

Sigma term physics

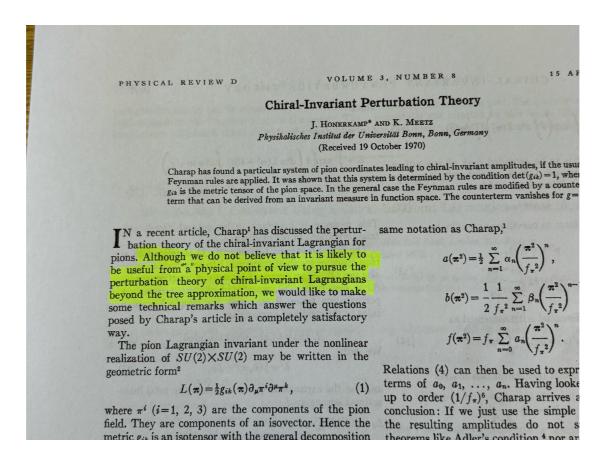
Ulf-G. Meißner, Univ. Bonn & FZ Jülich

by CAS, PIFI

by DFG, SFB 1639

by ERC, EXOTIC

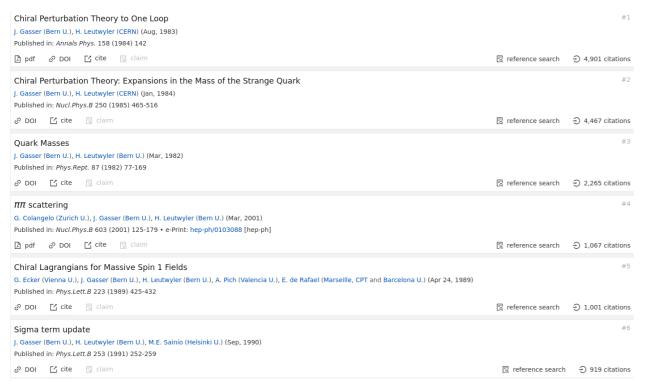
by NRW-FAIR


Contents

- Introductory remarks / anecdotes
- Basics of sigma term physics
- Sigma term physics from Bern
- A new look at sigma term physics
- Summary

Introductory remarks

A small anecdote


• The first paper with "chiral perturbation theory" in the title

- Possible consequences:
 - \hookrightarrow stop the talk here

Some statistics on Gasser/Leutwyler papers

What a list of most cited papers! [NB: just the common ones!]

"You should always put the Gasser/Leutwyler papers under your pillow" Howard Georgi, Dobogöko, 1991

- → I will focus on #6 and related papers here

Sigma term basics

σ -term basics

• Scalar form factor of the nucleon (isospin limit $\hat{m} = (m_u + m_d)/2$):

$$\sigma_{\pi N}(t) = \langle N(p')|\hat{m}(\bar{u}u + \bar{d}d)|N(p)\rangle$$
, $t = (p'-p)^2$

Cheng-Dashen Low-Energy Theorem (LET):

Cheng, Dashen (1971)

$$ar{D}^+(
u=0,t=2M_\pi^2)=\sigma(2M_\pi^2)+\Delta_R \qquad \left[
u=rac{s-u}{4m_N}
ight]$$

$$\left[
u = rac{s-u}{4m_N}
ight]$$

ullet $ar{D}^+$ – isospin-even, Born-term subtracted pion-nucleon scattering amplitude

$$ar{D}^+(0,2M_\pi^2) = A^+(m_N^2,2M_\pi^2) - rac{g_{\pi N}^2}{m_N}$$

- \hookrightarrow best determined from πN data using dispersion relations (unphysical region)
- reminder Δ_R , calculated in CHPT to $\mathcal{O}(p^4)$, no chiral logs

$$\Delta_{m{R}}\lesssim 2\,\mathsf{MeV}$$

Bernard, Kaiser, UGM (1996)

σ -term basics continued

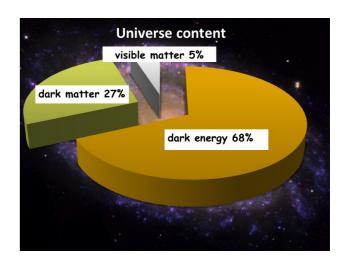
• Standard decomposition of the σ -term: $\sigma_{\pi N} = \sigma_{\pi N}(0)$

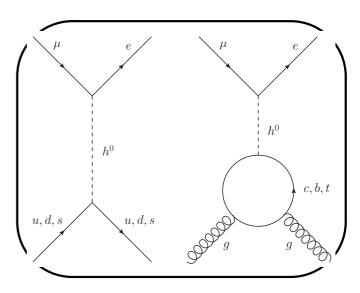
$$\sigma_{\pi N} = \Sigma_d + \Delta_D - \Delta_\sigma - \Delta_R$$

$$egin{aligned} \Sigma_d &= F_\pi^2(d_{00}^+ + 2M_\pi^2 d_{01}^+) & o ext{full dispersive analysis} \ & \Delta_D &= ar D^+(0, 2M_\pi^2) - \Sigma_d \ & \Delta_\sigma &= \sigma(2M_\pi^2) - \sigma_{\pi N} \end{aligned}
ight.
ightarrow ext{dispersive t-channel analysis}$$

- d_{00}^+, d_{01}^+ subthreshold expansion coefficients (around $\nu=t=0$)
- \bullet Δ_{σ} is the scalar form factor of the nucleon
- ullet Note: strong $\pi\pi$ rescattering in Δ_D and Δ_σ

Role of the pion-nucleon σ -term


- ullet Nucleon mass from the light u,d quarks
- Scalar couplings of the nucleon:


$$\langle N|m_{m q}ar q_{m q}|N
angle = {m f_{m q}^N}\,m_N \quad (N=p,n) \ (q=u,d,s)$$

- → Dark Matter detection
- $\hookrightarrow \mu \to e$ conversion in nuclei
- Condensates in nuclear matter

$$rac{\langle ar{q}q
angle(
ho)}{\langle 0|ar{q}q|0
angle}=1-rac{
ho\,m{\sigma_{\pi N}}}{F_\pi^2M_\pi^2}+\ldots$$

- CP-violating πN couplings

Crivellin, Hoferichter, Procura, ...

Bsaisou, de Vries, UGM, Wirzba, van Kolck, ...

Sigma term physics from Bern

The fundamental papers

Three very important papers in this field

Volume 213, number 1

PHYSICS LETTERS B

13 October 1988

EXTRACTING THE PION-NUCLEON SIGMA-TERM FROM DATA *

J. GASSER , H. LEUTWYLER

Institut für theoretische Physik, Universität Bern, Sidlerstraße 5, CH-3012 Bern, Switzerland

M.P. LOCHER and M.E. SAINIO

Paul Scherrer Institut, 1CH-5234 Villigen, Switzerland

Received 7 July 1988

Exploiting unitarity and analyticity we derive a set of integral equations which determine the behaviour of the S- and P-wave phase shifts near threshold in terms of two subtraction constants. These constants also fix the value of the Σ -term.

The fundamental papers

Three very important papers in this field

PHYSICS LETTERS B 13 October 1988 Volume 213, number 1 EXTRACTING THE PION-NUCLEON SIGMA-TERM FROM DATA * J. GASSER , H. LEUTWYLER Institut für theoretische Physik, Universität Bern, Stalerstraße 5, CH-3012 Bern, Switzerland Volume 253, number 1,2 PHYSICS LETTERS B 3 January 1991 M.P. LOCHER and M.E. SAINIO Paul Scherrer Institut, 1CH-5234 Villigen S Received 7 July 1988 Sigma-term update ★ Exploiting unitarity and analyticity we dephase shifts near threshold in terms of two J. Gasser, H. Leutwyler Institute for Theoretical Physics, University of Bern, Sidlerstraße 5, CH-3012 Bern, Switzerland and M.E. Sainio Research Institute for Theoretical Physics, University of Helsinki, Siltavuorenpenger 20C, SF-00170 Helsinki, Finland Received 24 September 1990 The determination of the σ -term from πN scattering is critically examined. The currently available data indicate $\sigma \simeq 45$ MeV. Low-energy precision measurements are needed to clarify discrepancies in experimental data and to reduce the uncertainty in the strangeness content for which we obtain $y \simeq 0.2$.

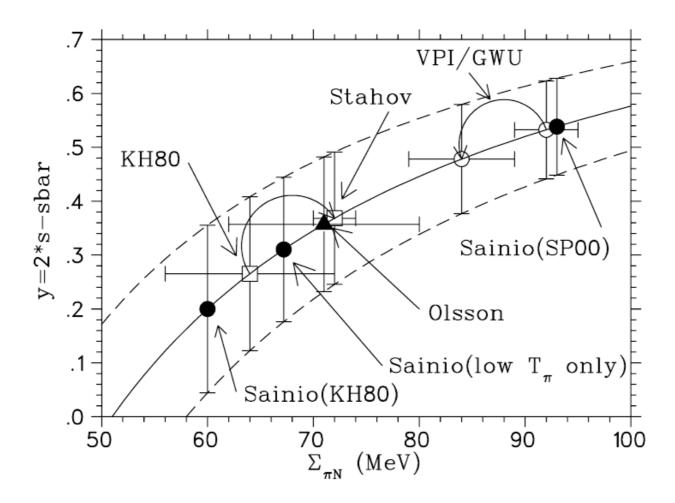
The fundamental papers

Three very important papers in this field

PHYSICS LETTERS B 13 October 1988 Volume 213, number 1 PHYSICS LETTERS B Volume 253, number 1,2 3 January 1991 EXTRACTING THE PION-NU J. GASSER , H. LEUTWYLER Institut für theoretische Physik, Universitä Sigma-term update ★ M.P. LOCHER and M.E. SAINI(J. Gasser, H. Leutwyler Paul Scherrer Institut, 1CH-5234 Villigen Institute for Theoretical Physics, University of Bern, Sidlerstraße 5, CH-3012 Bern, Switzerland Received 7 July 1988 and Volume 253, number 1,2 PHYSICS LETTERS B 3 January 1991 M.E. Sainio Exploiting unitarity and analyticity we phase shifts near threshold in terms of tw Research Institute for Theoretic Received 24 September 1990 Form factor of the σ -term $^{\bigstar}$ The determination of the σ -term Low-energy precision measuremen J. Gasser, H. Leutwyler strangeness content for which we o Institute for Theoretical Physics, University of Bern, Sidlerstraße 5, CH-3012 Bern, Switzerland and M.E. Sainio Research Institute for Theoretical Physics, University of Helsinki, Siltavuorenpenger 20C, SF-00170 Helsinki, Finland Received 24 September 1990 We use dispersion relations to calculate the nucleon form factor of the scalar operator $\bar{u}u+\bar{d}d$ and show that the corresponding mean square radius is remarkably large.

Deep new insights

- Most important results of this work:
 - Upgrade of the KH80 value for Σ PLB 213 (1988) 85


$$\hookrightarrow \Sigma = F_\pi^2 ar{D}^+|_{s=m_N^2,t=2M_\pi^2} = 56 \pm 2 ext{ MeV} ext{ [from } 64 \pm 8 ext{ MeV]}$$

- Upgrade of the value for $\sigma_{\pi N}$ the standard for decades PLB 253 (1991) 252
 - $\hookrightarrow \sigma_{\pi N} \simeq 45$ MeV [errors discussed in the paper]
 - \hookrightarrow strangeness content $y\simeq 0.2$ based on $\sigma_0=35\pm 5$ MeV Gasser, Ann. Phys. (NY) **136** (1981) 62
- Detailed analysis of the scalar form factor of the nucleon PLB 253 (1991) 260
 - $\hookrightarrow \langle r^2
 angle_N^S \simeq 1.6 \, {
 m fm^2}$ much bigger than the proton charge radius, $\langle r^2
 angle_p^E = 0.71 \, {
 m fm^2}$
 - \hookrightarrow strong pionic rescattering in Δ_{σ} and Δ_{D} cancels

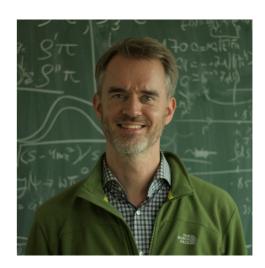
Dark ages

ullet Then, chaos emerged [using $\sigma_0=36\pm7$ MeV]

Borasoy, UGM, Ann. Phys. 254 (1997) 192

UGM, Smith, Chiral Dynamics 2000, hep-ph/0011277

A new look at sigma term physics


Overcoming the dark ages

Step 1: assemble a bunch of fearless knights

Christoph Ditsche Martin Hoferichter Jacobo Ruiz de Elvira

Bastian Kubis

- Step 2: lay out the framework (RS equations) and gather novel input

 - → new determinations of the pion-nucleon coupling constant (GMO sum rule, NN scattering)

Timeline of our investigations

- 2012 Roy-Steiner equations for pion-nucleon scattering, JHEP **06** (2012) 043
- 2012 Dispersive analysis of the scalar form factor of the nucleon, JHEP 06 (2012) 063
- 2015 High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations, Phys. Rev. Lett. **115** (2015) 092301
- 2015 Matching pion-nucleon Roy-Steiner equations to chiral perturbation theory, Phys. Rev. Lett. 115 (2015) 192301
- 2016 Roy-Steiner-equation analysis of pion-nucleon scattering, Phys. Rept. 625 (2016) 1
- 2016 Remarks on the pion-nucleon σ -term, Phys. Lett. B **760** (2016) 74
- 2016 On the $\pi\pi$ continuum in the nucleon form factors and the proton radius puzzle, Eur. Phys. J. A **52** (2016) 331 [w/ H.-W. Hammer]
- 2017 Reconciling threshold and subthreshold expansions for pion-nucleon scattering, Phys. Lett. B 770 (2017) 27 [w/ D. Siemens, E. Epelbaum, H. Krebs]
- 2018 Extracting the σ -term from low-energy pion-nucleon scattering, J. Phys. G **45** (2018) 024001
- 2023 On the role of isospin violation in the pion-nucleon σ -term, Phys. Lett. B **843** (2023) 138001
- 2024 Nucleon resonance parameters from Roy-Steiner equations, Phys. Lett. B **853** (2024) 138698

Solution strategy

RS equations have a limited range of validity:

$$\sqrt{s} \leq \sqrt{s_m} = 1.38\, ext{GeV},$$

 $\sqrt{t} \leq \sqrt{t_m} = 2.00\,\mathrm{GeV}$

Input/constraints

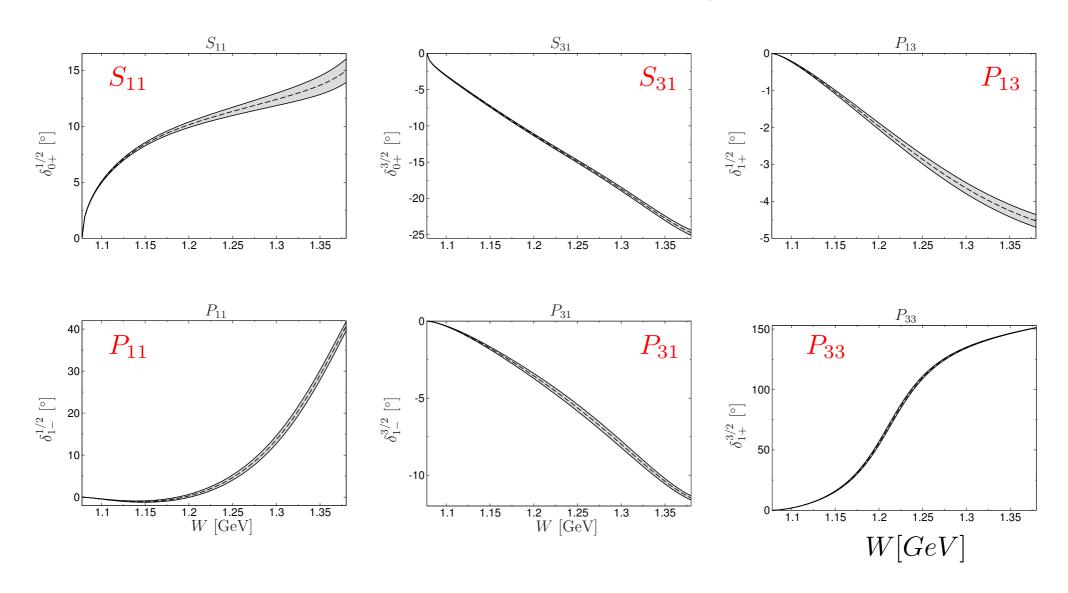
S- and P-waves above the matching point $(s>s_m,t>t_m)$

Inelasticities

Higher waves (D-, F-, ...)

Scattering lengths from hadronic atoms

Output


S- and P-wave phase shifts below the matching point $(s \leq s_m, t \leq t_m)$

Subthreshold parameters

- \rightarrow Pion-nucleon σ -term
- → LECs of pion-nucleon CHPT
- → N form factor spectral functions
- → Resonance parameters
- \bullet πN input from SAID/GWU, $\pi \pi$ input from Bern and Madrid/Cracow
- important check: recover KH80 phases with appropriate input
- ullet much effort in the error analysis ullet first time for a dispersive analysis of πN scattering

Phase shifts

ullet S- and P-waves up to the matching point [Notation: L_{2I_s2J}]

Threshold parameters

• Threshold parameters from:

$$\mathsf{Re} f^I_{\ell\pm}(s) = q^{2\ell} \left(a^I_{\ell\pm} + b^I_{\ell\pm} q^2 + \ldots
ight)$$

	RS	KH80
$a_{0+}^{1/2}$	169.8 ± 2.0	173 ± 3
$a_{0+}^{3/2}$	-86.3 ± 1.8	-101 ± 4
$oxed{a_{1+}^{1/2}}$	-29.4 ± 1.0	-30 ± 2
$ig a_{1+}^{3/2}$	211.5 ± 2.8	214 ± 2
$egin{array}{c} a_{1-}^{1/2} \end{array}$	-70.7 ± 4.1	-81 ± 2
$a_{1-}^{3/2}$	-41.0 ± 1.1	-45 ± 2
$b_{0+}^{1/2}$	-35.2 ± 2.2	-18 ± 12
$b_{0+}^{3/2}$	-49.8 ± 1.1	-58 ± 9

	RS	KH80
a_{0+}^+	-0.9 ± 1.4	-9.7 ± 1.7
a_{0+}^{-}	85.4 ± 0.9	91.3 ± 1.7
$\mid a_{1+}^+ \mid$	131.2 ± 1.7	132.7 ± 1.3
$\mid a_{1+}^- \mid$	-80.3 ± 1.1	-81.3 ± 1.0
$\mid a_{1-}^+ \mid$	-50.9 ± 1.9	-56.7 ± 1.3
a_{1-}^-	-9.9 ± 1.2	-11.7 ± 1.0
b_{0+}^+	-45.0 ± 1.0	-44.3 ± 6.7
b_{0+}^-	4.9 ± 0.8	13.3 ± 6.0

- ullet In units of $10^{-3}/M_\pi$ or $10^{-3}/M_\pi^3$, respectively
- Most striking difference to KH80: S-wave scattering lengths! (here: input)
- Sanity check: re-analyse πN data w/o hadronic atoms input \rightarrow consistent!

Results for the σ -term

• Basic formula:

$$\sigma_{\pi N} = F_{\pi}^2 (d_{00}^+ + 2 M_{\pi}^2 d_{01}^+) + \Delta_D - \Delta_\sigma - \Delta_R \Big]$$

- ullet Subthreshold parameters: $d_{00}^+ = -1.36(3) M_\pi^{-1}$, $d_{01}^+ = 1.16(3) M_\pi^{-3}$
- ullet $\Delta_D \Delta_\sigma = (1.8 \pm 0.2)\, ext{MeV}$

Hoferichter, Ditsche, Kubis, UGM (2012)

ullet $\Delta_R\lesssim 2\, ext{MeV}$

Bernard, Kaiser, UGM (1996)

ullet Isospin breaking in the CD theorem shifts $\sigma_{\pi N}$ by +3.0 MeV

$$\sigma_{\pi N} = (59.1 \pm 1.9_{\mathrm{RS}} \pm 3.0_{\mathrm{LET}}) \ \mathrm{MeV} = (59.1 \pm 3.5) \ \mathrm{MeV}$$

[Q: can we recover $\sigma_{\pi N} = 45 \, \text{MeV?} \rightarrow \text{next slide}$]

Update due to final results of pionic hydrogen

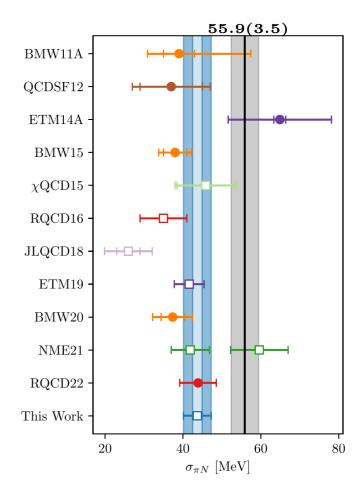
Hirtl et al., Eur. Phys. J. A 57 (2021) 70

$$\sigma_{\pi N} = (59.0 \pm 3.5)~\mathrm{MeV}$$

Comparison to GLS

- Why does this value is so different from GLS 1991?
- GLS 1991 relies on the Karlsruhe-Helsinki PWA KH80
- Different input:

	$g_{\pi N}^2/4\pi$	$a_{0+}^{1/2} \left[10^{-3}/M_{\pi} ight]$	$a_{0+}^{3/2} \left[10^{-3}/M_{\pi} ight]$	$\sigma_{\pi N}$ [MeV]
GLS 1991	14.28	173(3)	-101(4)	45
RS 2023	13.7(2)	169.8(2.0)	-86.3(1.8)	59.0(3.5)

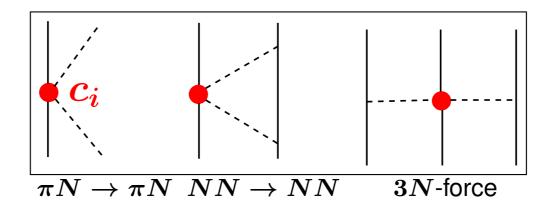

- ullet RS equations with KH80 input \hookrightarrow $\sigma_{\pi N} = 46$ MeV \surd
- \hookrightarrow KH80 is internally consistent but at odds with modern a_0^I determinations
- ullet On the technical side: GLS use forward DR to extract d_{00}^+ and d_{01}^+

Isospin corrections and lattice QCD results

ullet Isospin-breaking in $\sigma_{\pi N}$ [$\Delta_{\pi}=M_{\pi^{\pm}}^2-M_{\pi^0}^2$]:

$$\sigma_{\pi N} = \Sigma_d + \Delta_D - \Delta_\sigma - \Delta_R + \underbrace{\frac{81g_A^2 M_{\pi^\pm} \Delta_\pi}{256\pi F_\pi^2}}_{+3.4 \; ext{MeV}} + \underbrace{\frac{e^2}{2} F_\pi^2 (4f_1 + f_2)}_{(-0.4 \pm 2.2) \; ext{MeV}}$$

- We define isospin amplitudes by the $\pi^+ p$ channel, LQCD uses M_{π^0} to define the σ -term: $\bar{\sigma}_{\pi N}$
- Our analysis: $\Delta \sigma = \sigma_{\pi N} \bar{\sigma}_{\pi N} = 3.1(5)$ MeV \hookrightarrow not small, must be accounted for
- Central value built into the recent Mainz analysis
 Agadjanov et al., Phys. Rev. Lett. 131 (2023) 261902



Chiral symmetry in nuclear interactions

Chiral symmetry breaking in QCD relates many processes

Weinberg

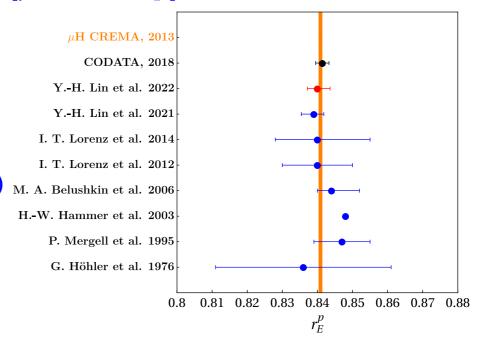
ullet One of the best examples: dimension-two vertices from the effective πN Lagrangian ($\sim c_i$)

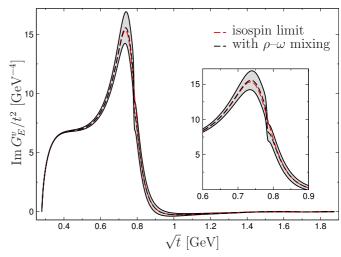
ullet Strategy: Fix in $\pi N o \pi N$ and the explore in few-nucleon interactions

LEC	RS	KGE 2012	UGM 2005
c_1 [GeV $^{-1}$]	-1.11 ± 0.03	$-1.13\ldots-0.75$	$-0.9^{+0.2}_{-0.5}$
c_2 [GeV $^{-1}$]	3.13 ± 0.03	$3.49 \dots 3.69$	3.3 ± 0.2
c_3 [GeV $^{-1}$]	-5.61 ± 0.06	$-5.51\ldots-4.77$	$-4.7^{+1.2}_{-1.0}$
$c_4 [GeV^{-1}]$	4.26 ± 0.04	$3.34\dots3.71$	$-3.5^{+0.5}_{-0.2}$

Krebs, Gasparyan, Epelbaum, Phys. Rev. C 85 (2012) 054006; UGM, PoS LAT2005 (2006) 009

The proton charge radius


- Much ado about the so-called proton radius puzzle [μ H versus ep]
- → never really existed in DR analyses
- \hookrightarrow always the 2π continuum à la Frazer-Fulco included PRL **2** (1959) 365
- Updated in 2016 using the RS partial waves $f_{\pm}^1(t)$ and modern data on the pion vector form factor


$${
m Im}~G_E^V(t) = rac{q_t^3}{m_N \sqrt{t}} \, (F_\pi^V(t))^* \, f_+^1(t) \, heta(t-t_\pi)$$

 Use DR and fit to all space- and timelike XS data including 2γ-exchange corrections

$$r_E^p = 0.840(3)_{
m sta}(2)_{
m sys}$$

Lin, Hammer, UGM, PRL 128 (2022) 052002

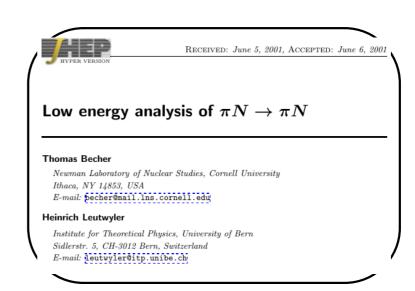
Summary

 The pion-nucleon interaction is one of the most studied processes in strong interaction physics/chiral dynamics → more Bernese footprints

ANNALS OF PHYSICS 136, 62–112 (1981)

Hadron Masses and the Sigma Commutator in Light of Chiral Perturbation Theory*

J. GASSER


Institute for Theoretical Physics.
University of Berne, Sidlerstrasse 5, CH-3012 Berne, Switzerland

Eur. Phys. J. C 9, 643–671 (1999)
Digital Object Identifier (DOI) 10.1007/s100529900055

Baryon chiral perturbation theory
in manifestly Lorentz invariant form

Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

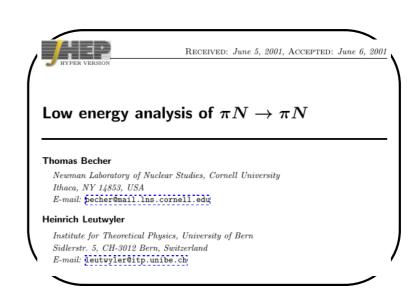
T. Becher, H. Leutwyler

Summary

ANNALS OF PHYSICS 136, 62-112 (1981)

 The pion-nucleon interaction is one of the most studied processes in strong interaction physics/chiral dynamics → more Bernese footprints

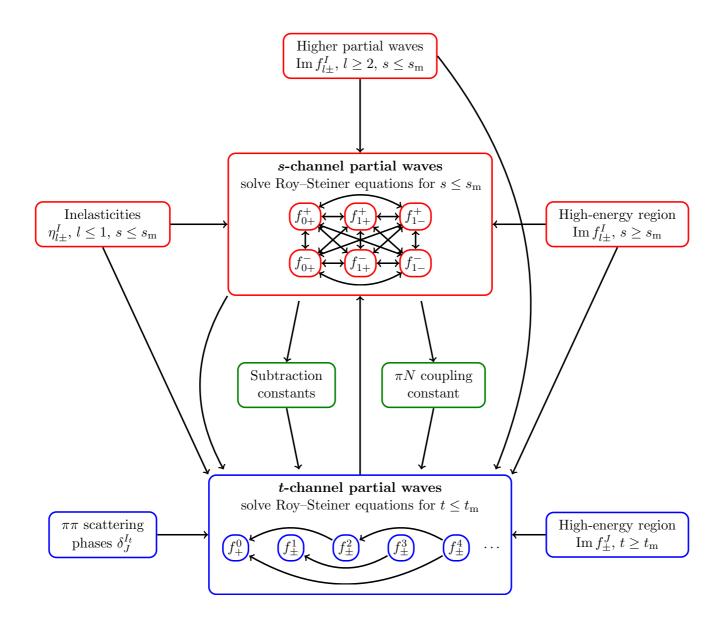
Hadron Masses and the Sigma Commutator in Light of Chiral Perturbation Theory*


J. Gasser

Institute for Theoretical Physics.
University of Berne, Sidlerstrasse 5, CH-3012 Berne, Switzerland

Eur. Phys. J. C 9, 643-671 (1999)
Digital Object Identifier (DOI) 10.1007/s100529900055

The Physical Physics of Berne, Sidlerstrasse 5, CH-3012 Berne, Switzerland


T. Becher, H. Leutwyler
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

Congrats to Jürg and Heiri for their well-deserved award!

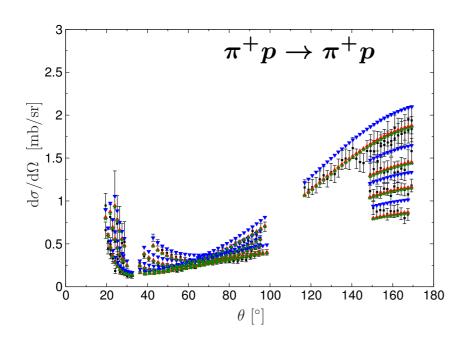
Spares

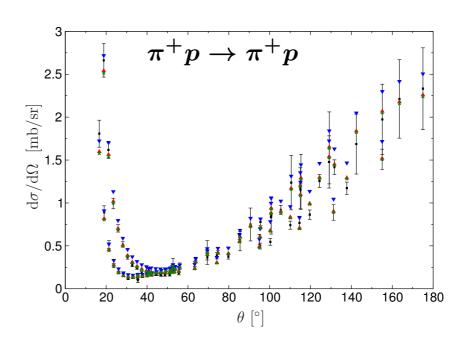
Solution strategy

Error analysis

Variation of the input:

```
use KH80 input instead of GWU/SAID (higher PWs, inelasticities) \rightarrow small effect very small effect from s-channel PWs with \ell > 5 small effect from the S-wave extrapolation for t > 1.3\,\text{GeV} negligible effect of the the \rho' and the \rho'' very significant effect of the D-waves (esp. f_2(1270)) F-waves shown to be negligible
```


• Other sources of uncertainty:


```
statistical errors (shallow fit minima) matching conditions (close to W_m) [no error on SAID, use smoothed KH80] scattering lengths errors (important for \sigma_{\pi N})
```

 \Rightarrow First time this has been achieved in a dispersive analysis of πN scattering!

Sanity check: No hadronic atom input

- Fit to the pion-nucleon data base (GWU), electromagnetic corrections to the data
 à la Tromberg et al and treat normalizations of the data as fit parameters
- ullet Fit to low-energy data based on the RS representation that are dominated from the scattering lengths (up to $T_\pi^{
 m max}=33-55\,{
 m MeV})$

black: data with readjusted norm

green triangles: new RS solution

red triangles: RS solution with hadronic atom input

blue triangles: KH80

$$\hookrightarrow$$
 $\left[\sigma_{\pi N}=58(5) \; {\sf MeV} \right] \; _{m{V}}$