

Ab initio nuclear theory on the lattice

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

supported by DFG, SFB/TR-110 by CAS

by CAS, PIFI

by DFG, SFB 1639

by ERC, EXOTIC

rians File RUS NRW-FAIR

by NRW-FAIR

- Ulf-G. Meißner, Ab initio nuclear theory on the lattice - Inauguration CCNU, Wuhan, China, May 18, 2025 -

Contents

- Very brief Introduction
- Chiral EFT on a lattice
- Chiral interactions at N3LO
 - Foundations
 - Applications to nuclear structure
 - Applications to scattering
- Summary & outlook

Very brief Introduction

Our goal: Ab initio nuclear structure & reactions

• Nuclear structure:

- ★ limits of stability
- ★ 3-nucleon forces
- * alpha-clustering
- ★ EoS & neutron stars

• Nuclear reactions, nuclear astrophysics:

- * alpha-particle scattering
- ★ triple-alpha reaction
- * alpha-capture on carbon

Chiral EFT on a lattice

ີ≌ຼີ≌ Lähde∙Meißne Lecture Notes in Physics 957 Timo A. Lähde Ulf-G. Meißner **Nuclear Lattice** 2 **Effective Field Nuclear Lattice Effective Field Theory** Theory An Introduction Deringer

T. Lähde & UGM

Nuclear Lattice Effective Field Theory - An Introduction Springer Lecture Notes in Physics **957** (2019) 1 - 396

More on EFTs

• Much more details on EFTs in light quark physics:

Effective Field Theories

AUTHORS:

Ulf-G Meißner, Rheinische Friedrich-Wilhelms-Universität Bonn and Forschungszentrum Jülich Akaki Rusetsky, Rheinische Friedrich-Wilhelms-Universität Bonn DATE PUBLISHED: August 2022 AVAILABILITY: Available FORMAT: Hardback ISBN: 9781108476980 Rate & review

https://www.cambridge.org/de/academic/subjects/physics/theoretical-physics-and-mathematical-physics/effective-field-theories

Nuclear lattice effective field theory (NLEFT)

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

 \rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

• typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 315 - 630\,{
m MeV}\,[{
m UV}~{
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

ullet physics independent of the lattice spacing for $a=1\dots 2$ fm

Alarcon, Du, Klein, Lähde, Lee, Li, Lu, Luu, UGM, EPJA 53 (2017) 83; Klein, Elhatisari, Lähde, Lee, UGM, EPJA 54 (2018) 121

 $\begin{array}{l} \Rightarrow \text{ all } \textit{possible} \text{ configurations are sampled} \\ \Rightarrow \text{ preparation of } \textit{all possible} \text{ initial/final states} \\ \Rightarrow \textit{clustering} \text{ emerges } \textit{naturally} \end{array}$

Auxiliary field method

• Represent interactions by auxiliary fields (Gaussian quadrature):

$$\exp\left[-rac{C}{2}\left(N^{\dagger}N
ight)^{2}
ight] = \sqrt{rac{1}{2\pi}}\,\int ds \exp\left[-rac{s^{2}}{2}+\sqrt{C}\,\,s\left(N^{\dagger}N
ight)
ight]$$

Chiral Interactions at N3LO: Foundations

Towards precision calculations of heavy nuclei

• Groundbreaking work (Hoyle state, α - α scattering, ...) done at N2LO

- \hookrightarrow precision limited, need to go to N3LO
- Two step procedure:
 - 1) Further improve the LO action

 \hookrightarrow minimize the sign oscillations

 \hookrightarrow minimize the higher-body forces

 \hookrightarrow done \checkmark see also Wu et al., 2503.18017

 $\mathbf{2)} \text{ Work out the corrections to N3LO}$

 \hookrightarrow first on the level of the NN interaction \surd

 \hookrightarrow new important technique: wave function matching \checkmark

 \hookrightarrow second for the spectra/radii/... of nuclei (first results) \checkmark

 \hookrightarrow third for nuclear reactions/astrophysics (first results) \checkmark

NN interaction at N3LO

Li et al., Phys. Rev. C **98** (2018) 044002; Phys. Rev. C **99** (2019) 064001 • np phase shifts including uncertainties for a = 1.32 fm (cf. Nijmegen PWA)

- Ulf-G. Meißner, Ab initio nuclear theory on the lattice - Inauguration CCNU, Wuhan, China, May 18, 2025 -

Wave function matching

• Graphical representation of w.f. matching

• W.F. matching is a "Hamiltonian translator": eigenenergies from H_1 but w.f. from $H_2 = U^{\dagger}H_1U$

Scattering: Methods I

- The time-honored Lüscher approach: Phase shifts from the volume dependence of the energy levels
- \hookrightarrow works in many cases, problems w/ partial-wave mixing and cluster-cluster scattering
- Spherical wall technique: impose spherical b.c.'s on the lattice Carlson et al., Nucl. Phys. A 424 (1984) 47; Borasoy et al., Eur. Phys. J. A 34 (2007) 185
- \hookrightarrow not too small lattices, partial-wave mixing under control
- Improved spherical wall method:
 - Lu, Lähde, Lee, UGM, Phys. Lett. B 760 (2016) 309
 - perform angular momentum projection
 - impose an auxiliary potential behind R_{wall}
 - \hookrightarrow much improved precision

Scattering: Methods II

• Adiabatic projection method :

Rupak, Lee, Phys. Rev. Lett. **111** (2013) 032502; Pine, Lee, Rupak, Eur. Phys. J. A **49** (2013) 151; Elhatisari et al., Eur. Phys. J. A **52** (2016) 174;

- Construct a low-energy effective theory for clusters
- Use initial states parameterized by the relative separation between clusters

$$ert ec{R}
angle = \sum_{ec{r}} ert ec{r} + ec{R}
angle \otimes ec{r}$$

 project them in Euclidean time with the chiral EFT Hamiltonian H

$$ert ec{R}
angle_{ au} = \exp(-H au) ert ec{R}
angle$$

- \rightarrow "dressed cluster states" (polarization, deformation, Pauli)
- Adiabatic Hamiltonian (requires norm matrices)

 $[H_{ au}]_{ec{R}ec{R}'} = {}_{ au}\langleec{R}|H|ec{R}'
angle_{ au}$

Chiral Interactions at N3LO: Applications to nuclear structure

Binding Energies at N3LO

• Binding energies of nuclei for a = 1.32 fm: Determining the 3NF LECs

Elhatisari et al., Nature 630 (2024) 59

 \rightarrow excellent starting point for precision studies

Prediction: Charge radii at N3LO

Elhatisari et al., Nature 630 (2024) 59

• Charge radii (a = 1.32 fm, statistical errors can be reduced)

Prediction: Neutron & nuclear matter at N3LO

Elhatisari et al., Nature 630 (2024) 59

• EoS of pure neutron matter & nuclear matter (a = 1.32 fm)

 \hookrightarrow can be improved using twisted b.c.'s

Prediction: Isotope chains of carbon & oxyen

Song et al., 2502.18722 [nucl-th]

• Towards the neutron drip-line in carbon and oxygen:

 \hookrightarrow 3NFs of utmost importance for the n-rich isotopes! \hookrightarrow universal features of neutron correlations

Prediction: Be isotopes

Shen et al., Phys. Rev. Lett. 134 (2025) 162503

• Systematic study of the Be isotopes & their em transitions:

 \hookrightarrow new method to quantify nuclear shapes

 \hookrightarrow clusters, halos, molecular orbitals in **one shot**

Prediction: Triton β -decay at N3LO

Elhatisari, Hildenbrand, UGM, Phys. Lett. B 859 (2024) 139086

• Master formula:
$$(1 + \delta_R) t_{1/2} f_V = rac{K/G_V^2}{\langle \mathsf{F} \rangle^2 + rac{f_A}{f_V} g_A^2 \langle \mathsf{GT} \rangle^2}$$

• Experiment:
$$\langle \mathsf{F} \rangle = \sum_{n=1}^{3} \langle {}^{3}\mathrm{He} \| au_{n,+} \| {}^{3}\mathrm{H} \rangle = 0.9998$$
 [theory!]
 $\langle \mathsf{GT} \rangle = \sum_{n=1}^{3} \langle {}^{3}\mathrm{He} \| \sigma_{n} au_{n,+} \| {}^{3}\mathrm{H} \rangle = 1.6474(23)$

• NLEFT:

Chiral Interactions at N3LO: Applications to scattering

Scattering: Neutron-deuteron scattering at N3LO

Elhatisari, Hildenbrand, UGM, in progress

• Use Lüscher's method to calculate spin doublet n-d scattering

\hookrightarrow shows good convergence

Scattering: Neutron-alpha scattering at N3LO

Elhatisari, Hildenbrand, UGM, in progress

• Use Lüscher's method to calculate n- α scattering

• R-matrix results from G. Hale, private communication

 \hookrightarrow Some fine-tuning of three-body forces for $^2P_{1/2}$ needed

Scattering: Alpha-carbon scattering at N3LO

Elhatisari, Hildenbrand, UGM, ... NLEFT, in progress

- Use the APM, first step for the holy grail of nuclear astrophysics
 - \hookrightarrow different Euclidean times & different initial states

Plaga et al., Nucl. Phys. A 465 (1987) 291

Summary & outlook

- Nuclear lattice simulations: a new quantum many-body approach
 - \rightarrow based on the successful continuum nuclear chiral EFT
 - \rightarrow a number of highly visible results already obtained
- Recent developments
 - \rightarrow NN(N) interaction at N3LO w/ wave function matching
 - \hookrightarrow first promising results for nuclear structure, matter and scattering
 - \hookrightarrow hyper-nuclei are under investigation

Hildenbrand et al., Eur. Phys. J. A 60 (2024) 215

 \hookrightarrow first results for neutron stars

Tong et al., Sci. Bull. 70 (2025) 825; Astrophys. J. 982 (2025) 164

 \hookrightarrow stay tuned!

SPARES

Transfer matrix method

- Correlation–function for A nucleons: $Z_A(\tau) = \langle \Psi_A | \exp(-\tau H) | \Psi_A \rangle$ with Ψ_A a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]
- Transient energy

$$E_A(au) = -rac{d}{d au}\,\ln Z_A(au)$$

- \rightarrow ground state: $E_A^0 = \lim_{\tau \to \infty} E_A(\tau)$
- Exp. value of any normal–ordered operator \mathcal{O} $Z_A^{\mathcal{O}} = \langle \Psi_A | \exp(- au H/2) \, \mathcal{O} \, \exp(- au H/2) \, | \Psi_A
 angle$

 $\lim_{\tau o \infty} \, rac{Z_A^{\mathcal{O}}(au)}{Z_A(au)} = \langle \Psi_A | \mathcal{O} \, | \Psi_A
angle$

• Excited states: $Z_A(\tau) \rightarrow Z_A^{ij}(\tau)$, diagonalize, e.g. $0_1^+, 0_2^+, 0_3^+, \dots$ in ¹²C

L

а

Euclidean time

τf

τi

Euclidean time

Comparison to lattice QCD

LQCD (quarks & gluons)	NLEFT (nucleons & pions)	
relativistic fermions	non-relativistic fermions	
renormalizable th'y	EFT	
continuum limit	no continuum limit	
(un)physical masses	physical masses	
Coulomb - difficult	Coulomb - easy	
high T/small $ ho$	small T/nuclear densities	
sign problem severe	sign problem moderate	

• For nuclear physics, NLEFT is the far better methodology!

Computational equipment

• Present = JUWELS (modular system) + FRONTIER + ...

The minimal nuclear interaction: Extension to hyper-nuclei

The minimal interaction with strangeness I

Tong, Elhatisari, UGM, Sci. Bull. 70 (2025) 825

• Baryon-baryon interaction (consider nucleons and Λ 's plus non-local smearing):

$$\begin{split} & \left(V_{\Lambda N} = \mathbf{c}_{N\Lambda} \sum_{\vec{n}} \tilde{\rho}(\vec{n}) \tilde{\xi}(\vec{n}) + \mathbf{c}_{\Lambda\Lambda} \frac{1}{2} \sum_{\vec{n}} \left[\tilde{\xi}(\vec{n}) \right]^2 \right) \\ & \tilde{\rho}(\vec{n}) = \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}) \, \tilde{a}_{i,j}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n} - \vec{n}'|^2 = 1} \sum_{i,j=0,1} \tilde{a}_{i,j}^{\dagger}(\vec{n}') \, \tilde{a}_{i,j}(\vec{n}') \\ & \tilde{\xi}(\vec{n}) = \sum_{i=0,1} \tilde{b}_{i}^{\dagger}(\vec{n}) \, \tilde{b}_{i}(\vec{n}) + s_{\mathrm{L}} \sum_{|\vec{n} - \vec{n}'|^2 = 1} \sum_{i=0,1} \tilde{b}_{i}^{\dagger}(\vec{n}') \, \tilde{b}_{i}(\vec{n}') \end{split}$$

• Three-baryon forces (consider nucleons and Λ 's, no non-local smearing):

Petschauer, Kaiser, Haidenbauer, UGM, Weise, Phys. Rev. C 93 (2016) 014001

$$\left(V_{NN\Lambda}=oldsymbol{c_{NN\Lambda}}{1\over 2}~\sum_{ec n}\left[
ho(ec n)
ight]^2 \xi(ec n)~,~~V_{N\Lambda\Lambda}=oldsymbol{c_{N\Lambda\Lambda}}{1\over 2}~\sum_{ec n}
ho(ec n)~\left[\xi(ec n)
ight]^2
ight)
ight)$$

 \hookrightarrow must determine 4 LECs! [smearing parameters from the nucleon sector]

 \hookrightarrow first time that the $\Lambda\Lambda N$ three-body force is included

The minimal interaction with strangeness II

Tong, Elhatisari, UGM, Sci. Bull. 70 (2025) 825

• Three-body LECs from the separation energies of Λ and $\Lambda\Lambda$ hyper-nuclei:

$$B_{\Lambda}({}^{A}_{\Lambda}Z) = E({}^{A-1}Z) - E({}^{A}_{\Lambda}Z)$$

$$B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z) = E(^{A-2}Z) - E(^{A}_{\Lambda\Lambda}Z)$$

Nucleus	NLEFT [MeV]	Exp. [MeV]
$^{5}_{\Lambda}$ He	3.10(9)	3.10(3)
$^9_{\Lambda}$ Be	6.64(13)	6.61(7)
$^{13}_{\Lambda}C$	11.71(14)	11.80(16)
${}^{6}_{\Lambda\Lambda}$ He	6.96(9)	6.91(16)
$^{10}_{\Lambda\Lambda}$ Be	14.35(13)	14.70(40)

← this defines our EoS of hyper-nuclear matter called HMN(I)

- Ulf-G. Meißner, Ab initio nuclear theory on the lattice - Inauguration CCNU, Wuhan, China, May 18, 2025 -

The minimal nuclear interaction: EoS & neutron star properties

Pure neutron matter

- Input: S-wave phase shifts (2N)
 & symmetric nuclear matter (3N)
- Note: extension of the minimal interaction (leading SU(4) breaking)

Tong, Elhatisari, UGM, Sci. Bull. 70 (2025) 825

\Rightarrow Output: Pure neutron matter (PNM) EoS

comparable to the renowned APR EoS

Akmal, Pandharipande, Ravenhall, Phys. Rev. C 58 (1998) 1804

less stiff than the recent AFDMC one

Gandolfi et al., Eur. Phys. J. A 50 (2014) 10

→ work out consequences for neutron stars based on this PNM EoS

Neutron star properties

Tong, Elhatisari, UGM, Sci. Bull. 70 (2025) 825

• Now solve the TOV equations for the PNM and HNM(I) EoSs:

Mass-radius relation

• Maximun neutron star mass: $M_{\rm max} = 2.18(1) \, M_{\odot}$ for PNM

 $M_{
m max} = 1.54(2) \ M_{\odot}$ for HNM(I) \rightarrow need repulsion

- Ulf-G. Meißner, Ab initio nuclear theory on the lattice - Inauguration CCNU, Wuhan, China, May 18, 2025 -

EoS of hyper-neutron matter

Tong, Elhatisari, UGM, Sci. Bull. 70 (2025) 825; Astrophys. J. 982 (2025) 164

• Not surprisingly, we need more repulsion [as in the pure neutron matter case]

 \hookrightarrow this will move the threshold of $\mu_\Lambda=\mu_n$ up

 \hookrightarrow take $M_{
m max}$ as data point: $M_{
m max} = 1.9 M_{\odot}$ for HNM(II)

 $M_{
m max}=2.1 M_{\odot}$ for HNM(III)

Finite temperature physics

• Just two teasers for finite T calculations

PHYSICAL REVIEW LETTERS 125, 192502 (2020)

Ab Initio Nuclear Thermodynamics

Bing-Nan Lu[●],¹ Ning Li[●],¹ Serdar Elhatisari[●],² Dean Lee[●],¹ Joaquín E. Drut[●],³ Timo A. Lähde[●],⁴ Evgeny Epelbaum[●],⁵ and Ulf-G. Meißner[●],^{64,7}
 ¹Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 4824, USA
 ²Faculty of Engineering, Karamanoglu Mehmetbey University, Karaman 70100, Turkey
 ³Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255, USA
 ⁴Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
 ⁵Ruhr-Universität Bochum, Fakultät für Physik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
 ⁷Tbilisi State University, 0186 Tbilisi, Georgia

(Received 11 April 2020; revised 6 August 2020; accepted 29 September 2020; published 3 November 2020)

We propose a new Monte Carlo method called the pinhole trace algorithm for *ab initio* calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first *ab initio* study of the density and temperature dependence of nuclear clustering.

Contents lists available at ScienceDirect Physics Letters B journal homepage: www.elsevier.com/locate/physletb Letter *Ab initio* study of nuclear clustering in hot dilute nuclear matter Zhengxue Ren^{a,b,0},*, Serdar Elhatisari^{c,b}, Timo A. Lähde^{a,d}, Dean Lee^e, Ulf-G. Meißner^{b,a,f} ^a Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany b Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany ^c Faculty of Natural Sciences and Engineering, Gaziantep Islam Science and Technology University, Gaziantep 27010, Turkey ^d Center for Advanced Simulation and Analytics (CASA), Forschungszentrum Jülich. D-52425 Jülich. German ^c Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Tbilisi State University, 0186 Tbilisi, Georgia ARTICLE INFO ABSTRACT Editor: A. Schwenk We present a systematic ab initio study of clustering in hot dilute nuclear matter using nuclear lattice effective field theory with an SU(4)-symmetric interaction. We introduce a method called light-cluster distillation to determine the abundances of dimers, trimers, and alpha clusters as a function of density and temperature. Our lattice results are compared with an ideal gas model composed of free nucleons and clusters. Excellent agreement is found at very low density, while deviations from ideal gas abundances appear at increasing density due to cluster-nucleon and cluster-cluster interactions. In addition to determining the composition of hot dilute nuclear matter as a function of density and temperature, the lattice calculations also serve as benchmarks for virial expansion calculations, statistical models, and transport models of fragmentation and clustering in nucleus

- new pinhole trace algorithm
 → liquid-vapor phase transition
- \hookrightarrow location of the critical point

new light cluster distillation method

nucleus collisions

- \hookrightarrow abundances of dimers, trimers, tetramers
 - \hookrightarrow benchmark for virial calculations

Phys. Lett. B 850 (2024) 138463