

New insights into strongly interacting fermionic systems

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

supported by CAS, PIFI

by DFG, SFB 1639

by ERC, EXOTIC

by NRW-FAIR

Contents

- Introduction: Why and how
- Nuclear physics on a lattice
 - Foundations
 - Applications
 - Intermediate summary
- Strongly correlated electronic systems in low dimensions
 - Foundations
 - Applications
 - Intermediate summary
- Summary & outlook

Introduction: Why and how

Strongly correlated fermionic systems

• Strongly correlated fermionic systems come in different forms, shapes and sizes

- ... and are a challenge in particle & nuclear & condensed matter physics as well as material science, quantum chemistry, ...
- → I propose here the marriage of Effective Field Theories w/ Monte Carlo simulations

Intro to EFTS: Resolution matters

- Dynamics at long distances does not depend on what goes on at short distances
- Equivalently, low-energy interactions do not care about the details of high-energy interactions
- Or: you don't need to understand nuclear physics to build a bridge

Intro to EFTS: Organisation

- This is quite true, but how to make the idea precise and quantitative?
- necessary & sufficient ingredients to construct an Effective Field Theory:
 - * scale separation what is low, what is high?
 - * active degrees of freedom what are the building blocks?
 - * symmetries how are the interactions constrained by symmetries?
 - * power counting how to organize the expansion in low over high?
- ullet a note on units for a quantum particle ($\hbar=c=1$)

$$p \sim rac{1}{\lambda}, \;\; E = p \;\; ext{or} \;\; E = rac{p^2}{2m}$$

→ long wavelength ↔ low momentum

Intro to Monte Carlo simulations: Basics

Just outline schematically the basic steps:

Intro to Monte Carlo simulations: The sign problem

- At finite chemical potential (density) or doping, detM is no longer positive definite

Troyer, Wiese, Phys. Rev. Lett. 94 (2005) 170201

- discuss three methods here:
 - * Wigner's SU(4) symmetry in nuclear physics

Wigner, Phys. Rev. **51** (1937) 106

* Wave function matching (applied to nucl. phys. here but more general)

Elhatisari et al., Nature **630** (2024) 8015, 59

* Lefschetz thimbles (contour deformations) (applied to low-d materials here)

Cristoforetti et al., Phys. Rev. D 88 (2013) 051501(R)

Nuclear physics on a lattice

T. Lähde & UGM

Nuclear Lattice Effective Field Theory - An Introduction

Springer Lecture Notes in Physics 957 (2019) 1 - 396

Why nuclear physics?

- Ulf-G. Meißner, New insights into strongly correlated fermionic systems - ICBS 2025, Beijing, China, July 24, 2025 -

The nucleus as a quantum laboratory

- The nucleus is a challenging and fascinating many-body system
 - → non-perturbative strong interactions balanced by the Coulomb force
 - → many interesting phenonema: drip lines, clustering, reactions, ...
 - → a plethora of few-body/many-body methods already exists
- Macroscopic nuclear matter = neutron stars
 - → gained prominence again in the multi-messenger aera
 - → must be able to describe these with the same methods
- I will advocate here a new quantum many-body appraoch
 - → synthezies chiral EFT w/ stochastic methods
 - → allows to tackle nuclear structure and reactions

Nuclear lattice effective field theory (NLEFT)

- new method to tackle the nuclear many-body problem
- ullet discretize space-time $V=L_s imes L_s imes L_s imes L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

→ see Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773

EFT on the lattice, maximal momentum:

$$p_{
m max} = rac{\pi}{a} \simeq 315 - 630\,{
m MeV}\,{
m [UV~cutoff]}$$

strong suppression of sign oscillations SU(4)
 due to approximate Wigner (spin-isospin) symmetry

Wigner, Phys. Rev. 51 (1937) 106; Chen et al., Phys. Rev. Lett. 93 (2004) 242302

- → works well for even-even nuclei
- → we still need another method

Shen et al., Nature Commun. 14 (2023) 2777

Wave function matching

Elhatisari et al., Nature **630** (2024) 59

- A new quantun many-body method: Bring a complex Hamiltonian H_{χ} close to a simple one $H_S \hookrightarrow$ treat H_S non-perturbatively & $H'_{\chi} H_S$ in perturbation theory
- Graphical representation of w.f. matching

⇒ Efficient suppression of sign oscillations, applicable in many fields!

Transfer matrix method

- Correlation–function for A nucleons: $Z_A(\tau) = \langle \Psi_A | \exp(-\tau H) | \Psi_A \rangle$ with Ψ_A a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]
- Transient energy

$$E_A(au) = -rac{d}{d au}\, \ln Z_A(au)$$

$$ightarrow$$
 ground state: $E_A^0 = \lim_{ au
ightarrow \infty} E_A(au)$

Exp. value of any normal—ordered operator O

$$Z_A^{\mathcal{O}} = ra{\Psi_A} \exp(- au H/2) \, \mathcal{O} \, \exp(- au H/2) \ket{\Psi_A}$$

$$\lim_{ au o \infty} \, rac{Z_A^{\mathcal{O}}(au)}{Z_A(au)} = \langle \Psi_A | \mathcal{O} \, | \Psi_A
angle$$

• Excited states: $Z_A(\tau) \to Z_A^{ij}(\tau)$, diagonalize, e.g. $0_1^+, 0_2^+, 0_3^+, ...$ in ¹²C

Configurations

- ⇒ all *possible* configurations are sampled
- ⇒ preparation of *all possible* initial/final states
- ⇒ *clustering* emerges *naturally*

Auxiliary field method

• Represent interactions by auxiliary fields (Gaussian completion):

$$\exp\left[-rac{C}{2}\left(N^{\dagger}N
ight)^{2}
ight] = \sqrt{rac{1}{2\pi}}\,\int ds \exp\left[-rac{s^{2}}{2} + \sqrt{C}\,\,s\left(N^{\dagger}N
ight)
ight]$$

Binding Energies at N3LO

Elhatisari et al., Nature **630** (2024) 59

- Need to go to next-to-next-to-leading order (N3LO) for precision
- Binding energies of nuclei for a=1.32 fm: Determining the 3NF LECs

→ excellent starting point for precision studies

Prediction: Charge radii at N3LO

Elhatisari et al., Nature **630** (2024) 59

• Charge radii (a = 1.32 fm, statistical errors can be reduced)

 \hookrightarrow no radius problem!

Prediction: Neutron & nuclear matter at N3LO

Elhatisari et al., Nature **630** (2024) 59

• Equation of State (EoS) of pure neutron matter & nuclear matter (a = 1.32 fm)

Prediction: Isotope chains of carbon & oxyen

Song et al., 2502.18722 [nucl-th]

Towards the neutron drip-line in carbon and oxygen:

→ 3NFs of utmost importance for the n-rich isotopes!

Prediction: Be isotopes

Shen et al., Phys. Rev. Lett. **134** (2025) 162503

Systematic study of the Be isotopes & their em transitions:

→ new method to quantify nuclear shapes

Ab initio calculation of neutron stars

Tong, Elhatisari, UGM, Sci. Bull. 70 (2025) 825; Astrophys. J. 982; in preparation

- Consider β-stable matter with neutrons, protons,
 Λ hyperons, electrons and muons
- Use a minimal model including neutrons, protons and
 A hyperons w/ two- and three-baryon forces
- Equation of state of neutron matter with up to
 - up to 232 neutrons in the box w/ $V=288\,\mathrm{fm^3}$
 - up to 24 protons and 34 Λ hyperons
- \hookrightarrow first *ab initio* calculation of neutron stars consistent with all observational constraints (mass M, radius R, tidal deformability Λ , ...) and binding energies of light hypernuclei Note: not thought to be possible!
- $\hookrightarrow \Lambda$ hyperons present but no puzzle!

Intermediate Summary

- Nuclear lattice simulations: a new quantum many-body approach
 - → based on the successful continuum nuclear chiral EFT
 - → a number of highly visible results already obtained
- Recent developments
 - → NN(N) interaction at N3LO w/ wave function matching

 - \hookrightarrow first results for β -decays [ulitimately $0\nu2\beta$ decays]

Elhatisari, Hildenbrand, UGM, Phys. Lett. B 859 (2024) 139086

Hildenbrand et al., Eur. Phys. J. A 60 (2024) 215

 \hookrightarrow stay tuned!

Strongly correlated electronic systems in low dimensions

Why low-dimensional materials?

- ullet At least one of the dimensions of the material is small (\sim nanoscale)
- Quantum effects and strong correlations induce novel phenomena (emergence)

- Novel quantum electronics
- Fault tolerant quantum computing
- Can be tackled by MC simulations & EFTs

Why strong correlations in low-d materials?

• Compare the Coulomb to the kinetic energy of an electron in a d-dimensional system:

$$\left(\Gamma = rac{E_C}{E_K} pprox \left(rac{n_0}{n_d}
ight)^{1/d}
ight)$$

$$\Gamma = rac{E_C}{E_K} pprox \left(rac{n_0}{n_d}
ight)^{1/d} \qquad n_d = ext{electron density} \ n_0 = (m^*e^2/\epsilon_0)^d = ext{fiducial density} \ m^* = ext{effective mass, } \epsilon_0 = ext{dielectric constant}$$

- and the dimensionality of the system
- $\Gamma < 1$ perturbative , $\Gamma > 1$ non-perturbative
- Graphene (2D) is a good example, linear dispersion gives for the electrons:

$$\Gamma pprox 2-3$$

Symmetries pertinent to low-d materials

• Time-reversal symmetry T: $T^2=\pm 1$

$$t o -t \longrightarrow E(k) = E(-k)$$

- Charge conjugation symmetry (or particle-hole symmetry) C: $C^2 = \pm 1$

$$E_+(k) = -E_-(-k)$$

Chiral symmetry (or sublattice symmetry)

$$S: S^2 = S \quad E_+(k) = -E_-(k)$$

- ullet No spontaneous symmetry breaking in $d \leq 2$
- → no Goldstone modes

Mermin, Wagner, Phys. Rev. Lett. 17 (1966) 1133

→ all symmetry classes cataloged (for non-interacting systems)

Chiu et al., Rev. Mod. Phys. 88 (2016) 035005

Localization in hybrid nanoribbons

- Consider armchair graphene nanoribbons (AGNRs), defined by the shape of their edges
- These can be fabricated!

Rizzo et al. Nature 560 (2018) 204

Localization in hybrid nanoribbons continued

Lowest energy state in AGRNs exhibit localization

Cao et al., PRL 119 (2017) 076401

Experimental evidence

Rizzo et al., ACS Nano 2021, 15, 12, 20633

- Potential applications: Topological quantum dots, fault-tolerant QC, ...
- But all theoretical analysis is based on non-interacting dynamics!

A new type of localization in hybrid nanoribbons

Ostmeyer, Razmadze, Berkowitz, Luu, UGM, Phys. Rev. B 109 (2024) 195135

- Investigating the non-interacting model → finding a new localization

7/9 hybrid = **Fuji** localization

Predicted before

new form of localization!

Cao et al., Rev. Lett. 119 (2017) 076401 (2017)

→ new possibilities!

Localization in hybrid nanoribbons: Interacting systems

Luu, UGM, Razmadze, Phys. Rev. B 106 (2022) 195422

Quantum MC simulations of the Hubbard model

$$H_{=} - t \sum_{\langle i,j
angle, \sigma=\uparrow,\downarrow} \left(a_{i\sigma}^{\dagger} a_{j\sigma} + h.c.
ight) + U \sum_{i} \left(n_{i,\uparrow} \ -rac{1}{2}
ight) \left(n_{i,\downarrow} -rac{1}{2}
ight)$$

ullet Localization persists w/ strong interactions, but energy depends on $oldsymbol{U}$

— also holds for other geometries!

Digression: Domain wall fermions

- These concepts have particle physics origins
- Domain wall fermions are allowing for representing chiral fermions on a lattice (LQCD)

Kaplan, Phys. Lett. B 288 (1992) 342

Kaplan, Phys. Rev. Lett. 132 (2024) 141603

Hybrid nanoribbons provide a physical manifestation of domain wall fermions

An EFT for hybrid nanoribbons

- We have all the ingredients for an EFT:
 - Separation of scalesi.e. energy gap to the bulk states
 - Identification of the relevant low-energy degrees of freedom i.e. the localized edge states
 - Interaction terms constrained by symmetries
 - Power counting
 with *q* some small momentum
 of the/or inpinging on the dofs
- \hookrightarrow let's see how that works

Ostmeyer, Razmadze, Berkowitz, Luu, UGM, Phys. Rev. B 109 (2024) 195135

$$H_{1D} = -\sum_{i} \left(t_{A} a_{2i}^{\dagger} a_{2i-1}^{} + t_{B} a_{2i+1}^{\dagger} a_{2i+2}^{} + \text{h.c.} \right)$$

$$\delta H^i_{T,C,S} + \mathcal{O}\left(\left(rac{q}{\delta E}
ight)^{i+1}
ight)$$

Exploring the EFT: interacting case

Ostmeyer, Razmadze, Berkowitz, Luu, UGM, Phys. Rev. B 109 (2024) 195135

- We have a 1D EFT with the Hamiltonian with staggered mass $m_s\sigma_3$ as the energy gap is symmetric about E_F $H_{1D}=-\sum_k a_k^\dagger \begin{pmatrix} m_s & t_A e^{ik}+t_B e^{-ik} \\ t_A e^{-ik}+t_B e^{ik} & -ms \end{pmatrix} a_k$ plus particle hole & chiral symmetries
- Fit t_A , t_B from the non-interacting theory
 - \hookrightarrow Tune m_s to the underlying theory

⇒ Predict spectrum of new geometries

Localization in the SSH model

Consider the renowned Su-Schrieffer-Heeger (SSH) model with even sites

Su, Schrieffer, Heeger, Phys. Rev. Lett. 42 (1979) 1698

• Localization/topology depends on the hopping parameters t_1 , t_2

$$H_{ ext{SSH}} = \sum_i \left(t_1 c_{i, extsf{A}}^\dagger c_{i, extsf{B}}^{} + t_2 c_{i+1, extsf{A}}^\dagger c_{i, extsf{B}}^{} + ext{h.c.}
ight)$$

• Topological $t_1 < t_2$ $E \sim 0$ due to overlap

• Trivial $t_1 > t_2$

• Gapless $t_1 = t_2$

Localization in the SSH model: Experiments

Even site SSH model

- Different types of experiments
 - Silicon quantum dots

Kiczynski et al., Nature 606 (2022) 694

Artificial lattices

Meier et al., Nature Commun. 7 (2016) 13986

Ligthart et al., Phys. Rev. Res. 7 (2025) 012076

ullet Topological $t_1 < t_2$ [$t_1 = v, t_2 = w$]

Topological: v < w, $d_v > d_w$

 $d_{y} = 9.6 \text{ nm}, d_{yy} = 7.8 \text{ nm}$

ullet Trivial $t_1>t_2$ $[t_1=$ v, $t_2=$ w]

Trivial: v > w, $d_v < d_w$

 $d_v = 7.7 \text{ nm}, d_w = 10.1 \text{ nm}$

- Disadvantages:
 - Sensitive to the parameter choice, e.g., $t_1 < t_2$
 - Long enough chain to reduce wave function overlap
- Is there another/different way to generate localization in the SSH model?

Localization in the SSH model with odd sites

Wang, Luu, UGM, to be published

Consider the SSH model with an odd number of sites

- Different types of localization for all (nonvanishing) hopping parameters t_1 , t_2
- $t_1 < t_2$ E = 0 Chiral symmetry or sublattice symmetry

•
$$t_1 > t_2 E = 0$$

• • • • • • •

- $t_1 = t_2 \ E = 0$
- • • • • •

Advantages:

- Independent of parameter choice
- No length requirement but odd

Wang, Luu, UGM, to be published

Consider the SSH model with an odd number of sites

- Introduce defects = (A, B) or (B, A) pairs w/ a different coupling (diff. ions)
 - $t_1 < t_2$ E = 0 No defects

a defect

- $t_1 < t_2$ E = 0 With defects $t_1 \rightarrow d_1$ $t_2 \rightarrow d_2$
- d_2

 \hookrightarrow to have control, we need interactions

The odd SSH model with interactions

Wang, Luu, UGM, to be published

Add an onsite Hubbard interaction

$$H_{ ext{SSH+U}} = H_{ ext{SSH}} - rac{U}{2} \sum_x \left(n_{x,\uparrow} \; - n_{x,\downarrow}
ight)^2$$

- ullet This generates localized spin-singlet centers (above some critical value of $oldsymbol{U}$):
 - $t_1 < t_2$ No interactions

• $t_1 < t_2$ With Hubbard interactions generate localized spin-singlet centers

- ullet With increasing coupling $oldsymbol{U}$, the spin centers are stronger localized
- Possible platforms:
- (i) Magnetism and spintronics
- (ii) Quantum computations and simulations

Excited states in the odd SSH model with interactions⁴⁰

Wang, Luu, UGM, to be published

• Can engineer even more exotic forms of localization:

- \hookrightarrow engineer and/or manipulate spin qubits, other applications? \rightarrow ideas welcome!

Graphene nanosystems with odd sites

Wang, Luu, UGM, to be published

- Similar to the SSH model:
 - Two sites A, B in one unit cell
 - Chiral (or sublattice) symmetry
- Consider such a systems with odd sites
 - Similar to the SSH model with equal hoppings

Defect engineering graphene nanosystems

Wang, Luu, UGM, to be published

• Introducing defects as before allows for a fine control of the edge states

Intermediate Summary

- Low-d materials are amenable to MC simulations
 - → borrow methods from lattice field theory in QCD
 - → allows for EFTs for quicker access
- Recent developments
 - → Localization in AGNRs
 - → new type of localization found (Kilimanjaro)
 - → A new twist on the SSH model odd number of sites

 - → defects allow for new forms of localization
 - → Similar engineering possible in graphene nanosystems

 \hookrightarrow stay tuned!

Summary & outlook

- Strongly interacting fermion systems pose severe challanges
- Large progress made in the last few years:
 - → new insights into nuclear structure and nuclear matter
 - → new insights into toplogical matter and how to engineer it
- More interactions between fields is needed to make further progress!

Thank you for your attention!

SPARES

Comparison to lattice QCD

LQCD (quarks & gluons)	NLEFT (nucleons & pions)		
relativistic fermions	non-relativistic fermions		
renormalizable th'y	EFT		
continuum limit	no continuum limit		
(un)physical masses	physical masses		
Coulomb - difficult	Coulomb - easy		
high T/small $ ho$	small T/nuclear densities		
sign problem severe	sign problem moderate		

For nuclear physics, NLEFT is the far better methodology!

Computational equipment

• Present = JUWELS (modular system) + FRONTIER + ...

