Atomic Cascade and X-Ray Yields in Light Exotic Atoms

V. E. Markushin and T.S. Jensen

Paul Scherrer Institute, CH-5232 Villigen, Switzerland

http://www1.psi.ch/~markushin/

October 24, 2000

O Motivation

- \blacktriangleright Precision measurements of πN and K^-p scattering length
- ► Investigation of atomic cascade mechanisms
- New results for collisional cascade processes: elastic scattering and Stark mixing
- New cascade calculations
 - $\succ \mu p$
 - $\succ \pi^- p$
 - ► K^-p

Motivations

Precision measurements of the nuclear shifts and widths

 \implies the scattering lengths $a_{\pi N}$, a_{K^-p} .

Pionic hydrogen $\pi^- p$

 $\overline{\Delta E_{1S}/E_{1S}}\sim 10^{-2}$, $\overline{\Delta}\Gamma_{1S}/\Gamma_{1S}\sim 3\cdot 10^{-2}$ (PSI)

- > Doppler broadening of the X-ray lines ($\Gamma_{1S} \sim 1 \text{ eV}$)
- ► The energy distribution during the atomic cascade.
- ► Understanding acceleration and deceleration mechanisms.

Kaonic hydrogen K^-p $\Delta E_{1S}/E_{1S}\sim 10^{-2}$, $\Delta \Gamma_{1S}/\Gamma_{1S}\sim 3\cdot 10^{-2}$ (DEAR)

- ► The X-ray yields vs. density.
- ► The structure of the K X-ray complex.

The Kinetics of Atomic Cascade

The Monte Carlo kinetics code MCKin: the number of states $\sim n_{max}^2/2$ the number of links $\sim n_{max}^3$

Cascade Models for the Exotic Atoms with Z = 1

		•			
Model	Rad.	Auger	Stark	Coul.	$p_{nl}(E,t)$
Leon, Bethe (1962)	+	+	+	_	_
Borie, Leon (1980)	+	+	+	—	—
V.M.(1981)	+	+	+	—	—
Landua, Klempt, Reinfenröter (1987)	+	+	+	_	_
Czaplinski, Gula, Kravtsov et al. (1990)	+	+	+	_	_
V.M.(1994)	+	+	+	+	+
Czaplinski, Gula, Kravtsov et al. (1994)	+	+	+	+	_
Aschenauer, V.M. (1996)	+	+	+	+	+
Terada, Hayano (1996)	+	+	+	—	—
Jensen, V.M. (2000)	+	+	+	+	+

The evolution of the energy distribution $p_{nl}(E,t)$ during the atomic cascade is important.

Cascade Mechanisms

 \bigcirc De-excitation $(n_f < n_i)$

- Radiative
- Auger
- Coulomb
- Molecular resonances
- \bigcirc Elastic Scattering $(n_f = n_i)$ **NEW**
 - Stark mixing
 - Deceleration
- \bigcirc Absorption $(\pi^- p, K^- p, (\bar{p}p))$

NEV

Radiative Transitions

The total rates of radiative de-excitation.

V. Markushin, PSI, Hyp2000

De-excitation mechanisms

Auger Transitions

The total rates of Auger de-excitation (I.h.d.).

Muonic Hydrogen

Pionic Hydrogen

Kaonic Hydrogen

Muonic Hydrogen

X-Ray Yields

Theory (V.M. 1996, 2000) vs. Experiment

Kinetic Energy Distribution in Excited States

Metastable 2*S* Fraction in Muonic Hydrogen

The total population of the metastable 2S state $P_{2S} = \int w_{2S}(T) f(T) dT > 10^{-2}$ \implies good news for the Lamb shift experiment at PSI (in progress).

V. Markushin, PSI, Hyp2000

Pionic Hydrogen

X-Ray Yields

Theory vs. Experiment (PSI, 1995)

Doppler Broadening of the X-Ray Lines

The Coulomb de-excitation

 \implies the high-energy component $(T \gg 1 \text{ eV})$

 \implies an important correction to the width of the $nP \rightarrow 1S$ transitions.

The kinetic energy distribution from the $n\mbox{-}{\rm ToF}$ experiment (PSI)

 $(\pi^- p)_{nS} ~
ightarrow ~\pi^0 + n$

PSI data

The theoretical kinetic energy distribution — in progress.

Atomic Cascade in Kaonic Hydrogen

Kaonic Hydrogen

Collisional Cross Sections

New calculations of the elastic scattering, the Stark mixing, and the absorption cross sections (T. Jensen, 2000)

 $(K^-p)_{nl} + H$ the partial wave cross sections $\sigma_J^{nl \to f}(E)$ of the Stark mixing (f = nl')and the absorption $(f = nS \to abs.)$

 $(K^-p)_{nl} + H$ the partial wave absorption cross sections

The Differential Cross Sections

A complete set of the cross sections $d\sigma_{nl \rightarrow nl'}(E)/d\Omega$ that are needed for the Monte Carlo kinetics (about 10^3 functions) has been calculated.

The methods used:

- \bigcirc A quantum mechanical coupled-channel model (n=2,3,4,5).
- \bigcirc A semiclassical solution with the full angular coupling between the internal K^-p and the external $K^-p + H$ motion (n > 5).

The K^-p absorption via Stark mixing

The rates of the absorption from the nl states vs. lab. energy (l.h.d)

- O Input:
 - > The nuclear shift ΔE_{1S} and width Γ_{1S} of the 1S state.
 - ► The nuclear width Γ_{2P} of the 2P state.
 - > The initial kinetic energy distribution w(E).
- Output:
 - ► The X-ray yields vs. density.
 - The population (and the energy distribution) of the *nl* states during the cascade.
 - ► The S-wave and P-wave absorption.

The $K^-p~$ X-ray Spectrum at $10~ ho_{STP}$

 $\Delta E_{1S} = -320 \text{ eV}$ $\Gamma_{1S} = 400 \text{ eV}$ FWHM = 400 eV

The $K^-p~$ X-ray Spectrum at $10~ ho_{STP}$

The experimental data — KEK (1998): $\Delta E_{1S} = -323 \pm 63 \pm 11 \text{ eV}$ $\Gamma_{1S} = 407 \pm 208 \pm 100 \text{ eV}$ FWHM = 400 eV

The $K^-p~$ X-ray Spectrum at $10~ ho_{STP}$

The $K^-p~$ X-ray Spectrum at $40~ ho_{STP}$

The Kaonic Hydrogen

The X-Ray Yields

 $\Gamma_{2P}=0.3$ meV $\Delta E_{1S}=-320$ eV, $\Gamma_{1S}=400$ eV $\langle T
angle=1.5$ eV

$$\Gamma_{2P}=0.6$$
 meV $\Delta E_{1S}=-320$ eV, $\Gamma_{1S}=400$ eV $\langle T
angle=1.5$ eV

$$\Gamma_{2P}=0.3~{
m meV}$$
 $\Delta E_{1S}=-320~{
m eV}$, $\Gamma_{1S}=400~{
m eV}$ $\langle T
angle=5~{
m eV}$

 $\Gamma_{2P}=0.3$ meV $\Delta E_{1S}=-320$ eV, $\Gamma_{1S}=400$ eV $\langle T
angle=5$ eV

The S-wave Absorption

The K_{lpha}/K_{tot} Ratio

 $\Leftarrow \text{ the dependence}$ on the width Γ_{2P}

 $\Leftarrow \ \text{the dependence} \\ \text{on the kinetic} \\ \text{energy distribution} \\ E = \langle w(T) \rangle \\ \end{cases}$

Conclusions

- A significant improvement of the atomic cascade model based on the **new calculations** of the **collisional cross sections** (elastic, Stark mixing, absorption).
- O The energy evolution during the atomic cascade is important for the precision spectroscopy of pionic and muonic hydrogen.
- \bigcirc The **Doppler broadening corrections** to the X-ray widths of $\pi^- p$ can be calculated to the required level of precision.
- \bigcirc The X-ray yields of kaonic hydrogen and their dependence on the ΔE_{1S} , Γ_{1S} , and Γ_{2P} have been calculated.
- \bigcirc More detailed studies of the cascades in μp , $\pi^- p$, $K^- p$ are in progress (Coulomb acceleration, molecular resonances, etc.).