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Case 75, 4 Place Jussieu, 75005 Paris, France

We review the status of Quantum-Electrodynamic (QED) calculations in a
number of exotic hydrogen atoms. These calculations are necessary to extract
from spectroscopic measurements nuclei properties like charge radius or strong
interaction shifts. Different theoretical results concerning antiprotonic, pionic
and muonic atoms are compared to experiments. The limitation in precision
of the calculations are emphasized.

1 Introduction

The spectroscopy of exotic atoms has been used as a tool for the study of particles and
fundamental properties for a long time. Exotic atoms are also interesting objects as they
enable to probe aspects of atomic structure that are quantitatively different from what
can be studied in electronic or “normal” atoms. For example, all exotic particles are much
heavier than the electron, and thus closer to the nucleus, leading to a domination of vac-
uum polarization effects over self-energy contributions, in contrast to normal atoms. As
an other example, pions are bosons, and thus obey the Klein-Gordon equation, while elec-
trons and muons as spin 1/2 fermions, obey the Dirac equation. Accurate measurements
of the fine structure interval in pionic atoms [1] thus offer new information compared to
equivalent tests performed on hydrogen-like ions in the last 20 years [2, 3, 4].

In the present paper we review a number of examples in view of a series of recent
experiments in light exotic atoms. These experiments are leading to increases of up to
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2 PIONIC ATOMS

three orders of magnitude in the accuracy of transition energies, and thus require much
more elaborate calculations.

First we will present calculations on pionic atoms, concerning a recent effort to improve
the pion mass and to provide accurate strong-interaction shift and broadening in pionic
hydrogen (Sec. 2). Then we will study the status of calculations of the n = 2 levels in
muonic hydrogen (Sec. 3). There is an ongoing effort to measure the 2s Lamb shift in
muonic hydrogen to obtain a better determination in the proton radius.

Finally we will present new results on the fine and hyperfine structure of antiprotonic hy-
drogen and deuterium that are required to extract information on the nucleon-antiproton
interaction from measurement of Balmer (3d → 2p) transition performed at LEAR re-
cently (Sec. 4). Section 5 contains our conclusion.

2 Pionic atoms

An accurate knowledge of the mass of the pion is useful for a number of scientific appli-
cations. For example it has been used to provide an upper limit to the muonic neutrino
mass [5]. It is also necessary to extract the strong-interaction shift in pionic hydrogen
[6, 7]. The most accurate way of measuring this mass is to do spectroscopy of transitions
between circular states of exotic atoms, which are free of strong interaction perturbations.
Extracting the pion mass from the energy of these transitions require accurate QED cal-
culations. The use of the cyclotron trap II at the Paul Scherrer Institute (PSI) and the
steady increase in pion beam intensities provides the prospect of pion to muon or pion
to electron mass ratio measurement in dilute gases with accuracy at or below 1 ppm [8].
The same increase in accuracy is expected for measurements in pionic hydrogen and deu-
terium. In this case the extraction of reliable strong interaction shifts depend critically
on the precision of the QED calculation of the np − 1s, 2 ≤ n ≤ 4, transition energy.

The starting point of our calculation is based on the Klein-Gordon equation with a
finite nucleus (uniformly charged sphere for light elements, and a two parameter Fermi
model for heavy one.) We have implemented and accurate numerical solver, that has
been added to the general purpose Multi-Configuration Dirac-Fock program developed
by J.P. Desclaux and one of us (P.I.). This enables also to do calculation of exotic atom
transition energy and lifetimes in presence of several electrons. Vacuum polarization
at the Uelhing approximation (order α(Zα)4) can be included in the radial equation,
enabling to evaluate its loop-after-loop contribution to all orders (contributing to orders
αp(Zα)4, p > 1.) The Wichmann and Kroll term (order α(Zα)6) and the Källèn and Sabry
contribution, which complete the vacuum polarization contribution of order α2(Zα)4 are
also included. The numerical evaluation uses approximations developed in Ref. [9], exact
methods from [10] and is described in more details in Ref. [11]. Recoil corrections are
obtained by replacing the mass of the particle by its reduced mass, and adding first order
relativistic corrections. The finite charge distribution of the pion charge is also taken
into account. Good agreement is obtained in this framework with non-relativistic QED
calculations (NRQED) of the pionium (π+π− atom) [12].

As an example, we provide in Table 1 a comparison between the present work and
calculation performed in Ref. [6] for pionic hydrogen. Our evaluation of the Uelhing
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contribution seems to be one order of magnitude more accurate. A complete investigation
of self-energy, recoil and hyperfine contributions at the 1 ppm level remains to be done.
The uncalculated pion Self-energy provides the largest uncertainty. Recent attempts to
do a complete QED+QCD calculation of the pionic hydrogen ground state, and of the
extraction of the pion-nucleon scattering length from the experimental energy can be
found, e.g., in Ref. [13] and [14].

Table 1: QED Contributions to pionic hydrogen 3p → 1s energy. The uncertainty on the
Klein-Gordon value is due to the uncertainty on the pion mass and proton charge
radius

This work Ref. [6] Error
Klein-Gordon 2875.6195 2875.613 0.006
Uelhing 3.2294 3.235
Loop-after-loop Uelhing 0.0050
Wichmann & Kroll 0.0000
Källèn & Sabry 0.0243
Relativistic Recoil 0.0055
Self-energy (estimate [15, Eq. 30]) -0.0121 0.012
Uelhing (Muon pairs) 0.0002
Recoil+Magnetic corrections -0.047
α3 corrections 0.018
Vertex -0.007 0.003
pion recoil -0.004
Total 2878.8719 2878.808 0.014

3 Muonic Hydrogen and determination of the proton

radius

In the last 15 years, the accuracy of the measurement of the Rydberg constant and of
the 1s − 2s and 1s − 3s transition in hydrogen has been steadily increasing. The most
recent results provide a Rydberg constant accurate to 8× 10−12 [16, 17]. For the 1s − 2s
transition the accuracy has reached 1.4 × 10−14 [18]. However this impressive progress
has not lead to more accurate comparison of QED calculations and experiment (Fig. 1),
due to the insufficient knowledge of the proton charge distribution radius. Two different
electron scattering experiments provide incompatible results. Several re-analysis of the
most recent experiment have lead to several different values (see e.g., [19] and references
therein.) To solve this problem, the project of measuring the 2s − 2p3/2 Lamb shift in
muonic hydrogen and to deduce the proton charge distribution radius has been around for
many years. While the finite charge distribution size contributes 138 ppm to the hydrogen
Lamb shift, it represents 2% of the muonic hydrogen one. Recent experimental advances
have lead to a large effort to realize such an experiment at PSI [20, 21]. To extract the
proton charge distribution radius from the experiment with a precision of the order of
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3 MUONIC HYDROGEN AND DETERMINATION OF THE PROTON RADIUS

10−3 requires a measurement of the Lamb shift to 30 ppm. Here we review the present
status of all known theoretical contributions (Table 2.)

- LKB

- Munich

- Yale

� � � � � � � � � � �

� � � � � � � � � 	 �

Figure 1: Evolution of the experimental accuracy in the determination of the hydrogen
Lamb shift and theoretical uncertainty due to the proton charge radius

The so-called “light by light electron-loop contribution of order α2(Zα)3m” of table 2 is
one of the largest unknown contributions to the Lamb shift in muonic hydrogen. The value
of this contribution is the only one for which two incompatible orders of magnitude have
been cited: below 0.001 meV [22, p. 2095], and 0.01–0.04 meV [15, § 9.3.2]. A value much
greater than 0.001 meV would be larger than the “electron loop in the radiative photon”
contribution (−0.0016(1) meV); this would be uncommon, since this latter contribution
appears to be of lower order (see, e.g., Fig. 3 in [23].)

These two results yield two different values for the 2s−2p1/2 lamb shift. The sum of all
known contributions from Table 2 with the value of [15, § 9.3.2] for the “light by light”
contribution is

206.099(20)− 5.2256r2 + 0.0363r3, (1)

where the number in parenthesis represent the uncertainty (quadratic sum), and where r,
the proton mean sheprical charge radius, must be expressed in Fermi. If one uses instead
Ref. [22, p. 2095], then one obtains 206.074(3) for the constant term. A new calculation
of for the “light by light” contribution is thus strongly needed.

Table 2: Contributions to the 2s1/2 − 2p1/2 energy separation in muonic hydrogen, sorted
by the size of the uncertainty. The contributions that depend on the proton
radius r are numerically evaluated with r = 0.862(12) fm. EVP: electron vacuum
polarization.

Diagram Value (in meV) Name References

−3.862(108)
leading nuclear size
contribution

[24, Table I], [15, § 9.6],
[24, Table I]

. . .
0.02(2)

light by light electron-loop
contribution of order
α2(Zα)3m

[22, p. 2095], [15, § 9.3.2]
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Table 2: Contributions to the 2s1/2 − 2p1/2 transition energy in muonic hydrogen (contin-
ued)

Diagram Value (in meV) Name References

. . .
0.012(2) proton polarizability

[25], [26], [27], [24,
Table I], [15, Eq. (261)]

. . .
0.0232(15)

nuclear size correction of order
(Zα)5

[24, Eq. (25)], [22], [27],
[15, Eq. (256)], [24]

−0.006(1) muon self-energy with electron
VP

[22, Eqs. (40) and (45)],
[24, Table I], [15,
Eq. (237)]

0.0108(4)
hadronic polarization, order
α(Zα)4m

[28], [29], [30], [15,
Eq. (252)], [24, Table I]

−0.0009(3) finite size of order α6
[31], [32], [24, Table I],
[15, Eq. (263)]

−0.0083(3) (part of the) EVP with finite
size

[33], [34], [22, Eq. (65)],
[24, Table I], [15,
Eq. (266)]

−0.0126(3) (part of the) EVP with finite
size

[22, Eq. (67)], [24,
Table I], [15, Eq. (268)]

−0.0007(3)
Wichmann-Kroll, order
α(Zα)4

[22, Eq. (26)], [35], [36],
[15, Eq. (231)]

−0.0016(1)
electron loop in the radiative
photon, order α2(Zα)4

[37], [38], [39], [15,
Eq. (242)], [40], [41], [42]

0.0575(1) recoil of order α4
[43], [24, Table I], [15,
Table 11]

−0.6677(1) muon self-energy + muon VP [24, Table I], [15, § 9.5]

−0.0440(1)
recoil corrections of order
(Zα)n m

M m
[15, § 9.5], [24, Table I]

−0.0095(1)
radiative-recoil corrections of
order α(Zα)n m

M m
[15, § 9.5]

. . .
205.0074(1) leading order VP

[44], [24, Table I], [15,
Eq. (208)]

. . .
1.5079(1) two-loop EVP

[45], [24, Table I], [15,
Eq. (213)]

. . .
0.0053(1)

three-loop electron polarization
contribution, order α3(Zα)2

[46], [15, Eq. (214)], [24,
Table I]

0.1509(1) double EVP
[24, Table I], [15,
Eq. (215)], [22, Eq. (31)]

. . .
0.0023(1)

polarization insertions in the
two and three Coulomb lines,
order α3(Zα)2

[46], [15, Eq. (216)], [24,
Table I]

. . .
0.0005(1)

radiative correction to the
nuclear finite size

[15, Eq. (264)], [47]

−0.0099(1) proton self-energy [24, Table I]
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4 FINE AND HYPERFINE STRUCTURE OF ANTIPROTONIC HYDROGEN AND

DEUTERIUM

Table 2: Contributions to the 2s1/2 − 2p1/2 transition energy in muonic hydrogen (contin-
ued)

Diagram Value (in meV) Name References

. . .
0.0594(1)

relativistic correction to the
EVP

[22], [24, Table I], [15,
Eq. (223)]

0.00007(1)
mixed electron and muon
loops, order
α2(Zα)2(me/m)2m

[48], [15, Eq. (248)]

−0.000015(1)
hadronic polarization in the
radiative photon, order
α2(Zα)4m

[30], [15, Eq. (254)]

. . .
0.000047(1)

hadronic polarization, order
α(Zα)5m

[30], [15, Eq. (253)]

4 Fine and hyperfine structure of antiprotonic Hydrogen

and Deuterium

The availability of very low energy antiprotons LEAR has lead to many experiments
involving antiprotonic atoms. Just before the shudtdown of LEAR, high resolution X-ray
spectroscopy of n = 3 → n = 2 transitions in antiprotonic hydrogen H+p̄ and deuterium
D+p̄ has been performed [49]. The aim of such experiments is to provide high accuracy
strong-interaction shifts and broadenings. These shifts can provide accurate s and p-wave
scattering cross-section for nucleon-antinucleon interaction at very low energy, and are
thus of fundamental importance. The antiproton is a spin 1/2 composite particle, the
gyro-magnetic ratio of which gp̄ = −5.585694772(126) [50] is very different from the value
predicted for an elementary particle like the electron (| g |≈ 2.)

In the present work we report on an accurate calculation, which include all the recoil
and Vacuum polarization corrections described in Sec. 2. To that we add Hyperfine
corrections to account for the interaction between the magnetic moment of the nucleus
and the orbital and intrinsic moment of the antiproton. We add the corrections due to the
anomalous magnetic moment of the antiproton as well. This is done by introducing the
operator (valid for distances larger than the Compton wavelength of the electron h̄/mc)

∆H = a
h̄q

2mp

β

(

i
αE

c
−ΣB

)

. (2)

where a is defined by a = (g − (−2))/2 for an antiparticle of negative charge q, mp is the
antiproton mass, E and B are the electric and magnetic fields generated by the nucleus,
α are Dirac matrices and

Σ =

(

σ 0
0 σ

)

. (3)

For the antiproton we thus have ap̄ = −1.792847386 in place of −α/(2π) for a positron.
The calculation shows that fine structure, hyperfine structure and g − 2 contributions

are of the same order of magnitude. In order to account to higher-order effects, we thus
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calculate for each group of level 2pj or 3dj the complete Hamiltonian matrix corresponding
to Hyperfine and g−2 corrections, including all non-diagonal matrix elements. The matrix
is then diagonalized to obtain the final energy. The results for antiprotonic hydrogen and
deuterium are presented in Figs. 2 and 3. The agreement between these new calculation
and experiment is much better than with previous work [51], which do not enable to
reproduce the observed line shape.

Figure 2: Structure of the contributions to the 2p levels of antiprotonic Hydrogen. Borie:
[52].

Figure 3: Structure of the contributions to the 2p levels of antiprotonic Deuterium .
Pilkuhn: [53].
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5 Conclusion

In this review we have presented a number of new BSQED results together with existing
calculations of transition energies in exotic hydrogen atoms. The best known case is
indeed muonic hydrogen, although more work is needed for at least one contribution. In
view of advances in the spectroscopy of pionic hydrogen, much effort should be done to
improve the status of the calculation. Antiprotonic hydrogen and deuterium exhibit a
very intresting fine structure that has been investigated in detail for the present work,
but wich requires new developements to be understood completely at a level compatible
with experiment.
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