

Hyperon-nucleon interaction at NNLO in chiral EFT

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

CONTENTS

- Short introduction: Why chiral EFT?
- Short recap of the YN interaction at LO and NLO
- YN interaction at NNLO
- Summary & outlook

Haidenbauer, UGM, Nogga, Le, EPJ A (2023) [in print] [2301.00722 [nucl-th]]

STRANGENESS NUCLEAR PHYSICS

- Very few hyperon-nucleon scattering data (different to NN)
- \hookrightarrow improve the data base J-PARC, JLab, ...
- → Hypernuclei play an important role to unravel the hyperon-nucleon or more generally the baryon-baryon (BB) interactions

- \bullet Best approach to YN/YY scattering: chiral EFT \rightarrow this talk
- Apply chiral EFT forces in nuclei \rightarrow Hoai Le's talk
- \hookrightarrow Further tests of the SU(3)_f symmetry of QCD

BB INTERACTION in CHIRAL EFFECTIVE FIELD THEORY

- Original idea to use chiral EFT by Weinberg for the NN & NNN interactions Weinberg (1990,1991)
- Advantages of the chiral EFT approach:
 - Power counting \rightarrow systematic improvement by going to higher orders
 - Two- and three-baryon forces and external currents in a consistent way
 - Degrees of freedom tied to the QCD symmetries & their realization
 - \hookrightarrow Goldstone bosons (π, K, η) coupled to matter fields $(N, \Lambda, \Sigma, \Xi)$
- Interaction given by
 - Pseudoscalar meson exchanges $(\pi, \pi\pi, K, \eta, \pi K, \ldots)$
 - Contact terms for the unresolved short-distance interactions \rightarrow LECs
 - \hookrightarrow LECs to be determined from fits to data

CHIRAL EFT at LO and NLO

LO: Polinder, Haidenbauer, UGM, Nucl. Phys. A 779 (2006) 244 [initiated by UGM]
NLO13: Haidenbauer, Petschauer, Kaiser, UGM, Nogga, Weise, Nucl. Phys. A 915 (2013) 24
NLO19: Haidenbauer, UGM, Nogga, Eur. Phys. J. A 56 (2020) 91

• Use SU(3) symmetry to relate MBB couplings and the various contact term LECs

• Need SU(3) breaking for a combined description of NN & YN interactions (NLO19)

YN INTERACTION at NLO

• Total XS results (fit to 36 low-energy data points + $E(^{3}_{\Lambda}He)$, only cut-off variations) [better uncertainty estimate available for NLO19]

open symbols: prediction

Jülich '04 potential: Haidenbauer and UGM, Phys. Rev. C 72 (2005) 044005

WHY NNLO?

- New data from the J-PARC E40 experiment (also JLab) Miwa et al., Phys. Rev. C 104 (2012) 045204; Phys. Rev. Lett. 128 (2022) 072501 Nanamura et al., PTEP 2022 (2022) 093D01
- \bullet in the NN case, NNLO corrections \ll NLO ones, mostly in the P-waves
- no new short-distance LECs at this order, MB LECs known \rightarrow extra slide
- at NNLO three-body forces appear \rightarrow important for hyper-nuclei \rightarrow H. Le's talk
- improved regularization (taken from NN)

Reinert et al., EPJA 54 (2018) 86

$$V_{1P}^{
m reg} \propto rac{e^{-rac{ec{q}^2 + M_P^2}{\Lambda^2}}}{ec{q}^2 + M_P^2} o rac{1}{ec{q}^2 + M_P^2} - rac{1}{\Lambda^2} + rac{ec{q}^2 + M_P^2}{\Lambda^4} + \dots, \ P = \pi, K, \eta$$

 \hookrightarrow does not affect the long-range physics at any oder in $1/\Lambda^2$

 \hookrightarrow also applicable to 2P exchanges (only 2π relevant)

⁻ Ulf-G. Meißner, Hyperon-nucleon interaction at NNLO in chiral EFT - talk, 3rd J-PARC HEF-ex WS, Mar. 14, 2023 -

FIT STRATEGY

• Incomplete angular coverage for $\Sigma^{\pm}p
ightarrow \Sigma^{\pm}p$, thus use

$$\sigma = rac{2}{\cos heta_{
m max} - \cos heta_{
m min}} \int_{\cos heta_{
m min}}^{\cos heta_{
m max}} rac{d\sigma(heta)}{d\cos heta} d\cos heta$$

 $\cos heta_{
m min} = -0.5$ and $\cos heta_{
m max} = 0.5$

 Fit to the same 36 data for Λp, Σ⁻p, Σ⁺p scattering at low energies as done for LO, NLO13 and NLO19

	SMS NLO			SMS NNLO			NLO13	NLO19
Λ (MeV)	500	550	600	500	550	600	600	600
total χ^2	15.5	15.7	16.2	15.8	15.6	15.7	16.8	16.3

• Comments: S-wave LECs from the combined Λp , ΣN fits w/o E40 data P-wave LECs in ${}^{3}P_{0,1,2}$ at NLO from NN Reinert et al. (2018) P-wave LECs at NNLO from the data (two scenarios) • total X sections:

 $\Sigma^+ p \rightarrow \Sigma^+ p$

• differential X sections:

E40 data at $p_{\text{lab}} = 500 \text{MeV}/c$ can be described, problems at the higher energy

• total X sections:

• differential X sections:

E40 data can be described, forward direction at the higher energy?

The $\Sigma^- p
ightarrow \Lambda n$ TRANSITION I

• total X sections:

 $\Sigma^{-}p \rightarrow \Lambda n$

Σ⁻p -> Λn

• differential X sections:

All interactions are in line with the data

The Λp CHANNEL I

• total X sections:

• differential X sections:

all data can be described (incl. JLab), no E40 data so far

• Use the EKM formalism Epelbaum, Krebs, UGM, EPJA 51 (2015) 53

 $\Delta X^{\mathrm{NNLO}}(k)$

$$= \max\left(Q^4 \cdot \left|X^{\text{LO}}(k)\right|, Q^2 \cdot \left|X^{\text{LO}}(k) - X^{\text{NLO}}(k)\right|, Q \cdot \left|X^{\text{NLO}}(k) - X^{\text{NNLO}}(k)\right|\right)$$

• Expansion parameter Q defined by:

$$Q=\max\left(rac{k}{\Lambda_b},\;rac{M_\pi}{\Lambda_b}
ight)$$

k = on-shell center-of-mass momentum

 Λ_b = breakdown scale of the chiral EFT expansion, $\Lambda_b \simeq 600$ MeV

• for Bayesian methods, see e.g. Furnstahl et al., Phys. Rev. C 92 (2015) 024005

UNCERTAINTY ESTIMATES II

• Assorted results:

grey band = NLO red band = NNLO

• Expected trend: uncertainties at NNLO visibly smaller than at NLO $\sqrt{}$

FURTHER RESULTS I

ullet Hyper-Triton BE no longer fitted exactly (due to conflicting exp's), kept to $\sim 150\,{
m keV}$

Juric et al. (1973) $B_{\Lambda} = 130 \pm 5$ keV STAR coll. (2020) $B_{\Lambda} = 410 \pm 120 \pm 110$ keV ALICE coll. (2022) $B_{\Lambda} = 72 \pm 63 \pm 36$ keV

MAINZ 2022 average $B_{oldsymbol{\Lambda}}=\mathbf{148}\pm\mathbf{40}$ keV

• ${}^4_{\Lambda}$ He:

YN interaction	$J^{\pi}=0^+$	$J^{\pi} = 1^+$
	B_{Λ} [MeV]	$B_{f \Lambda}$ [MeV]
SMS NLO(550)	2.102	1.102
SMS NNLO $(550)^a$	2.024	1.251
SMS NNLO(550) ^b	1.964	1.188
NLO13(600)	1.477	0.580
NLO19(600)	1.461	1.055
Exp.	2.377 ± 0.036	0.942 ± 0.036

* marked improvement, but still slightly off

 \star no 3BFs and no CSB \rightarrow H. Le's talk

• Λ and Σ in nuclear matter \rightarrow single-particle potentials at $k_F = 1.35$ fm⁻¹:

YN interaction	$U_{\Lambda}(0)$ [MeV]	$U_{\Sigma}(0)$ [MeV]
SMS NLO(550)	-32.1	-1.6
SMS NNLO $(550)^a$	-38.5	+2.5
SMS NNLO(550) ^b	-35.9	+2.5
NLO13(600)	-21.6	+17.1
NLO19(600)	-32.6	+16.9

 \star Values for the Λ consistent with emp. findings $U_{\Lambda}(0) \sim -30...-27\,{
m MeV}$

Gal, Hungerford, Millener, RMP 88 (2016) 035004

 $\star U_{\Sigma}$ less repulsive than NLO13 & NLO19 and

below the range 10 - 50 MeV advocated by Gal et al.

- \hookrightarrow J-PARC data for $\Sigma^+ p$ difficult to reconcile with a strongly repulsive U_Σ
- \hookrightarrow more data needed!

SUMMARY & OUTLOOK

- Worked out $\Lambda N \Sigma N$ interactions in chiral EFT at NNLO
 - \rightarrow new & improved semilocal regularization
 - \rightarrow no new LECs (meson-baryon interaction known at that order)
- Number of results:
 - ightarrow confirm previous YN results at NLO
 - ightarrow new $\Sigma^{\pm}p$ scattering data at $p_{
 m lab}\simeq 500$ MeV/c can be described
 - \rightarrow unique determination of the P-waves not yet possible
 - ightarrow improved description of the $J^{\pi}=0^+,1^+$ states in ${}^4_{\Lambda}$ He
 - ightarrow interesting results for in-medium single-particle potentials $U_{\Lambda,\Sigma}$
- Outlook:
 - \rightarrow need more precise differential X section data (in some case CFs)
- \rightarrow slide

21

- \rightarrow hypernuclei including three-body forces
- \rightarrow hypernuclei including charge-symmetry breaking

EXPLORING the $\Sigma^+ p$ INTERACTION

Haidenbauer, UGM, Phys. Lett. B 829 (2022) 137074 [arXiv:2109.11794]

- Spin-dependent components of the YN interactions are largely unknown
- Correlation function (CF) for $\Sigma^+ p$ system: $C(k) = \underbrace{\frac{1}{4}C_s(k)}_{\text{attractive}} + \underbrace{\frac{3}{4}C_t(k)}_{\text{repulsive}}$

 \hookrightarrow combine with XS data to separate the singlet/triplet contributions by measuring the CF

separation w/o spin-dependent measurement

singlet/triplet

SPARES

YN INTERACTION at NNLO

• Pertinent diagrams: \hookrightarrow vertices from $\mathcal{L}_{MB}^{(2)}$ $\hookrightarrow \mathsf{LECs}\ b_{0,D,F}, b_{1,2,3,4}, d_{1,2,3}$ combinations thereof

- \rightarrow no new contact interactions!
- $b_{0,D,F}$ fixed from baryon mass splittings and the πN sigma term
- use matching relations: $c_3 = b_1 + b_2 + b_3 + 2b_4, ...$
 - \hookrightarrow the SU(2) c_i from Roy-Steiner equations and CHPT
 - combined w/ scattering data fixes all b_i LECs
 - LECs d_i from decuplet saturation

 \hookrightarrow NNLO contribution to the YN interaction completely fixed!

Hoferichter, de Elvira, Kubis, UGM (2015)

Mai, Bruns, Kubis, UGM (2015)

Petschauer, Haidenbauer, Kaiser, UGM, Weise (2017)