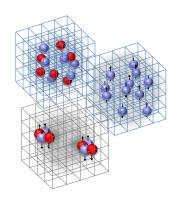
Lattice simulations with chiral EFT at N3LO

Serdar Elhatisari

Gaziantep S&T University HISKP - Universität Bonn

86th Annual Conference of the DPG and DPG Spring Meeting Dresden, Germany March 20, 2023



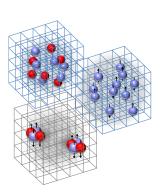
Ab initio nuclear theory

The aim is to predict the properties of nuclear systems from microscopic nuclear forces



Outline

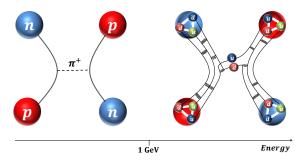
- Introduction
- Chiral effective field theory (chiral EFT)
- Lattice effective field theory
- A path to an ab-initio nuclear theory
- Wave function matching for quantum systems
- Recent progress in LEFT
- Summary



Nuclear forces from QCD

Quantum chromodynamics (QCD) describes the strong forces by confining quarks (and gluons) into baryons and mesons.

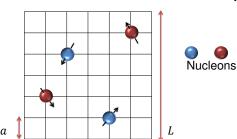
S. Weinberg, Phys. Lett. B 251 (1990) 288, Nucl. Phys. B363 (1991) 3, Phys. Lett. B 295 (1992) 114.

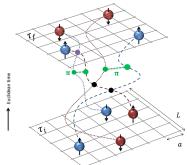


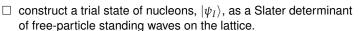
 $(\Lambda_{\chi} \sim ext{chiral limit}) \ m_u, m_d
ightarrow 0$ "separation of scales"

Lattice effective field theory

☐ Lattice effective field theory is a powerful numerical method formulated in the framework of chiral effective field theory.







- \Box evolve nucleons forward in Euclidean time, $e^{-H_{\rm LO}\, au}\, |\psi_I
 angle$, where $au=L_t a_t$.

Chiral EFT for nucleons: nuclear forces

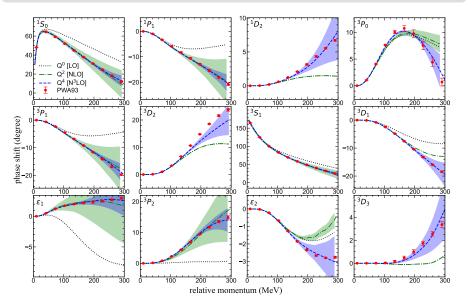
Chiral effective field theory organizes the nuclear interactions as an expansion in powers of momenta and other low energy scales such as the pion mass (Q/Λ_χ)

	2N force	3N force	4N force
$(Q/\Lambda_\chi)^0$ lo	X - 	_	_
$(Q/\Lambda_\chi)^2$ NLO	XMAMA	_	_
$(Q/\Lambda_\chi)^3$ N ² LO	심석	H H X X	_
$(Q/\Lambda_\chi)^4$ N³LO	X	国科科	

Fig. courtesy of E.Epelbaum

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; Epelbaum et al. '98,'03,'05,'15; Kaiser '99-'01; Higa et al. '03; ...

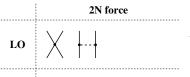
chiral EFT for nucleons: NN scattering phase shifts



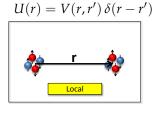
Li, SE, Epelbaum, Lee, Lu, Meißner Phys. Rev. C 98, 044002 (2018)

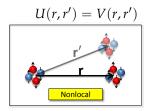
A path to an *ab-initio* nuclear theory:

degree of locality of nuclear forces



$$V_{\text{LO}} = V_{{}^{1}S_{0}}^{s_{\text{NL}},s_{\text{L}}} + V_{{}^{3}S_{1}}^{s_{\text{NL}},s_{\text{L}}} + V_{\text{OPE}}$$





- Does every chiral EFT interaction give well controlled and reliable results for heavier systems?
- Is the convergence of higher-order terms under control?

SE, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, Lee, Rupak, PRL 117, 132501 (2016)

Degree of locality of nuclear forces

$$V_{\rm LO}^{\rm A} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{3S_1,Q^0}^{\rm SNL} + V_{\rm OPE}$$

$$V_{\rm LO}^{\rm B} = V_{1S_0,Q^0}^{\rm SNL} + V_{$$

Degree of locality of nuclear forces

Nucleus	A (LO)	B (LO)	A (LO + Coulomb)	B (LO + Coulomb)	Experiment
³ H	-7.82(5)	-7.78(12)	-7.82(5)	-7.78(12)	-8.482
³ He	-7.82(5)	-7.78(12)	-7.08(5)	-7.09(12)	-7.718
⁴ He	-29.36(4)	-29.19(6)	-28.62(4)	-28.45(6)	-28.296
⁸ Be	-58.61(14)	-59.73(6)	-56.51(14)	-57.29(7)	-56.591
¹² C	-88.2(3)	-95.0(5)	-84.0(3)	-89.9(5)	-92.162
¹⁶ O	-117.5(6)	-135.4(7)	-110.5(6)	-126.0(7)	-127.619
²⁰ Ne	-148(1)	-178(1)	-137(1)	-164(1)	-160.645

$$\frac{E_{^8\text{Be}}}{E_{^4\text{He}}} = 1.997(6)$$

$$\frac{E_{^{12}\text{C}}}{E_{^{4}\text{He}}} = 3.00(1)$$

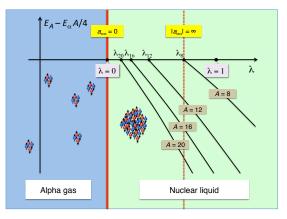
$$\frac{E_{^{16}\mathrm{O}}}{E_{^{4}\mathrm{He}}} = 4.00(2)$$

$$\frac{E_{^{20}\text{Ne}}}{E_{^{4}\text{He}}} = 5.03(3)$$

Bose condensate of alpha particles!

Nuclear binding near a quantum phase transition

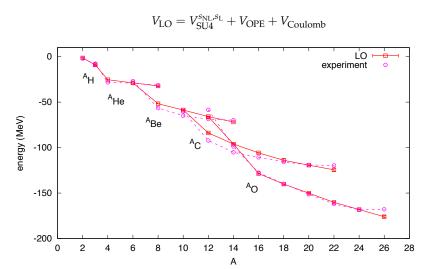
Consider a one-parameter family of interactions: $V = (1 - \lambda) \, V_{\mathrm{LO}}^A + \lambda \, V_{\mathrm{LO}}^B$



There is a quantum phase transition at the point where the α - α scattering length $a_{\alpha\alpha}$ vanishes, and it is a first-order transition from a Bose-condensed α -particle gas to a nuclear liquid.

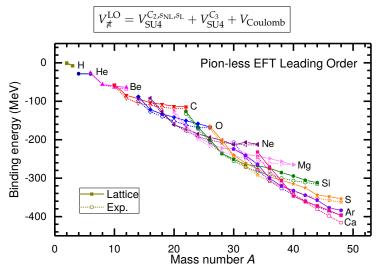
Ground state energies at LO

We can probe the degree of locality only by many-body calculations, and we consider an SU4-symmetric potential,



Essential elements for nuclear binding

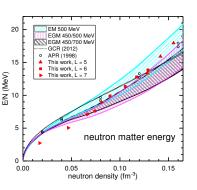
Consider the following potential in the framework of pionless effective field theory to probe the degree of locality from many-body calculations,

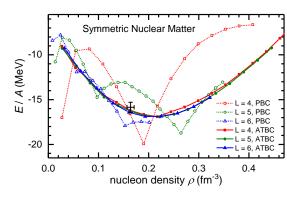


Essential elements for nuclear binding

 \square a lattice action with minimum number of parameters (four) which describes neutron matter up to saturation density and the ground state properties of nuclei up to calcium. a=1.32 fm, $s_{\rm L}=0.061$ (l.u.), and $s_{\rm NL}=0.5$ (l.u.)

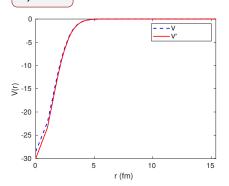
Lu, Li, SE, Lee, Epelbaum, Meißner, Phys. Lett. B, 797, 134863 (2019)





Perturbative calculations

Toy model:



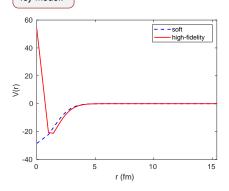
0.16				
0.14			ψ 	
0.12	1			
0.1	1			
	1			
0.08 -				
0.04				
0.04				
				.]
0	5	(5)	10	15
		r (fm)		

Е	E'
-2.010472457971	-2.445743725635
1.775231321023	1.721517536958
6.206769197086	6.118307106128
12.776191791947	12.667625238436
21.337188185570	21.213065578266

Perturbative energies	
q	$\langle \psi^{(0)} H' \psi^{(q)} angle$
0	-2.43080610
1	-2.44610114
2	-2.44574140
3	-2.44575370

Perturbative calculations

Toy model:



0.15 0.1 -			ψ_{H}	
0	5	r (fm)	10	15

$E_{ m soft}$	$E_{ m hf}$
-2.010472457971	-2.444693272597
1.775231321024	1.769682285996
6.206769197085	6.282284485051
12.776191791946	13.008087181009
21.337188185570	21.786534445492
	-2.010472457971 1.775231321024 6.206769197085 12.776191791946

Perturbative energies	
q	$\langle \psi_S^{(0)} H \psi_S^{(q)} angle$
0	-1.74722993
1	-2.89957307
2	-2.10036797
3	-2.26376481

Wavefunction Matching

 $\hfill \Box \hfill H_{\rm soft}$: —tolerable sign oscillation, —many-body observables with a fair agreement.

 \square H_{χ} : —severe sign oscillation, —derived from the underlying theory.

Can unitary transformation create a new chiral Hamiltonian which is (first order) perturbation theory friendly?

$$H_{\chi}' = U^{\dagger} H_{\chi} U$$

- \Box Let $|\psi_{\text{soft}}^0\rangle$ be the normalized lowest eigenstate of H_{soft} .
- $\ \square$ Let $|\psi_{\chi}^{0}\rangle$ be the normalized lowest eigenstate of H_{χ} .

$$U_{R',R} = \theta(r-R) \, \delta_{R',R} + \theta(R'-r) \, \theta(R-r) \, |\psi_{\chi}^{\perp}\rangle \, \langle \psi_{\text{soft}}^{\perp}|$$

SE et al. [NLEFT collaboration] arXiv:2210.17488

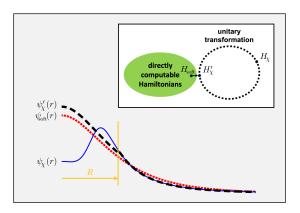
Wavefunction Matching

 \square H_{soft} : -tolerable sign oscillation, -many-body observables with a fair agreement.

 \square H_χ : —severe sign oscillation, —derived from the underlying theory.

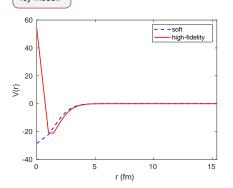
Unitary transformation can create a new chiral Hamiltonian which is (first order) perturbative friendly

$$H_{\chi}' = U^{\dagger} H_{\chi} U$$



Wavefunction Matching: Perturbative calculations

Toy model:



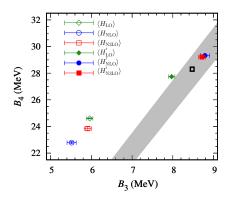


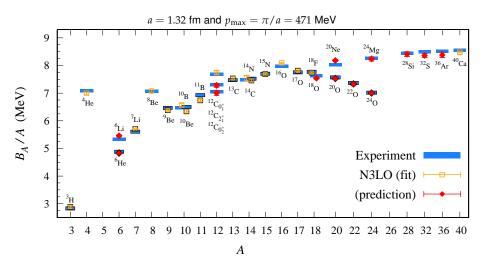
$E'_{\rm hf}$
-2.444693273
1.769682286
6.282284485
13.008087181
21.786534446

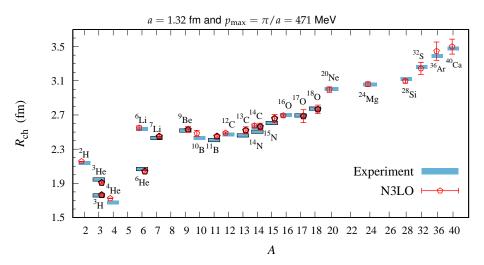
q	$\langle \psi_S^{(0)} H' \psi_S^{(q)} angle$					
	R = 0.00	R = 1.32	R = 1.86	R = 2.28	R = 3.22 fm	
0	-1.747230	-2.055674	-2.226685	-2.312220	-2.402507	
1	-2.899573	-2.558509	-2.477194	-2.457550	-2.446214	
2	-2.100368	-2.389579	-2.430212	-2.439585	-2.443339	
3	-2.263765	-2.414809	-2.437676	-2.441072	-2.443233	

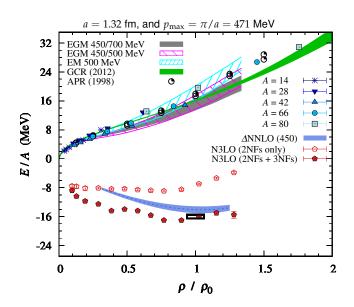
$$\it a=1.32~{\rm fm}$$
 and $\it p_{\rm max}=\pi/\it a=471~{\rm MeV}$

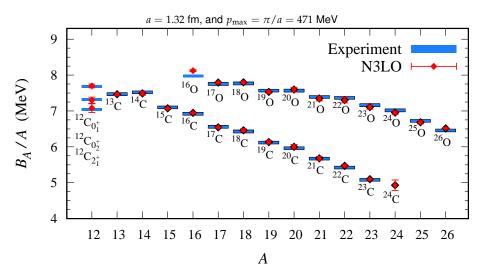
Nuclei	B_{Q^0} MeV	B_{Q^2} MeV	B_{Q^4} MeV	Experiment
$E_{\chi,d}$	1.7928	2.1969	2.2102	2.2246
$\langle \psi_{ m soft}^0 H_{\chi, m d} \psi_{ m soft}^0 angle$	0.4494	0.3445	0.6208	
$\langle \psi_{ m soft}^0 H_{\chi, m d}' \psi_{ m soft}^0 angle$	1.6496	1.9772	2.0075	











Summary

Nuclear forces in the framework of chiral effective field theory are well-established, and it is very important time for <i>ab initio</i> methods to make predictions in many-nucleon system using these forces.
Understanding of the connection between the degree of locality of nuclear forces and nuclear structure has led to a more efficient set of lattice chiral EFT interactions.
Improving QMC calculations with perturbation theory for many-body systems in nuclear physics is crucial to be able to use more realistic interactions in $ab\ initio$ nuclear theory. Phys. Rev. Lett. 128, 242501 (2022)
A recently developed method so called the wave function matching provides a rapid convergence in perturbation theory for many-body nuclear physics. Using this new method now we are able to calculate the nuclear binding energies, neutron matter, symmetric nuclear matter and charge radii of nuclei simultaneously in very good agreements with the experimental results.

Thanks!