline{5.670} \ 367(13) \times 10^{-8} \ \mathrm{W} \ \mathrm{m}^{-2} \ \mathrm{K}^{-4} \end{array}$	$0.68 \\ 0.45 \\ 2300$
Fermi coupling constant ^{**}	$G_F/(\hbar c)^3$	1.166 378 7(6)×10^{-5} ${\rm GeV^{-2}}$	510
weak-mixing angle W^{\pm} boson mass	$\sin^2 \hat{\theta}(M_Z)$ (MS)	$\begin{array}{c} 0.231\ 22(4)^{\dagger\dagger}\\ 80\ 379(12)\ {\rm GeV}/c^2 \end{array}$	1.7×10^{5} 1.5×10^{5}

Some theories predict changes in these constants over cosmological time scales

How fine-tuned is our universe?²

• How can we test this? \Rightarrow Laboratory: Big Bang Nucleosynthesis (BBN)³

 1 PDG: Workman et al., 2022, 2 Dirac, 1973 and many others, 3 Olive, Steigman, and Walker, 2000; locco et al., 2009; Cyburt et al.,

2016; Pitrou et al., 2018a

Introduction O		

This talk

We have studied BBN under variation of

- the electromagnetic coupling constant α^1
 - also using results from Halo EFT calculations²
- the strange-quark mass³

Goal: find a bound on these variations through comparing calculations with experimental values for light element abundances

 \Rightarrow How did we use input from Nuclear Lattice EFT?⁴

Source: ChatGPT

¹ Meißner, Metsch, HM 2023; Bergström, Iguri, Rubenstein, 1999; Nollett, Lopez, 2002; Dent, Stern, Wetterich, 2007; Coc et al., 2007;

 2 Meißner, Metsch , HM 2024; Hammer, Ji, Phillips, 2017; 3 Meißner, Metsch, HM 2025, 4 Lähde, Meißner 2019

Big Bang Nucleosynthesis		
•ō · ·		

Introducing BBN – Evolution of Abundances

- abundance Y_i = n_i/n_b, with n_i density of nucleus i and n_b total baryon density
- Need to solve system of rate equations

$$\begin{split} \dot{Y}_{i} \supset -Y_{i} \Gamma_{i \to \dots} + Y_{j} \Gamma_{j \to i + \dots} \\ + Y_{k} Y_{l} \Gamma_{kl \to ij} - Y_{i} Y_{j} \Gamma_{ij \to kl} \end{split}$$

 Used different codes¹ to get an estimate of systematical errors

¹ PRIMAT: Pitrou et al., 2018b, AlterBEN: Arbey et al., 2020, PArthENOPE: Gariazzo et al., 2022, NUC123: Kawano, 1992 and PRyMordial: Burns, Tait, and Valli, 2023

		Big Bang Nucleosynthesis O●			
--	--	--------------------------------	--	--	--

Introducing BBN – The Timescales

\bullet $t \leq 1 s$

Weak $n \leftrightarrow p$ reactions ¹²⁷ number density ratio $\frac{n_n}{n_p} = e^{-Q_n/T}$, Q_n : mass difference ¹²⁷ at 1s or $T \approx 1$ MeV: freeze-out and free neutron decay

: produced by PRIMAT

$ \begin{array}{c c} \mbox{Introduction} & \mbox{Big Bang Nucleosynthesis} & \mbox{Variation of } \alpha & \mbox{Variation of } m_{\rm S} & \mbox{Deuteron-deuter} \\ 00 & 0 & 0000 & 000000 & 000 \\ \end{array} $	
---	--

He

⁴He

⁶Li ⁷Li ⁷Be

Introducing BBN – The Timescales

■ $t \le 1$ s Weak $n \leftrightarrow p$ reactions ¹²⁷ number density ratio $\frac{n_n}{n_p} = e^{-Q_n/T}$, Q_n : mass difference ¹²⁷ at 1 s or $T \approx 1$ MeV: freeze-out and free neutron decay ■ t = 1 min

Deuterium bottleneck: $n + p \rightarrow d + \gamma$ efficient

: produced by PRIMAT

$ \begin{array}{c c} \mbox{Introduction} & \mbox{Big Bang Nucleosynthesis} & \mbox{Variation of } \alpha & \mbox{Variation of } m_{\rm S} & \mbox{Deuteron-deuter} \\ 00 & 0 & 0000 & 000000 & 000 \\ \end{array} $	
---	--

He

⁴He

⁶Li ⁷Li ⁷Be

Introducing BBN – The Timescales

: produced by PRIMAT

 $| t \leq 1 s |$

Weak $n \leftrightarrow p$ reactions ^{INF} number density ratio $\frac{n_n}{n_p} = e^{-Q_n/T}$, Q_n : mass difference ^{INF} at 1 s or $T \approx 1$ MeV: freeze-out and free neutron decay t = 1 min

Deuterium bottleneck: $\mathbf{n} + \mathbf{p} \rightarrow \mathbf{d} + \gamma$ efficient

 $| t \lesssim 3 \min$

Fusion of light elements (up to ^{7}Be)

	Variation of α ●000	

Variation of α – What to consider

Radiative capture

- $n \leftrightarrow p$ and β -decay rates: final (initial) state interactions between charged particles
- Indirect effects: binding energies² and Q_n (QED contribution)³

$$\Delta Q_n = Q_n^{ ext{QED}} \cdot \delta lpha = -0.58(16) \, ext{MeV} \cdot \delta lpha$$

 1 Blatt and Weisskopf, 1979; 2 Elhatisari et al., 2024; 3 Gasser, Leutwyler, and Rusetsky, 2021

	Variation of α O \bigcirc OO	

Coulomb contributions to binding energies

Helen Meyer

Big Bang Nucleosynthesis and Deuteron-Deuteron reactions

IntroductionBig Bang NucleosynthesisVariation of α Variation of m_S 000000000000	
---	--

Experimental constraints

■ PDG¹: reliable measurements for ⁴He, *d* and ⁷Li (But: Lithium problem²)

- 5 codes give similar results

• Only α -variation of $|\delta \alpha| < 1.8\%$ is consistent with experiment

¹ Workman et al., 2022; ² Fields, 2011

Helen Mever

Big Bang Nucleosynthesis and Deuteron-Deuteron reactions

	Variation of α	
	0000	

Halo Effective Field Theory (EFT)

Biggest source of uncertainty: reaction rates and cross sections

- \Rightarrow Need theoretical predictions
 - So far: only pionless EFT for $n + p \rightarrow d + \gamma^{1}$
 - Now: include Halo EFT² rates for ¹²⁷ $n + {}^{7}\text{Li} \rightarrow {}^{8}\text{Li} + \gamma {}^{3}$ ¹²⁷ $p + {}^{7}\text{Be} \rightarrow {}^{8}\text{B} + \gamma {}^{4}$ ¹²⁷ ${}^{3}\text{H} + {}^{4}\text{He} \rightarrow {}^{7}\text{Li} + \gamma \text{ and}$ ${}^{3}\text{He} + {}^{4}\text{He} \rightarrow {}^{7}\text{Be} + \gamma {}^{5}$

 1 Rupak, 2000; 2 review: Hammer, Ji, Phillips, 2017; 3 Fernando, Higa, Rupak 2012; Higa, Premarathna, Rupak, 2021; 4 Higa, Premarathna, Rupak, 2022;

⁵ Higa, Rupak, Vaghani, 2018; Premarathna, Rupak, 2020

 $^{7}\mathrm{Li} + ^{7}\mathrm{Be}$ abundance diverges?

	Variation of <i>m_s</i> ●000000	

Where does strangeness appear in BBN?

Main contribution of m_s through strange quark σ -term^{1,2,3}

$$\sigma_s = \langle N | m_s \, \bar{s}s | N \rangle = 44.9(64) \, \text{MeV}^2$$

 \Rightarrow changes the nucleon mass m_N :

$$|\delta_{m_s}| = \frac{|\Delta m_N|}{\sigma_s}$$

Nucleon mass change in kinetic Hamiltonian affects

- nucleon-nucleon scattering observables
- nuclear binding energies

 1 Collins, Duncan, Joglekar, 1977; 2 Crewther, 1972; 3 Nielsen, 1977; 4 FLAG collaboration, 2024 ($N_f\,=\,2\,+\,1)$

taken from arxiv.org/pdf/2411.04268

		× Variation of <i>m_s</i> ○●○○○○○	
--	--	--	--

Nucleon-nucleon scattering

	Variation of <i>m_s</i> 00●0000	

$n + p \rightarrow d + \gamma$

For $\mathbf{n}+\mathbf{p}\rightarrow \mathbf{d}+\gamma$ there exists analytic cross section from pionless EFT^1

- change in scattering parameters has huge effect
- relevant temperature range: 1.25 to 10 × 10⁹ K
- main effect: backwards reaction (deuterium bottleneck)

¹ Rupak, 2000

			Variation of <i>m_s</i> ○○○●○○○		
Binding energies					

Again: change in nuclear binding energies due δ_{m_N} in kinetic Hamiltonian

Alternatively, one defines $(BLP)^{1,2}$

¹ Berengut et al., 2013; ² Bedaque, Luu, Platter, 2011

$$egin{aligned} & \mathcal{K}^{a_s}_{B_{3_{\mathrm{He}}}} = 0.12(1)\,, & \mathcal{K}^{B_d}_{B_{3_{\mathrm{He}}}} = 1.41(1)\,; \ & \mathcal{K}^{a_s}_{B_{4_{\mathrm{He}}}} = 0.037(11)\,, & \mathcal{K}^{B_d}_{B_{4_{\mathrm{He}}}} = 0.74(22)\,. \end{aligned}$$

Big Bang Nucleosynthesis and Deuteron-Deuteron reactions

	Variation of <i>m_s</i> ○○○○●○○	

Results

	Variation of <i>m_s</i> 00000●0	

Constraints

- Constraints very narrow
- Now: deuterium constraints δ_{m_N} much more than ⁴He
- ⇒ upper bound for strange quark mass variation:

$$|\delta_{m_s}| = rac{|\Delta m_N|}{\sigma_s} < 5.1\%$$

	Variation of <i>m_s</i> 000000●	

To summarize...

- simulated Big Bang Nucleosynthesis with 5 different codes as laboratory
- considered variation of fundamental constants and found
 - for the fine-structure constant

 $|\delta\alpha| < 1.8\%$

for the strange quark mass

 $|\delta_{m_s}| < 5.1\%$

to be consistent with measurements, using NLEFT as input

Now: How fine-tuned is our universe?

Source : ChatGPT

oo oŏ ´ ´ oooooo ⊂ ⊙oo					Deuteron-deuteron reactions ●00
-------------------------------	--	--	--	--	------------------------------------

Why deuteron-deuteron reactions?

Constraints from *d*-abundance for strange quark mass: differences in the code bigger than range of possible variations!

Deuteron abundance is sensitive to choice of rates¹

- $d(d, n)^3$ He
- $d(d, p)^{3}$ H

 \Rightarrow Goal: calculating these rates using NLEFT

¹ Pitrou et al., 2021

		Deuteron-deuteron reactions ○●○

Challenges and on-going work

First step: d - d elastic scattering

So far for one-cluster APM found

- ideal wave function,
- best working bin size,
- minimal lattice size

Challenges for two-cluster APM

- Deuteron is weakly bound ⇒ converges slowly
- Need to collect a lot of statistics

This is now on-going!

		Deuteron-deuteron reactions ○●○

Challenges and on-going work

First step: d - d elastic scattering

So far for one-cluster APM found

- ideal wave function,
- best working bin size,
- minimal lattice size

Challenges for two-cluster APM

- Deuteron is weakly bound ⇒ converges slowly
- Need to collect a lot of statistics

This is now on-going!

Thank you for your attention!

		Deuteron-deuteron reactions 00●

 $\alpha\text{-}\mathsf{Dependence}$ of Reaction and Decay Rates $\bullet\text{OOOOO}$

Indirect Influence of a

Nuclear Reaction Rates - Coulomb Barrier

$$\Gamma_{ab\to cd}(T) = N_A \langle \sigma v \rangle \propto \int_0^\infty \mathrm{d}E \, \sigma_{ab\to cd}(E) \cdot E \cdot e^{-\frac{E}{k_B T}}, \quad E = \frac{1}{2} \mu_{ab} v^2$$

(1) Coulomb Barrier

Cross section is proportional to penetration factor [Blatt and Weisskopf, 1979]

$$\sigma \propto {\it v}_0 = {2\pi\eta\over e^{2\pi\eta}-1}\,,$$

with Sommerfeld parameter

$$\eta = \frac{Z_a Z_b \alpha c}{\hbar v} = \frac{1}{2\pi} \sqrt{E_G/E},$$

and Gamow-energy

$$E_G = 2\mu_{ab}c^2\pi^2 Z_a^2 Z_b^2 \alpha^2, \quad \mu_{ab} = \frac{m_a m_b}{m_a + m_b}$$

Helen Meyer

Big Bang Nucleosynthesis and Deuteron-Deuteron reactions

 $\alpha\text{-}\mathsf{Dependence}$ of Reaction and Decay Rates $\texttt{O} \bullet \texttt{O} \texttt{O} \texttt{O} \texttt{O}$

Nuclear Reaction Rates – Radiative Capture

(2) Radiative capture reactions

- Coupling $\propto e \Rightarrow$ Cross section $\sigma \propto \alpha \propto e^2$
- External capture processes [Christy and Duck, 1961]: parameterized in $f(\delta \alpha)$ [Nollett and Lopez, 2002]
- Assume dipole dominance
- For some reactions: Halo EFT cross sections \Rightarrow

 α -dependence of cross section ($q_{\gamma} = 1$ for radiative capture, zero else)

$$\sigma(\alpha, E) \propto \left(\frac{\sqrt{E_G^{\rm in}/E}}{e^{\sqrt{E_G^{\rm in}/E}} - 1}\right) \cdot \left(\frac{\sqrt{E_G^{\rm out}/(E+Q)}}{e^{\sqrt{E_G^{\rm out}/(E+Q)}} - 1}\right) \cdot (\alpha f(\delta \alpha))^{q_{\gamma}}$$

$$Q=m_a+m_b-m_c-m_d$$

 $\alpha\text{-}\mathsf{Dependence}$ of Reaction and Decay Rates $\texttt{OO} \bullet \texttt{OO} \texttt{O}$

ndirect Influence of α OO Measurements O

Weak Rates – Fermi Function

 β -decay rate (assume $|M_{fi}|^2$ to be *p*-independent) [Segrè, 1964]:

$$\lambda = \frac{g^2 |M_{fi}|^2}{2\pi^3 c^3 \hbar^7} \underbrace{\int_0^{p_{e,\max}} \left(W - \sqrt{m_e^2 c^4 + p_e^2 c^2}\right)^2 F(Z, \alpha, p_e) p_e^2 dp_e}_{= l(\alpha, Q)},$$

$$p_{e,\max} = \frac{1}{c}\sqrt{W^2 - m_e^2 c^4}, W \approx M_a - M_b = Q$$

Fermi function (for $Z\alpha \ll 1$):
 $F(\pm Z, \alpha, \epsilon_e) \approx \frac{\pm 2\pi\nu}{1 - \exp(\mp 2\pi\nu)}, \quad \nu \equiv \frac{Z\alpha\epsilon_e}{\sqrt{\epsilon_e^2 - 1}}$
Then:

$$\lambda(\alpha) = \lambda(\alpha_0) \frac{I(\alpha, Q)}{I(\alpha_0, Q)}$$

Helen Meyer

Big Bang Nucleosynthesis and Deuteron-Deuteron reactions

ndirect Influence of α

$n \leftrightarrow p$ Rates

Free neutron decay: lifetime

$$\tau_n(\alpha) = \tau_n(\alpha_0) \frac{I(\alpha_0, Q)}{I(\alpha, Q)}$$

But: Ignored Fermi-Dirac distribution of neutrino and electron

 \Rightarrow temperature dependence in α -variation for high temperatures

 $\alpha\text{-}\mathsf{Dependence}$ of Reaction and Decay Rates OOOOOO

Nuclear Reaction Rates – $n + p \rightarrow d + \gamma$

Some corrections due to α variation are energy-dependent

 \Rightarrow need reaction cross section!

For $n + p \rightarrow d + \gamma$:

- Pionless EFT (N⁴LO) approach by Rupak, 2000
- $\sigma(n + p \rightarrow d + \gamma)$ depends linearly on α

Other reaction cross section need to be parameterized by fitting to data EXFOR database

ndirect Influence of α

Nuclear Reaction Rates – Leading Reactions

This work ; PRIMAT ; AlterBBN ; PArthENoPE; NUC123 ; NACRE II ;
(PRyMordial uses the PRIMAT rates)

Helen Meyer

Big Bang Nucleosynthesis and Deuteron-Deuteron reactions

 $\alpha\text{-Dependence}$ of Reaction and Decay Rates 000000

Indirect Influence of α

Measurements O

Indirect Effects - Binding energies (Maliner and Metsch, 2022)

Coulomb interaction between protons in nucleus

 \Rightarrow Electromagnetic contribution to binding energy [Elhatisari et al., 2024] Change in *Q*-value:

$$\Delta Q = \frac{\delta \alpha}{\left(-\sum_{i} B_{C}^{i} + \sum_{j} B_{C}^{j}\right)}$$

 $\alpha\text{-Dependence}$ of Reaction and Decay Rates 000000

Indirect Influence of α $\bullet \circ$ Measurements O

Indirect Effects - Binding energies [Mailiner and Metsch, 2022].

Coulomb interaction between protons in nucleus

 \Rightarrow Electromagnetic contribution to binding energy [Elhatisari et al., 2024] Change in *Q*-value:

$$\Delta Q = \frac{\delta \alpha}{\left(-\sum_{i} B_{C}^{i} + \sum_{j} B_{C}^{j}\right)}$$

Nuclear reaction cross sections ($p_{\gamma}=3, q_{\gamma}=1$ for radiative capture, $p_{\gamma}=1/2, q_{\gamma}=0$ else)

$$\sigma(E,\alpha) \propto \underbrace{(E+Q(\alpha))^{p_{\gamma}}}_{\text{phase space}} \alpha^{q_{\gamma}} \frac{\sqrt{E_{G}^{\text{in}}(\alpha)/E}}{\exp\left(\sqrt{E_{G}^{\text{in}}(\alpha)/E}\right) - 1} \frac{\sqrt{E_{G}^{\text{out}}(\alpha)/(E+Q(\alpha))}}{\exp\left(\sqrt{E_{G}^{\text{out}}(\alpha)/(E+Q(\alpha))}\right) - 1}$$

Indirect Effects – Neutron-proton mass difference

 $Q_n = m_n - m_p$ has QED contribution [Gasser, Leutwyler, and Rusetsky, 2021]:

$$\Rightarrow \Delta Q_n = Q_n^{\text{QED}} \cdot \delta \alpha = -0.58(16) \text{ MeV} \cdot \delta \alpha$$

Affects

- weak $n \leftrightarrow p$ rates
- Q-values of β -decays
- $m_N = (m_n + m_p)/2$ appearing in $n + p \rightarrow d + \gamma$ cross section? \rightarrow neglect α -dependence!

Measurement of Primordial Abundances

Deuterium d:

- Almost completely destroyed in stars
- Observe high red-shift, low-metallicity systems

Helium-4 4 He:

- \blacksquare Recombination lines of ${\rm He}$ and ${\rm H}$ in metal-poor extra-galactic HII regions
- Metal Production in stars positively correlated to stellar $^{4}\mathrm{He}$ contribution \rightarrow Primordial abundance found by extrapolation to zero metallicity Lithium-7 $^{7}\mathrm{Li:}$
 - Observe stars in the galactic halo with very low metallicities
 - ⁷Li dominant over ⁶Li
 - Lithium problem¹: theoretical prediction three times higher

¹LithiumProblem