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Abstract

In this thesis, an alternative method, based on Bayesian statistics, for the analysis of X-
ray transition lines has been explored. The focus to test and verify this method laid on
existing X-ray spectra of various exotic atoms (pionic hydrogen, pionic deuterium, muonic
hydrogen). These atoms show a line shape broadened by numerous effects, including
Doppler broadening (due to a complex kinetic energy distribution), spectrometer response
function, hyperfine splitting (for muonic hydrogen µH) and hadronic interaction with the
nucleus (for the pionic atoms πH and πD).

A software package, named BayXRay, was created to implement Bayesian parameter
inference and model-selection methods, especially the nested sampling algorithm and sup-
plemental algorithms: Markov-Chain-Monte-Carlo sampling, ellipsoidal sampling, and
clustered ellipsoidal sampling. Using this software, the methodology was verified using
the measured spectra. Results were compared to the ones of the previously used analysis
method. In general, a good agreement was found with these previous results. In addition,
the new method, contrary to the previous χ2-fitting analyses, allowed a consistent and
direct determination of the error margins for the inferred parameters.
Furthermore, the methods of model-selection and model-independent parameter infer-

ence opened up new possibilities. Based on these, new techniques like model-averaged
spectra (deconvolution) or evaluations with theoretical kinetic energy distributions have
been realized and also compared to the previous results.
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Zusammenfassung

Das Ziel dieser Diplomarbeit ist es, eine alternative, auf der Bayes-Methode basierende,
Methode zur Analyse von Röntgenspektren zu evaluieren. Zur Verifikation dieser Meth-
ode wurden vorliegende Röntgenspektren diverser exotischer Atome (pionischer Wasser-
stoff, pionisches Deuterium und muonischer Wasserstoff) untersucht. Die Linienform der
Übergänge dieser Atome zeigt Charakteristika von Dopplerverbreiterung (aufgrund einer
kinetischen Energieverteilung), einer Verbreiterung durch die Auflösungsfunktion des ver-
wendeten Spektrometers, Hyperfeinaufspaltung (im Falle des muonischen Wasserstoffs
µH) und hadronischer Wechselwirkung mit dem Atomkern (für die pionischen Atome πH
und πD).
Um die Bayes Methoden (wiederverwendbar) zu implementieren, wurde ein Software

Paket (BayXRay) entwickelt, das numerische Methoden zur Parameter-Inferenz und
Modell-Selektion (Hypothesen-Tests) bereitstellt (vor allem den Nested-Sampling Algo-
rithmus, sowie Hilfsalgorithmen wie Markov-Chain-Monte-Carlo-Sampling, Ellipsoidal-
Sampling and Clustered-Ellipsoidal-Sampling). Die Analysen, die mit Hilfe dieser Soft-
ware durchgeführt wurden, konnten die Methodik verifizieren: der Vergleich mit vorheri-
gen Ergebnissen zeigt gute Übereinstimmungen. Zusätzlich erlaubt die neue Methode im
Gegensatz zu den früheren χ2-Anpassungen eine klar definierte Fehlerbehandlung.
Zusätzlich zur Reanalyse wurden neue, bisher nicht mögliche Methoden angewandt.

Darunter zählt z.B. “das Model-Averaging” von ganzen kinetischen Energieverteilun-
gen (Entfaltung), oder der Vergleich mit theoretisch berechneten kinetischen Energiev-
erteilungen.
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1. Introduction

1.1. Motivation

Since the 19th century, spectroscopy of the radiation emitted or absorbed from atoms and
molecules is an important tool to study their inner structure. A systematics — though
of unknown origin in the beginning — became evident from relations between chemical
elements and compounds and the combinatorial appearance of spectral line series (e. g.
from the studies of Kirchhoff, Fraunhofer or Ritz). It became clear that the order and
distances of the spectral lines are unique per chemical element, attributed to the effect
of an inner structure. An empirical description of the spectral lines was given by the
Rydberg formula.
The first successful approach to describe the inner structure of atoms was the Bohr

model (1913) by applying the quantization of action. It provided a convincing description
of the inner structure of an atom and could reproduce, in simple systems, the experi-
mental results along with their existing description, the Rydberg formula.
After the extension of the Bohr model by Sommerfeld by including angular momen-

tum, the spectroscopy of emission spectra originating from inner shells (characteristic
X-radiation) enabled physicists to gain more and more detailed insights. High-precision
spectroscopy revealed electron and nuclear spin by fine and hyperfine structure of spec-
tral lines and the determination of the line width yields level life time via the uncertainty
relation.
With the discovery of heavier negatively charged particles like mesons or antiprotons,

for about six decades so called exotic atoms can be studied, where the heavy particles
replace the electron. At modern accelerator facilities, exotic atoms can be formed at high
rates. High-resolution spectroscopy of their characteristic X-ray emissions gives access to
parameters like the mass of the captured particles and its interaction with the nucleus.
Due to the complex nature of these line shapes (see chapter 2), sophisticated and efficient
data analysis methods are required to extract particular quantities reliably.
The aim of this work is to apply an alternative scheme in data analysis of spectral lines

in general, and specifically of X-ray lines of exotic atoms (see section 1.2). The basis
for these new techniques are Bayesian statistics, an alternative approach to parameter
inference ("fitting") and hypothesis testing (see section 3.2), which plays an increasingly
important role in scientific data analysis and is already established in the astrophysical
community.
In order to verify the methods and routines developed, pre-existing data of exotic

atoms have been re-analyzed and compared to previous results (pionic hydrogen πH [1, 2],
pionic deuterium πD [3, 4, 5], muonic hydrogen µH [6, 7, 8]). In particular, a well defined
procedure to compare alternative descriptions and the corresponding error handling (see
section 3.2.3) was the driving force behind the exploration of this new techniques.

1



1. Introduction

1.2. Exotic atoms

Atoms are the result of the electromagnetic force between the (positively charged) nucleus
and a collection of (negatively charged) electrons forming a bound system having a size
determined by the uncertainty relation. Inspecting Bohr’s formulae for binding energy
and radius (with the fine structure constant α ≈ 1/137)

rB =
~

µepcα
· n

2

Z
,

EB = −µepc
2α2

2
· Z

2

n2

suggests immediately that systems formed with heavier negatively charged particles of
mass mx should exist with larger binding energies and smaller radii. Energies and radii
scale in leading order with the mass ratio of the heavy particle and the electron mx/me

and its inverse, respectively.
These systems are called exotic atoms and have been studied in detail for muons,

pions, kaons, Σ-baryons, and antiprotons provided at various accelerator facilities [9].
Pions, kaons, Σ-baryons, and antiprotons are strongly interacting particles as are the
nucleons in the nucleus (hadrons). Because of the small size the innermost atomic levels
are affected in addition by the nuclear force. These so-called strong-interaction effects
are measurable by means of precision X-ray spectroscopy.

1.2.1. Capture and deexcitation cascade in exotic hydrogen

An exotic atom is formed when the particles to be captured in the Coulomb field is slowed
down to kinetic energies of about the binding energy of the outermost electrons. After
capture the particle is in a highly excited state [10]. For hydrogen the most probable
principal quantum number n is about

n ≈
√
µx−p

me
,

with the reduced mass of the exotic system µx−p and the electron mass me. This yields
nµ = 14 for muons and nπ = 16 for pions.
From these states, the atom deexcites to the ground state via a series of processes. For

such electrically neutral systems, the exotic hydrogen deexcitation is strongly influenced
by collisional effects and, hence, strongly density dependent. Collisional processes are
Stark mixing, the external Auger effect, Coulomb deexcitation, elastic and inelastic scat-
tering. These are supplemented by internal effects, namely radiative deexcitation, nuclear
reactions, and if applicable particle decay. A cascade scheme is shown in Figure 1.1 and
a detailed description of the cascade processes can be found in [11, 12, 13].

2



1.2. Exotic atoms

Stark mixing

As the exotic atom is considerably smaller than a standard hydrogen atom and, elec-
trically neutral, it approaches nuclei to distances of about its own size. Stark mixing is
the result of an electromagnetic interaction occuring when the exotic atom penetrates
the Coulomb field of neighboring hydrogen atoms. The electric field causes transitions
between the l substates, which do not conserve the quantum number l [14]. In dense
targets, the result is an almost statistical re-distribution [13, 14] of the l substates at all
principal quantum numbers n as long as the widths of the l levels is of the order of the
level splitting.
In hadronic atoms, this leads to a depletion of the cascade because of nuclear reactions

whenever a high-lying s state is reached. Stark mixing can be described with the following
equations

(x−p)n l + H2 −→ (x−p)n l′ + H∗2 ,
(x−p)n l + H −→ (x−p)n l′ + H .

External Auger effect

External Auger effect describes the ionization of another atom in which the required
energy is gained by deexcitation of the pionic / muonic system. As the highest probability
for Auger emission is found for ∆n = 1, ∆l = 1 transitions [13, 14], it is dominated by
states where the ∆n = 1 transitions provide enough energy to ionize the H2 molecule.
The formal specification is

(x−p)n l + H2 −→ (x−p)n′ l′ + H2 + e− .

Coulomb deexcitation

Coulomb deexcitation is an inelastic electromagnetic scattering process in which the
principal quantum number n of the exotic system decreases, and the released energy
is transformed into kinetic energy of the exotic atom and its collision partner. Upon
collision with a H2 molecule, possible processes are [15, 16]

(x−p)n l + H −→ (x−p)n′ l′ + H ,

(x−p)n l + H2 −→

{
(x−p)n′ l′ + H + H
(x−p)n′ l′ + H∗2

.

The kinetic energy gained in a two-body collision ((x−p) + H) is given by

T(x−p) =
mH

m(x−p) +mH
· En−→n′ .

Including molecular effects, the energy is distributed among three collision partners: the
maximal energy of the exotic system is given by T(x−p), with the hydogen mass mH is
replaced by the molecule mass 2 ·mH.
It is evident from Table 1.1, that the most significant impact on the kinetic energy

distribution stems from Coulomb deexcitation. 3



1. Introduction

transition kin. energy E [eV]

n −→ n′ πH πD µH

7 −→ 6 12 12 8.8

6 −→ 5 18 20 15

6 −→ 4 52 58 42

5 −→ 4 34 38 27

5 −→ 3 107 119 85

4 −→ 3 73 81 58

4 −→ 2 282 324 225

3 −→ 2 209 240 166

Table 1.1.: Kinetic energy gained in the reaction (x−p)nl+H −→ (x−p)n′l′+H (Coulomb
deexcitation) for πH, πD, and µH.

Radiative deexcitation

Radiative deexcitation is the process of a state change to a lower principal quantum
number n −→ n′, n > n′ by emission of a photon γ. Due to the spin of the photon, it
has to obey a change in angular momentum by ∆l = ±1.
The reaction can be written as

(x−p)n l −→ (x−p)n′ l′ + γ .

This effect is of particular importance because the emitted photons make up the measured
spectral lines. As the radiative deexcitation is one of the final stages in the atomic
cascade, the previous processes affect the energetic distribution of the emitted photons
(see chapter 2).

The deexcitation cascade

Which of the above mentioned processes dominates during specific stages of the cascade
largely depends on the current energy level. The entire cascade can roughly be subdivided
into three parts:

Transitions from n > 8 are mainly caused by Coulomb deexcitation and Stark mixing.

Transitions from n = 7,8 are dominated by external Auger effects.

Subsequent deexcitation steps below n ≤ 6 happen increasingly due to radiative tran-
sitions.

As recoils in all processes are of an order of ≈ 1 eV, Coulomb deexcitation dominates the
development of the kinetic energy of the exotic system (see Table 1.1).

4



1.2. Exotic atoms

Theoretical description of the cascade

The theoretical description of the atomic cascade began in the 1960s with the Standard
Cascade Model (SCM) [14]. Further developments in the last two decades augmented
this model to the so-called Extended Standard Cascade Model by including the level
dependent evolution of the kinetic energy [12, 14].

Another improvement resulted from more precise calculations of the cross sections
of the various processes. This allows new predicitions of X-ray line yields and more
importantly kinetic energy distributions to compare with experimental results [17].

The high-resolution spectroscopy of radiative transitions to the ground state allows
the identification of Doppler contributions to the X-ray line width due to acceleration
processes like Coulomb deexcitation. Vice versa, a calculated kinetic energy distribution,
if verified, along with its induced Doppler broadening, makes a more precise extraction
of the hadronic width possible.

Elastic and inelastic scattering, however, slow down the fast exotic atoms. Conse-
quently, the kinetic energy spectrum at the emission of the X-ray is a result of the
competition of the accelerating and decelerating processes.

1.2.2. Muonic hydrogen

Muonic hydrogen exhibits another internal effect, namely a hyperfine structure, which
is the result of higher order electromagnetic effects. The major proportion is due to
coupling between the spins of the proton Sp and the muon Sµ.

This coupling causes shifts in the binding energy by [6]

∆Hhfs = ASp · Sµ .

In the 1s ground state (with angular momentum l = 0), the spins form a singlet state
and triplet states of total spin FS = 0 and FT = 1, respectively. These states have an
energy shift of

∆HF
hfs =

{
+1

4A~
2 F = 1

−3
4A~

2 F = 0
, (1.1)

with A being the constant

A =
8

3
c2α4µp ·

1

~2
·
m2
µ +m2

p

(mµ +mp)2

which includes the dependence on the masses mp,mµ as well as the hyperfine structure
constant α and the magnetic moment of the proton µp.

5
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The energy shifts eq. 1.1 result in a splitting of the 1s ground state

∆Hhfs = ∆HF=1
hfs −∆HF=0

hfs

= A~2 =
8

3
c2α4µp ·

m2
e +m2

p

(me +mp)2
.

Numerical substitution yields a value of ∆Hhfs = 182.443 meV. By considering, in addi-
tion, QED corrections a more precise value of (182.725± 0.062) meV is found [18].

1.2.3. Pionic hydrogen and deuterium

Pionic atoms show an additional effect, which is of particular importance. Despite the
short range of the nuclear force, a pion bound in the ground state (1s) of e. g. a hydrogen
atom experiences the strong force of the nucleus. This is caused by the significantly
larger mass of the pion (in contrast to an electron)

mπ ≈ 273 ·me ,

which results in a much smaller orbit of the pion around the nucleus. The consequence of
this interaction is a Lorentzian broadening Γ1s and an energetic shift ε1s of the 1s ground
state.

Γ1s and ε1s are directly connected to the QCD scattering lengths aπ−p−→π−p and
aπ−p−→π0n via [19, 20]

ε1s

B1s
= − 4

rB
aπ−p−→π−p (1 + δε)

Γ1s

B1s
=

8q0

rB
· (1 +

1

P
) ·
[
aπ−p−→π0n (1 + δΓ1s)

]2
with the Coulomb binding energy of the ground state B1s = 3238 eV, the Bohr radius
of the πp rB = 222.56 fm, the π0 cms-momentum q0, and the Panofsky ratio P =
1.546± 0.009 between the channels π−p −→ π0n and π−p −→ γn [21]. The corrections
δε and δΓ can be calculated unambiguously within the framework of chiral perturbation
theory (ChPT), which is a modern approach of low-energy QCD [4, 19].
In the case of complex nuclei, like deuterium, the relation between Γ1s and ε1s and the

complex scattering length aπD is given by the Trueman formula [22]

ε1s − i
Γ1s

2
= −2α3µ2c4

~c
aπD · [1− 2αµc2

~c
(lnα− 1) · aπD + δvac

D ]

Here, the shift ε1s is the coherent sum of π−p and π−n scattering and Γ1s is proportional
to the pion absorption strength π−pn −→ nn [4].
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1.2. Exotic atoms

Figure 1.1.: Scheme of the possible state transitions in a pionic hydrogen system con-
tributing to the atomic cascade. The pion is captured in an highly excited state
and deexcites via various effects. The Coulomb deexcitation dominates the states of
n > 8. Below that (n = 7, 8) external Auger transitions play the most important
role. In the lower states 2 ≤ n ≤ 6, radiative deexcitation characterizes the transi-
tions along with Stark mixing between the l substates. In s states, the nuclear reaction
π−p −→ π0n (61%) + γn (39%) occurs with high probability thus depleting the cascade.

7



1. Introduction

1.3. Experimental setup

The spectra analyzed in this work were collected at the Paul-Scherrer-Institute (PSI),
Switzerland at the πE5 beamline [23]. A scheme of the experimental setup is shown in
Figure 1.2. The main components are the target cell surrounded by a cyclotron-trap in
the pion beamline, the spectrometer (Bragg crystal), and the X-ray detector.

Figure 1.2.: 3D-drawing of the experimental setup at the πE5 area at the PSI.

The πE5 beamline provides a π− beam with a momentum of about 112 MeV/c [24],
which is injected into the cyclotron trap and slowed down using several degraders until
they reach the target cell in the center. A muon flux can be provided by adjusting the
degraders in a way, that muons from weak π− decay are stopped in the target gas, where
the pion / muon is captured by a hydrogen / deuterium atom. The last step of the
following deexcitation cascade is the radiative transition by emission of an X-ray photon.
The X-ray photons emitted are then diffracted at the Bragg crystal and reflected

with an angular distribution towards the two-dimensional CCD detector. To illustrate
the imaging properties of the setup, the hit pattern in the detector plane is shown in
Figure 1.4 as obtained by means of a Monte-Carlo simulation.
To produce a one-dimensional position spectrum, a curvature correction by means of a

program called CSDCLUSTER was performed and the corrected image projected along
the vertical axis. A detailed description of the setup, particularly of the cyclotron-trap,
the target cell as well as the detector and its alignment can be found in [1, 3, 6].
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1.3. Experimental setup

Figure 1.3.: Functional principle of the experimental setup showing the incoming pion
beam, trapped in the cyclotron and slowed down by degraders until it hits the central
target cell. The pions are then captured in hydrogen or deuterium and experience the
deexcitation cascade (see section 1.2). As final step of the cascade, radiative deexcitation
and emission of X-rays occur, which are diffracted at the Bragg crystal and subsequently
collected in the X-ray detector.

Figure 1.4.: Monte-Carlo simulation of the X-ray hit pattern in the detector plane. Hor-
izontal dashed lines mark the vertical boundaries of the X-ray detector. In order to
obtain a position space spectrum, curvature correction has to be applied, followed by a
projection along the vertical axis. The horizontal axis is equivalent to an angle and hence
also to an energy spectrum.
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2. The structure of X-ray lines

2.1. Contributions to the line width

The width, or to be precise, the shape of the line shape is built up from several contribu-
tions. These contributions can be individually described by probability density functions
Pi, convolution of which describes the total line shape S

S = P1 ⊗ P2 ⊗ . . .⊗ P3 .

For the spectra of muonic hydrogen, pionic hydrogen, and pionic deuterium, which are
subject of this work, these contributions are:

Doppler broadening D caused by fast motion of the exotic atoms at the moment of
X-ray emission.

Hadronic broadening of the ground state L given by a Lorentzian distribution in the
case of pionic hydrogen and deuterium.

Hyperfine splitting H of the µ−p+ ground state is not a true broadening but a super-
position of two close-lying lines.

Spectrometer response R includes several experimental effects: the rocking curve of
the Bragg crystal, geometric effects, and an additional Gaussian width.

Thus, the measured line shape reads for pionic atoms

Sπ = L⊗D ⊗R , (2.1)

and analog for muonic hydrogen

Sµ = H ⊗D ⊗R . (2.2)

The individual contributions are described in more detail below.

2.2. Doppler broadening D

The Doppler broadening D of the line shape originates from a complex kinetic energy
distribution. As the exact reconstruction of an kinetic energy spectrum from a measured
line shape is not possible, the distribution was modeled by a number of narrow kinetic
energy intervals. Various combinations of kinetic energy intervals with different positions,
widths and relative intensities were tried to achieve the best agreement with the data.
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2. The structure of X-ray lines

2.2.1. Doppler line shape

In order to reconstruct the kinetic energy distribution from a given X-ray line shape or
to verify a predicted ESCM distribution, the relation between velocity and X-ray energy
is built up as described in the following.
Given an exotic system x−p+ with mass mx−p+ and a kinetic energy of T0, the mag-

nitude v0 = |v| of its velocity v is

v0 = |v| =

√
2T0

mx−p+
. (2.3)

Under the assumption of an isotropic velocity distribution, the velocity in the direction
of observation vx is distributed uniformly between −v0 and v0

vx ∼ U(−v0, v0) . (2.4)

This means a single δ-peak-like kinetic energy distribution

prob
(
T
∣∣T0

)
= δ(T − T0) (2.5)

transforms to a uniform distribution for the velocity in the direction of observation
(Figure 2.1a)

prob
(
v
∣∣T0

)
= U

(
−

√
2T0

mx−p+
,+

√
2T0

mx−p+

)
. (2.6)

In order to approximate an arbitrary kinetic energy distribution, non-overlapping, rect-
angular functions (components) Bi are superposed (similar to a histogram) with relative
weights βi and

∑
i βi = 1

prob
(
T
)

=
∑
i

βiBi(T ) . (2.7)

This superposition can be carried over to the velocity distribution

prob
(
vx
)

=
∑
i

βiBi(vx) (2.8)

leaving the task of identifying a transformation Bi(T )→ Bi(vx).
If an rectangular component (from T0 to T1) is considered itself a superposition of

a large number n of 1/n wide rectangular components (converging to δ-functions in the
limit n → ∞), the sum of the corresponding velocity distributions take the form of a
step-pyramid with a step height of 1/n. In the limit n→∞ the superposition approaches
a trapezoidal function between −vx(T2) and vx(T1) (see Figure 2.1b).

The total line shape of the Doppler broadening is then described by a sum of trape-
zoidal functions, with the underlying kinetic distribution approximated by rectangular
components (Figure 2.1c).
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2.2. Doppler broadening D

(a) A δ-peak-like kinetic energy distribution transforms to a uniform probability in the
velocity domain.

(b) A rectangular component can be transformed by slicing it into superposed δ-peaks,
and transforming each slice separately.

(c) A superposition of rectangular components results in a superposition of trapezoids.

Figure 2.1.: Visualization of the transformation from the kinetic energy distribution to a
velocity distribution.
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2. The structure of X-ray lines

Figure 2.2.: Example of a theoretical kinetic energy distribution for the µH(3p-1s) X-ray
lines [25].

Figure 2.3.: Convolved line shape of the theoretical kinetic energy distribution in
Figure 2.2. This line shape includes the response function of the experimental setup
(rocking curve + geometrical broadenings + Gaussian width of 75µrad) as well as the
Doppler broadening caused by the kinetic energy distribution (see section 5.4.6).
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2.3. Hadronic Lorentz width L

2.3. Hadronic Lorentz width L

The X-ray line broadening due to the strong interaction with the nucleus is given by a
Lorentzian

L =
1

2π
· Γ1s

(E − E0)2 + Γ2
1s/4

,

with mean energy E0 and broadening Γ1s of the 1s ground state. A detailed description
and a discussion of the relation of the energy shift ε1s and hadronic width Γ1s to the
scattering lengths of the pion-nucleon strong interaction can be found in [9].
The order of magnitude of this broadening is Γ1s ≈ 800 meV and 1200 meV for pionic

hydrogen and pionic deuterium, respectively [2, 5].

2.4. Hyperfine structure in µH

Muonic hydrogen exhibits splittings of the energy levels due to spin couplings between
the muon and the nucleus (see section 1.2.2). Hence, the ground state transition 2p-1s
is effectively a doublet, because the 2p hyperfine structure is comparably small. The
energy dependence of the spectrometer response is assumed to be negligible for the small
splitting of ≈ 180 meV, but to determine the line shape without a bias, the energy
difference and the intensity ratio of the two hyperfine components have to be taken into
account.

2.5. Spectrometer response R

2.5.1. Bragg rocking curve RC

The ability to determine X-ray energies relies on Bragg’s law

nλ = 2 d sinΘB .

It relates wavelengths λ (and therefore energies E = hc/λ) of incoming electromagnetic
waves to certain angles ΘB of constructive interferences. These interferences are the
result of the superposition of waves diffracted at crystal lattice planes with distance d.
In principle, several orders n of diffraction are possible.
Diffraction by principle causes a reflection of an incoming wave into an angular range.

This ideal resolution of a plane Bragg crystal is characterized by the so called rocking
curve RC . The shape and width of this rocking curve depend on the energy / wavelength
and the material of the crystal.
In order to determine the exact form, a software package called XOP [26] was used,

which can simulate a rocking curve for a given material and wavelength / energy. An
example of such a rocking curve along with the full response is shown in Figure 2.4.
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2. The structure of X-ray lines

2.5.2. Geometric constraints RG

In addition to the rocking curve, broadenings from different parts of the experimental
setup arise. These originate mostly from geometrical effects: the curvature and the ex-
tension of the bent crystal, apertures on the reflecting crystal surface and the position
resolution of the X-ray detector. Given the rocking curve, the geometrical aberrations can
be simulated by means of Monte-Carle based X-ray tracking routines (XTRACK) [27].
This yields the ideal resolution function for the given experimental setup.

2.5.3. Gaussian width G

The comparison of the ideal response function with dedicated calibration measurements [28,
29], revealed an additional Gaussian component, which is the cumulative width of all ad-
ditional broadening effects. This deviation from the ideal case was determined from
dedicated calibration measurements and added to the response function. For special
cases though, the Gaussian contribution was left as a free parameter in the analysis.

2.5.4. Spectrometer response

The spectrometer response describes the total broadening effect stemming from various
experimental effects. The combination of rocking curve RC of the Bragg crystal, geo-
metrical aberrations RG and a Gaussian G originating from imperfections of the setup
then reads:

R = RC ⊗RG ⊗G (2.9)

Figure 2.4.: Rocking curve calculated by means of the program package XOP and full
response for a spherically bent Si crystal having a radius of curvature of 3 m and an
energy of 3.075 keV (πD(3p-1s) transition). The full response is obtained by convolving
the rocking curve with the geometry of the setup by means of Monte-Carlo X-ray tracing
code (XTRACK) [3, 27].
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3. Analysis strategies

3.1. The conventional method

3.1.1. A brief description

The conventional method to analyze the X-ray spectra of exotic atoms consisted of a
large number of χ2 fittings. χ2 analysis is based on a comparison between a hypothesis
f(x, p) (dependent on a parameter(vector) p) and a set of data points (xi, yi) and their
error margins σyi

χ2(p) =

k∑
i=1

(
f(xi, p)− yi

σyi

)2

.

The best estimated values of the parameters p are expected to be found for a minimal
χ2(p). This is justified by the presumption that, under certain assumptions, the cumu-
lation of the discrepancies between the data and the model f(xi, p)− yi weighted by the
error margin σyi should be minimal [30].

In order to find the optimal parameter vector p, each parameter dimension pi has to
be varied iteratively and their χ2 evaluated and compared.

3.1.2. Limitations

Error margins and confidence

One point of the χ2 based parameter inference is the implicit predefinition of normal
distributed parameter values. In reality, the distribution and therefore the error margins
/ confidence intervals do not have to be symmetric and are not necessarily normal dis-
tributed (see chapter 5). This results in an additional layer of complexity to determine
asymmetric error margins in the conventional method. In Bayesian methods these prob-
lems are solved inherently (see section 3.2). A demonstration of the difference between
weighted averages plus sample variance, and the most probable value plus asymmetric
error margins can be found in Figure 3.1.

Bias

As the χ2 function denotes the probability distribution of the sum of the squares of
k independent standard normal distributed random variables xi, using the χ2-test to
infer model parameter values implies the assumption, that the data points are normally
distributed. Especially for binned counts in an X-ray spectrum, this assumption can be
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3. Analysis strategies

Figure 3.1.: Illustration of the conventional method of parameter inference and error
estimation. The calculation of an weighted average and sample variance implies the
assumption that the distribution can be approximated by a Gaussian. In this example
(taken from the µH analysis in section 5.4) the distribution of the relative intensity is
highly asymmetric, and limited to the interval of 0− 100 %. Thus, the weighted average
is lower than the most probable value, and the error margins are not asymmetric.

problematic as integer counts are generally assumed to be Poisson distributed. For large
integers, the Poisson distribution converges to a normal distribution and therefore the
assumption holds, but for low counts in the tails of an X-ray spectrum, this is too vague.
Effectively, in such analyses a bias occurs, that means a constant but unknown shift of

the parameter values [31]. To determine this shift, detailed tests using simulated spectra
with known parameter values are necessary. In order to simulate a spectrum, a model
has to be chosen and assumed to be true. This leaves little room for hypothesis tests as
well as an unambiguous error handling.

18



3.2. Bayesian approach

3.2. Bayesian approach

3.2.1. Bayesian statistics

Bayesian statistics provide a different view on questions of data analysis and parameter
inference. The idea goes back to Thomas Bayes in 1763 [30] and is founded on basic prob-
ability theory. Thomas Bayes was an English minister in the 18th century and deduced
a first version of the theorem now known as Bayes’ theorem. Bayes’ work was only
published after his death by his friend Richard Price, but did not attract much interest
at that time. That was until Pierre-Simon Laplace independently rediscovered his ideas
and developed them further in the beginning of the 19th century.

In order to understand the Bayesian approach to data analysis, one has to grasp the
fundamentally different treatment of models / hypotheses and their parameters. An
exhaustive description is provided in [32], but the principles shall be discussed now.

Common frequentist methods usually consider parameters as real, fixed values to infer.
Bayesians though, consider each parameter and each hypothesis as a statistical variable
and formulate prior knowledge and information as probabilities of these variables. Given
these, using probability calculus, one can deduce probability (distributions) for variables
(e. g. parameters) of interest. This is the very essence of Bayesian statistics and leads
directly to the famous Bayes’ theorem.

The Bayes’ theorem

The most common problem in data analysis concerns the inference of model parameters
from experimental data. Contrary to frequentistic methods, in Bayesian statistics, one
does not pose the (intuitive) question What is the value of the parameter λ?, but rather
Which parameter value is the most probable, given the information and data at hand?,
or even What is the probability for a certain value of a parameter given the information
and data at hand?. This probabilistic interpretation of an unknown but fixed and real
parameter value is the source for many discussions and a frequent point of criticism on
Bayesian statistics, but shall not be discussed here.

The generic approach, considering the experimental data D as well as the parameter(s)
λ as random variables, may be expressed in an (unknown) probability distribution

prob
(
D,λ

∣∣ I) .

Using the algebraic rule for conditional probabilities of two random variables A,B,
prob

(
A,B

)
= prob

(
A
∣∣B) × prob

(
B
)

prob
(
D,λ

∣∣ I) = prob
(
D,λ

∣∣ I)
L(D

∣∣λ, I)× π(λ
∣∣ I) = P (λ

∣∣D, I)× E(D
∣∣ I) ,
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3. Analysis strategies

yields the Bayes’ theorem:

⇒ P (λ
∣∣D, I) =

L(D
∣∣λ, I)× π(λ

∣∣ I)

E(D
∣∣ I)

(3.1)

often abbreviated as (see section 3.2.1):

P (λ
∣∣D, I) ∝ L(D

∣∣λ, I)× π(λ
∣∣ I) (3.2)

with a proportionality constant of 1/E(D | I) (constant for a fixed dataset D).
The distributions P , L, E, and π are each of particular importance and shall now

be discussed individually. For real-valued, continuous parameters, the distributions of
course become probability density functions.

The likelihood function L

The most important component of the posterior probability P (λ
∣∣D, I) is the likelihood

function L = L(D
∣∣λ, I), describing the probability that the data pointD was measured,

given an (unknown) parameter value λ and information I. It is, however, not a probability
distribution, but a mere function of λ. These probabilities are usually deducible with
the hypothesis, possibly together with assumptions about the statistical nature of the
experimental data. Given that, the likelihood function plays a key role, as it contains
the connection between data and parameters via a hypothesis.

Example 1. Gaussian distributed events
Let λ0 be the true value of a parameter λ, and dk a data point, assumed to be normally-
distributed around λ0, then the probability for a data point to take the value dk is given
by

prob
(
dk
∣∣λ0

)
=

1√
2π
e−

1
2

(dk−λ0)2 (Gaussian distribution with σ = 1)

≡ L(dk
∣∣λ0) ,

which constitutes a Bayesian likelihood function. The extension to n statistically inde-
pendent data points consists of combining these distributions of independent variables
dk by multiplication

L(d1, d2, . . . , dn
∣∣λ0) =

∏
1≤k≤n

L(dk
∣∣λ0)

=
∏

1≤k≤n

1√
2π
e−

1
2

(dk−λ0)2 .
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3.2. Bayesian approach

The prior probability π

Information and knowledge about the parameter space manifests itself in the prior prob-
ability π = π(λ

∣∣ I). Prior knowledge could be as simple as hard constraints in parameter
space or complex results of a previous experiment.
The ambiguity in choosing a prior distribution and the subjectivity associated with

this, is often basis for criticism against the whole Bayesian methodology. The criticism,
though, can be weakened if either a prior is chosen which has no influence on the poste-
rior, or the likelihood function contains so much information (e. g. a combination of large
amounts of data points), that the prior becomes negligible. The latter case is demon-
strated, in the example in Figure 3.3, where the influence recedes with more informative
likelihoods.

Example 2. Confined parameter space
Parameter space constraints λ ∈ [a, b] can be implemented using a confined uniform
distribution

prob
(
dk
∣∣λ) =

{
1
b−a λ ∈ [a, b]

0 otherwise

≡ π(λ
∣∣ I) .

The evidence E

In the more usual cases of data analysis, the data D and the information I (containing
assumptions and a specific hypothesis) remain constant, making the evidence E(D

∣∣ I)
a constant value and a mere normalization factor of the posterior distribution P . In sce-
narios of model-selection (comparing different hypotheses) though, the evidence becomes
the key component (hence the name) and the computation of Ei(D

∣∣ Ii) for different
models Ii yields real valued and comparable weightings for each model. As this topic of
model selection is of particular importance for this thesis, it is discussed thoroughly in
section 3.2.3. For single model problems, the evidence usually can be ignored.
From eq. 3.1 and eq. 3.2 it becomes obvious, that the evidence can be expressed as the

normalization of the relative posterior distribution

E(D
∣∣ I) =

∫
L(D

∣∣λ, I)π(λ
∣∣ I) dλ

or as marginalization of prob
(
D,λ

∣∣ I) over λ
E(D

∣∣ I) =

∫
prob

(
D,λ

∣∣ I) dλ .

Especially the latter underlines the importance of the evidence as it is the combined
probability of the data D, given a model, over all possible parameter configurations.
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The posterior probability P

The posterior distribution P = P (λ
∣∣D, I) represents the information available about

the parameter λ, given the (experimental) data D and any (circumstantial) information
I, namely possible values of λ and the corresponding probability of these values being the
‘real’ parameter value. This is the expressive result of Bayesian data analysis. In contrast
to frequentist methods (e. g. χ2 fitting routines), Bayesian data analysis not only provides
an expectation value along with a variance, but an entire probability distribution for the
parameter(s), including a most probable value, (asymmetric) uncertainties, confidence
intervals etc. More advantages of having a probability distribution of a parameter at
hand will become clear later on in the actual analysis.

3.2.2. A simple example

The matter of the Bayesian posterior may best be illustrated by the example, given in the
textbook of D. S. Sivia [30], of an experiment to determine whether a simple coin is fair
(i. e. the probability for heads and tails are equal) or not. If H denotes the (unknown)
rate at which the coin shows heads, then the probability for counting R heads in N tosses
is given by the binomial distribution

prob
(
(R,N)

∣∣H, I) = HR × (1−H)N−R (likelihood)
≡ L

(
(R,N)

∣∣H, I)
and represents the likelihood in this scenario. Lack of prior information and openness
towards the outcome manifests itself in an uniform prior distribution

prob
(
H
∣∣ I) =

{
1 0 ≤ H ≤ 1

0 otherwise
(prior)

≡ π(H
∣∣ I)

because the rate H cannot be negative and cannot exceed 1 (this would imply more head
outcomes than tosses in total).
Combining these distributions according to the Bayes’ theorem and ignoring the con-

stant evidence yields the posterior distribution

P
(
H
∣∣ (R,N), I

)
=

{
HR × (1−H)N−R 0 ≤ H ≤ 1

0 otherwise
. (posterior)

Suppose an experiment was performed by tossing the coin 50 times. The series of out-
comes is shown in Figure 3.2 with H for heads outcome and T for tails.

HHTHTTTTTTHHTTHTHTHTTTHHTTHHTHTHTHTHTHTHTTTTTHTTTT

Figure 3.2.: Outcomes of a series of coin tosses

Visualizations of the posterior distribution after each toss illustrate the aspect, that
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3.2. Bayesian approach

with every data point the information about the parameterH increases, and the influence
of the prior distribution decreases.
Figure 3.3 demonstrates the best knowledge after 1, 2, 3, 4, 5, 10, 20, 30, and 50 tosses,

respectively. It is obvious, that with just a few data points the posterior changes vastly
with each new piece of information, but that with 20 tosses, it begins to stabilize and
to refine around a central value. The important point to make here is, that the central
value of this posterior is generally not the real value of H, but the most probable value
of H given the available data. This is the important difference between conventional
data analysis and the Bayesian approach.

Feasability

Despite the obvious advantages, there are, however, some fundamental drawbacks in the
practical application. Derivation of an analytical posterior is often not possible and even
the likelihood or prior may not exist in a closed analytical form. This means, that for
most real world problems, one has to resort to numerical methods. As these are usually
computational intensive, Bayesian data analysis has just recently become feasible. The
numerical methods and their implementation are treated separately in chapter 4 and
appendix A.1 .
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(a) N = 1, R = 1 (b) N = 2, R = 2 (c) N = 3, R = 2

(d) N = 4, R = 3 (e) N = 5, R = 3 (f) N = 10, R = 3

(g) N = 20, R = 8 (h) N = 30, R = 13 (i) N = 50, R = 19

(j) Posterior distribution after N = 1000 tosses with R = 289 heads

Figure 3.3.: Posterior distributions for different data sets for N tosses yielding R heads.
The approximation improves with every new data point and would contract for N →∞
to a δ-peak at the real value H.
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3.2.3. Model-selection

A powerful aspect of Bayesian statistics is the inherent support for model-selection prob-
lems and consequently model-averaging of inferred parameters [33]. Following Bayesian
principles, evaluating models Mi against one another becomes a question of finding the
probability for this model M given the data D

prob
(
M
∣∣D, I) ∝ prob(D ∣∣M, I

)
× prob

(
M
∣∣ I)

Obviously, determining an absolute probability for a particular model is not possible
because this would require knowledge about all (uncountable) possible models and their
respective probabilities. In order to compare and evaluate a set of models Mi though,
relative probabilities are sufficient and provide coherent, relative weights for all tested
hypotheses. These relative weights are called Bayes factors

B1,2 =
prob

(
M1

∣∣D, I)
prob

(
M2

∣∣D, I) (Bayes factor)

=
prob

(
D
∣∣M1, I

)
× prob

(
M1

∣∣ I)
prob

(
D
∣∣M2, I

)
× prob

(
M2

∣∣ I) .

Without any prior knowledge or assumptions about these models, prob(M1

∣∣ I)/prob(M2

∣∣ I)
must be regarded as unity, and therefore the Bayes factor becomes

B1,2 =
prob

(
D
∣∣M1, I

)
prob

(
D
∣∣M2, I

)
≡
E(D

∣∣M1, I)

E(D
∣∣M2, I)

.

This is equal to the ratio of the evidences, making the evidences the most important
value to be determined in model-selection problems.

Model evaluation

The assignment of (relative) weights, and thus providing an order for a set of models
does not complete the task of model-selection. An important part remains, namely the
interpretation of these weights to evaluate and eliminate hypotheses. The question is,
however, of which magnitude must a Bayes factor be, in order to mark one hypothesis so
superior over another, that the other can be eliminated. A good scale is given by Harold
Jeffreys [34] to compare Bayes factors B to standard deviations σ and confidence levels
(see Table 3.1).
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3. Analysis strategies

B ln(B) σ p-value category

2.5 0.9 2.0 0.05

2.9 1.0 2.1 0.04 weak

8.0 2.1 2.6 0.01

12 2.5 2.7 0.006 moderate

21 3.0 3.0 0.003

53 4.0 3.3 0.001

150 5.0 3.6 0.0003 strong

43000 11 5.0 6× 10−7

Table 3.1.: Comparison of Bayes factors to σ and p-values, given by Harold Jeffreys in [34].
This table provides a lead to quantify the difference between different models and relate
it to classical (by σ and p-values) methods of assessment.

Posterior volume

The evidence E(D
∣∣M, I) can be expressed as a marginalization of a broader probability

distribution

E(D
∣∣M, I) =

∫
prob

(
D,λ

∣∣M, I
)
dλ

=

∫
prob

(
D
∣∣M, I, λ

)
× prob

(
λ
∣∣M, I

)
dλ

where the integral is just the volume / normalization factor of the relative posterior
distribution. This means, determination of the evidence requires the integration of the
relative posterior distribution over the entire parameter space. Integration of non-analytic
functions over a high-dimensional parameter space, though, poses a complex challenge
and requires efficient numerical algorithms to perform such computations in an acceptable
time span.

3.2.4. Model-independent approach

Bayesian methods give rise to the possibility of analysing experimental data without
the need to settle on a specific model. This can be extended to a point, where a set
of different models is chosen and evaluated, not to verify or falsify one or more of the
models, but weaken the dependence on the choice of the model. As every model has a
probability weight, given by the Bayes factor, inference of a (common) parameter may
be performed across all models by including their weights.
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3.2. Bayesian approach

This is an important advantage over the conventional method, especially regarding the
bias problem (see section 3.1.2). Having a set of models Mi, along with their evidences
Ei or Bayes factors (between two models Mi,Mj) Bi,j = Ei/Ej, two basic options are
available:

Selection that means, grading by evidence and subsequent verification / falsification,
exclusion of very unlikely models (with Bi,j > 150, see Table 3.1). Picking one
single model over others, though, would require a substantially higher evidence.

Averaging over a set of models, i. e. determination of the posterior distributions for
common parameters considering each model, if the evidences show no preference
for a single model.

In principle, the latter already includes the former because, due to the weighting by
evidence, models of significantly larger evidences dominate and unlikely models barely
contribute on averaging.
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4. Numerical methods

4.1. Posterior sampling

For real world problems, the posterior P (λ
∣∣D)1 can rarely be specified in analytical

form. An alternative to an analytical form is drawing a substantial amount of random
samples of the posterior distribution using Monte-Carlo methods. With the help of these
samples, any integral (i. e. the expectation value) over a statistical variable λ can be
approximated by

E[f(λ)] =

∫
f(λ)P (λ

∣∣D) dλ

≈ 1

N

∑
f(λi)

specifically for the expectation value E[λ] of the mean being

E[λ] ≈ 1

N

∑
λi

with λi being N independent samples drawn from the posterior P (λ
∣∣D). The real

challenge, however, lies in drawing the independent samples λi.

4.1.1. Markov chain Monte-Carlo methods

A common approach to produce such samples are Markov chain Monte-Carlo (MCMC)
methods like the Metropolis-Hastings algorithm [35]. These methods usually start with
a random point and find new points by creating a Markov chain (i. e. via random walk
steps) and ensure pairwise independence by taking only each nth point. For these sam-
pling methods relative probabilities are sufficient, making them perfect for problems
where the normalization (in the Bayes’ theorem: the evidence) is not of interest. But
because the Metropolis-Hastings algorithm only produces samples following

P ′(λ
∣∣D) ∝ L(D

∣∣λ)× π(λ)

with an unknown proportionality constant (corresponding to the reciprocal of the evi-
dence), it is not suitable for model-selection problems.

1The dependency on the contextual information I is omitted from now on for brevity.
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(a) Bivariate normal distribution P (x, y) to
draw samples from.

(b) Scatterplot of drawn samples: the den-
sity of the samples is proportional to their
probability.

(c) First 1000 iterations (x-component) of the Markov chain used to draw samples
above.

Figure 4.1.: Visualization of a Metropolis-Hastings sampling run to draw samples from a
bivariate Gaussian distribution.
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4.1. Posterior sampling

4.1.2. Nested sampling

Nested sampling is a Lebesgue-integration inspired method developed by John Skilling [30,
36] to calculate the evidence of a Bayesian posterior distribution. As a by-product, it can
generate posterior samples and therefore provides a complete solution to model-selection
problems.
It is based on the idea to map the n-dimensional parameter space to a 1-dimensional,

real-valued interval, removing the challenge to integrate over n dimensions. Given an
n-dimensional parameter vector λ

λ = (λ1, . . . , λn), λ ∈ Rn

and a posterior

P (λ
∣∣D)⇒ P̃ (x

∣∣D) = L(D
∣∣λ(x))π(λ(x)) ,

then the marginalization (and therefore the evidence) can be expressed with

x ∈ [0, 1]∫
Rn

P (λ
∣∣D) dλn =

∫ 1

0
P̃ (x

∣∣D) dx

and thus, ∫
Rn

P (λ
∣∣D) dλn =

∫
Rn

L(D
∣∣λ) π(λ) dλn︸ ︷︷ ︸

dx

≈
∑
i

L(D
∣∣λ(xi)) ∆xi, ∆xi = xi+1 − xi .

Calculating the sum now requires knowledge of the transformation λ(x) with L(D
∣∣λ(x))

being positive and monotonically decreasing and a sequence of xi so that the ∆xi =
π(λ)∆λn are volume elements of the parameter space Rn weighted by the prior probability
density π(λ).2 These ∆xi are therefore called prior masses.
To approximate the integral, one starts with the right-most rectangle in Figure 4.2,

the area of which is given by

L(D
∣∣λ(x0))︸ ︷︷ ︸
L0

∆x0 .

If m independent samples λk (called live points) are drawn from the prior distribution
π(λ), then, because of π(λk)dλk = dxk, their corresponding x-values are uniformly dis-
tributed within [0, 1].

2During the actual analysis a more precise approximation of ∆xi = 1/2(xi−1 − xi+1) was used instead
of ∆xi = xi+1 − xi
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4. Numerical methods

Figure 4.2.: Integral approximation with prior masses on the x-axis.

These uniformly distributed x-values have an average distance (between adjacent val-
ues) of 1/m+1. Sorting these live points by their likelihood Lk = L(D

∣∣λk) ensures, that
the posterior in x is monotonically decreasing.

The rectangular area may now be approximated using the lowest likelihood L0 of all
live points, along with an estimate of ∆x0 ≈ 1/m+1. This approximation of ∆xk must be
justified by a large number of iterations and live points.
The rest of the integral can be calculated the same way by iterative nesting. In order

to do that, the x-interval has to be reduced by ∆x0 and a new set of m prior live points
must be found within this new interval. As there are already m − 1 samples, which by
definition are left of x0 and therefore in the new, reduced interval, it is sufficient to draw
one new point with a likelihood L > L0. After each iteration k, the remaining interval is
shrunk by 1/m+1. This gives a decreasing, but exponential series of intervals ∆xk along
with their increasing likelihood values Lk (see Figure 4.3) and thus an approximation to
the integral E(D) via

E(D) ≈
∑
k

Lk∆xk .

Although this series is infinite in theory, the exponential character of the series of ∆xk
ensures that the summands at some point will tend to zero, adding only marginal amounts
to the evidence. This allows the nested sampling iterations to stop as soon as the desired
accuracy is achieved.
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4.1. Posterior sampling

Figure 4.3.: Example of nested sampling with 30 iterations and m = 10 samples. The
∆xi,i+1 = xi+1 − xi decrease exponentially, while the likelihoods Li = L(xi) are by
definition monotonic increasing. The products Li ∆xi,i+1, being the areas of the shown
rectangles, eventually tend to zero. The remaining posterior area (left blank from x = 0
to the last xi) has to be approximated using the remaining prior mass and the average
of the final set of live points.
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4. Numerical methods

The general procedure for a nested sampling evaluation is as follows:

1. Prepare a set of initial live points. These points are sampled from the entire prior
distribution.

2. Perform nested sampling iterations and sum up the evidence until the desired ac-
curacy is achieved using the following steps:

a) Find the live point with the lowest likelihood Lmin.

b) Add the weight of the lowest point ∆xiLmin to the evidence.

c) Explore the prior for a new live point with Lnew > Lmin.

d) Replace the lowest point with the new point.

3. Add the remaining live points to the posterior collection and add their averaged
likelihood multiplied by the remaining prior mass as last summand to the (loga-
rithmic) evidence.

4. Post processing using the evidence and the posterior samples (e. g. histograming,
calculation of means and standard deviations).

Although this constitutes a simple and straightforward algorithm, there are two steps,
that usually pose a challenge in implementations of nested sampling.

Likelihood evaluation The evaluation of the likelihood of a specific parameter vector
ideally requires an analytical form of the model to apply the parameters and com-
pare it with the data. Even with analytical models, this can be in total rather
CPU-intensive, for the models used later in the analysis (see chapter 5), an an-
alytical form does not exist and therefore application of the parameters requires
interpolation of discrete, numerical test spectra.

Prior exploration Exploring new samples from the prior distribution while satisfying the
requirement of greater likelihood for new points can be the bottleneck in a nested
sampling implementation. A simple hit-and-miss sampler for example would not
work as the number of rejections increases exponentially. This crucial part requires
an efficient solution to make nested sampling feasible.
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4.2. Prior space sampling

4.2. Prior space sampling

To resume the explanation in section 4.1.2, exploration of the prior space means sampling
a point from the prior distribution under the constraint that the likelihood Lnew of the
new point is higher than a specified likelihood value L0. The most simple way to explore
a new point would be a hit-and-miss loop:

1. Sample a point from the prior distribution.

2. Evaluate the likelihood Lnew of the new point.

3. If Lnew ≤ L0, return to step 1.

For this thesis, three alternative methods have been tested:

• MCMC-exploration

• ellipsoidal-sampling

• multimodal-ellipsoidal-sampling

4.2.1. MCMC-exploration

Idea

The concept of this method developed by L. Simons [27] is based on the MCMC technique
described in section 4.1.1. The idea is to perform a series of random walk steps within
the volume bounded by the equi-likelihood hypersurface with the minimal likelihood L0

of the current live points collection. This hypersurface must be closed for any likelihood
L0. Figure 4.4 shows a two-dimensional example of a random walk sequence within the
likelihood boundary. The shape of this boundary is unknown because there are not
enough points to establish a contour. As long as the random walk series stays within
that boundary, a new point can be found with n consecutive steps (depending on the
dimensionality of the parameter space).
As the sampled points have to be independent of each other, a suitable combination of

a number of steps n and step size s has to be found to prevent correlation between the
starting point and the sampled point. The starting point usually is chosen at random
from the collection of live points, the likelihood of which is by definition greater than L0.

If a step within a sequence crosses the boundary, the point is discarded and a new
point is chosen randomly between the previous point and the center of mass (of the live
points). Figure 4.5 demonstrates this case. The sequence continues from the new point
in this manner until the desired number of steps is reached.
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4. Numerical methods

Figure 4.4.: Illustration of a random walk sequence within the likelihood boundary in a
two-dimensional parameter space. The contour line L0 is, of course, unknown and purely
hypothetical.

Figure 4.5.: Illustration of a random walk sequence p
0,1,2,3

that hit the likelihood con-
straint. As soon as a step (p

2
) falls below the constraint L0, a new point p

2
is chosen at

random between the previous point p
1
and the center of mass.
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4.2. Prior space sampling

The algorithm

In order to find a new point, the following procedure was implemented:

1. Choose a random starting point from the collection of live points.

2. Starting from this point, perform a random walk step and evaluate the likelihood
of the new point.

3. If the likelihood is less than L0, return to the previous point and choose a new
point randomly between the previous point and multidimensional mean (center of
mass) of the live point collection.

4. Repeat steps 1 to 3 until the desired number of steps is reached.

5. A new point satisfying L > L0 is found.

(Dis-)Advantages

The advantage of this kind of exploration procedure is its simplicity in implementation.
Contrary to other techniques, the complexity depends only weakly on the dimensionality
n of the parameter space via the desired number of steps (the more dimensions the more
steps are needed to ensure uncorrelated samples). These properties make the MCMC-
Explorer a computational efficient method to produce new points in nested sampling.
A drawback, however, is the dependence on a number of configuration parameters,

which have to be set carefully in order to achieve a good performance and to prevent
deadlocks. These n + 1 configuration parameters (i. e. the desired number of steps m
as well as the (n-dimensional) step-size s) must be chosen in a trial-and-error manner
before the main analysis runs.
A problem that occurs occasionally with this exploration method is that a set of con-

figuration parameters works well for one subset of the models to analyze, but causes
deadlocks for other (but similar) models. In order to overcome this issue, another
method, developed by F. Feroz and M.P. Hobson [37] was implemented and tested, namely
ellipsoid-sampling, which approximates the contour using an n-dimensional ellipsoid.
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4. Numerical methods

4.2.2. Ellipsoidal-sampling

Idea

Ellipsoidal-sampling uses the presumption, that the volume of the parameter space en-
closed by the L > L0 likelihood constraint, can be approximated or at least enveloped
by an n-dimensional ellipsoid. This is similar to approximating the posterior distribu-
tion with a multivariate Gaussian, which has elliptical contour lines [38]. New points are
produced by sampling uniformly from within this ellipsoid, followed by a hit-and-miss
selection (according to the prior distribution and the likelihood constraint). The chal-
lenge in this method is the determination of and sampling within the ellipsoid.
Thus the general strategy is:

1. Calculate an enveloping ellipsoid to the live points.

2. Sample a point from the uniform distribution, bounded by this ellipsoid (see eq. 4.4).

3. In order to ensure that an ensemble of generated points is distributed according
to the prior, a hit-and-miss selection step has to be performed, which only accepts
points randomly with a frequency proportional to the prior probability.

4. Compare the likelihood with L0. If L ≤ L0, reject the point and start over (step
1).

Determination of an enveloping ellipsoid

As mentioned previously (see section 4.2.1), the specific shape of the L0 boundary is not
known. Available, however, is a (rather large) set of live points within its volume. In
order to get at least an approximation to the shape of the k live points distribution, the
covariance matrix cov(p

i
) can be determined by

cov(p
i
) =

1

k + 1

k∑
i=1

(p
i
− pmean)(p

i
− pmean)T

with

p
i
≡ live points

pmean ≡ mean of live points .

The inverse of the covariance matrix C = cov−1(p
i
) (also known as precision matrix)

represents the elliptical hypersurface of an (assumed) multivariate Gaussian distribution.
This hypersurface can be parameterized by a distance f(p), where all p with the same

f(p) lie on the same hypersurface. The innermost ellipsoid in Figure 4.6 shows the volume
of all p with f(p) ≤ 1

f(p) = (p− pmean)TC(p− pmean) .
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4.2. Prior space sampling

By choosing an fmax

fmax = max[f(p
i
)]

= max[(p
i
− pmean)TC(p

i
− pmean)]

the ellipsoid is re-scaled to include all live points. Although this ellipsoid now contains
all k live points, it does not necessarily enclose the L0 hypersurface entirely.

To minimize the possibility of this case, fmax is usually multiplied by a small factor
d2, 1 < d < 2, to enlarge the ellipsoid. This configuration parameter d has to be chosen
carefully, because the efficiency of this sampling method depends largely on this factor.
Enlargement by a factor d causes an increase in the sampling volume V0 → V in an

n-dimensional parameter space by

V = dnV0 .

If the efficiency of the algorithm is defined by the acceptance rate r of the hit-and-miss
selection

r =
laccepted

ltotal

with

laccepted ≡ number of accepted samples
ltotal ≡ total number of samples produced ,

then for a uniform prior distribution and a likelihood constraint with the volume VL>L0

the acceptance rate r can be expressed by

laccepted =
VL>L0

V
ltotal

⇒ r =
VL>L0

V
=

1

dn
VL>L0

V0
.

Under the assumption, that the ellipsoid approximates the L > L0 manifold well enough,
r becomes

r =
1

dn
VL>L0

V0︸ ︷︷ ︸
.1

⇒ r .
1

dn
.

This means that the efficiency can be controlled by choosing d as small as possible, but
as large as necessary to ensure the containment of the entire L > L0 manifold within the
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ellipsoid.
With a given d and fmax, pmean, C calculated from the current collection of live points,

a new point p must be sampled uniformly within the volume enclosed by

(p− pmean)TC(p− pmean) ≤ d2 · fmax (4.1)

or by consolidating d, fmax,C to C′

C′ =
1

d2 · fmax
·C (4.2)

(p− pmean)TC′(p− pmean) ≤ 1 . (4.3)

This allows the definition of an enveloping probability distribution

EL0
:=

{
1
V (p− pmean)TC′(p− pmean) ≤ 1

0 otherwise
. (4.4)

Figure 4.6.: Visualization of the approximating / enveloping ellipsoid. The innermost
ellipsoid is the covariance ellipsoid of the live points (1σ), the intermediate one is scaled
to include all live points and the outermost is stretched by a constant factor to include
the entire L > L0 manifold.
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4.2. Prior space sampling

Sampling uniformly within an n-dimensional ellipsoid

Generating random samples from an elliptic volume, specified by a quadratic form (see
eq. 4.3) must be done in several steps. Given a Gaussian and a uniform random number
generator, the following procedure can be used to generate uniformly distributed points
within this ellipsoid.

1. Generate n Gaussian distributed (mean of 0 and σ = 1), independent values xi ∼
N (0, 1).

2. Normalize the vector x = (x1, . . . , xn)T , where x′ = x
|x| is now a uniform sample

from the surface of the unit hypersphere [39].

3. Sample a value r ∼ U(0, 1) uniformly from [0, 1], then x′′ = n
√
r · x′ is a uniform

sample from the volume of the unit hypersphere.

4. Given the n eigenvalues λj of C′, using

x′′′ =



√
λ1 0 . . . 0

0
√
λ2 . . . 0

...
...

. . .
...

0 . . . . . .
√
λn

 · x
′′

yields samples from an ellipsoid with the same axes and volume but different ori-
entation and position than the desired ellipsoid.

5. Rotate the sample by multiplication with the eigenvector matrix E = (e1, . . . , en)
with ej being the eigenvector to the eigenvalue λj

x′′′′ = E · x′′′ .

6. And finally translate by the mean pmean to match the center of mass

p = x′′′′ + pmean .

This algorithm is visualized in Figure 4.7 for a two-dimensional case. In summary, using
n + 1 samples (xi ∼ N (0, 1), r ∼ U(0, 1)), a point distributed uniformly within an
ellipsoid defined by its quadratic form (see eq. 4.3) can be produced by

p = pmean + E ·



√
λ1 0 . . . 0

0
√
λ2 . . . 0

...
...

. . .
...

0 . . . . . .
√
λn

 ·
n
√
r · x
|x|

. (4.5)
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(a) Step 1 and 2: sample from the border of
the unit hypersphere (circle), using n Gaus-
sian samples (x1,2 ∼ N (0, 1)) and normal-
ization x′1,2 =

x1,2

|x| .

(b) Step 3: using an additional uniform
sample r ∼ U(0, 1), include the volume
within the circle with x′′1,2 =

√
r · x′1,2.

(c) Step 4: multiply each coordinate with
the square root of the corresponding eigen-
value of C′, x′′′1,2 =

√
e1,2 · x′′1,2.

(d) Step 5: rotate by the eigenvector matrix
E = (e1, . . . , en), x′′′′ = E · x′′′.

(e) Step 6: translate by center of mass /
mean vector p

mean
, p = x′′′′ + p

mean
.

Figure 4.7.: Visualizations of the different steps to generate a sample from within an
arbitrary ellipsoid (in two dimensions), given its quadratic form (including eigenvalues
ei and -vectors ei and the center of mass pmean).
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4.2. Prior space sampling

Hit-and-miss selection

To complete the sampling, new points must be selected according to the prior density
and the L > L0 likelihood constraint. This so-called rejection sampling is a method to
draw samples from a probability distribution π̃ by generating points in an enveloping
distribution EL0 and accept them with a probability π̃/EL0

.
The target distribution π̃ is of course the prior distribution convolved with the L > L0

likelihood constraint

π̃ := π ⊗ΘL>L0 (4.6)

with

ΘL>L0(p) :=

{
1

VL>L0
L(p) > L0

0 otherwise
(4.7)

and the envelope is the elliptical distribution EL0 (see eq. 4.4).
After generating a point p ∼ EL0 , it has to be accepted with a probability of

π̃(p)

EL0(p)
= V π̃(p) (4.8)

which can be achieved by comparing it to a uniform sample u ∼ U(0, 1)

π̃(p) >
u

V
(4.9)

⇒ p ∼ π̃ . (4.10)

Special case: uniform prior distribution π In the analyses in this thesis a special
case of prior distributions was used to ensure an uninformed approach and simplify the
method. This prior consisted of uniform distributions Ui in each parameter dimension
(hyperrectangle)

π(p) = π(p1, p2, . . . , pn) (4.11)

= U1(p1,min, p1,max)⊗ U2(pn,min, pn,max)⊗ . . .⊗ Un(pn,min, pn,max) (4.12)

with intervals [pi,min, pi,max] chosen for each dimension i depending on the problem at
hand.
Thus, to accept a sample p ∼ EL0 , it was sufficient to check

1. pi ∈ [pi,min, pi,max] for all n components and

2. L(p) > L0.

which reduced the complexity mainly to the evaluation of the likelihood L(p).
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(Dis-)Advantages

The applicability of ellipsoidal sampling depends on the shape of the L0 hypersurface.
Largely elliptical boundaries can be approximated very well and sampled efficiently (see
eq. 4.1). Clustered volumes, though, would be enveloped by a single, large ellipsoid.
These clusters then occupy only small parts of the ellipsoidal sampling volume. Hence
this causes large amounts of rejects, and a lot of computational power is wasted in
these scenarios. This was the case with the analysis of µH (see section 5.4), where an
ambiguity in the parameterization of the two hyperfine splitting peaks caused a bimodal,
but symmetrical posterior distribution.
Additionally, as the collection of live points contract with each iteration, the ellipsoid,

i. e. the eigenvectors and -values have to be re-determined regularly to keep the efficiency
at an acceptable level. This requires a substantial amount of CPU time, so the intervals
of re-evaluation t have to be balanced carefully against the increase in time needed to
produce a valid sample (as the efficiency decreases with every iteration).
Contrary to the MCMC-exploration, only two configuration parameters are needed,

namely the enlargement factor d and the interval of contraction / re-evaluation t. Ex-
perience in the analyses showed a mostly stable behavior even for disadvantageous pa-
rameter combinations (d, t). The stability was an important fact, because some analyses
required evaluation of several thousand models, where determination of a working set of
configuration parameters for each model individually was not feasible.
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4.2. Prior space sampling

4.2.3. Clustered ellipsoidal sampling

Idea

The great disadvantage of the ellipsoidal sampling method is, that it is unsuitable
for distributions with several modes or equi-likelihood hypersurfaces of non-elliptical
shapes [37]. The idea of clustered ellipsoidal sampling is to arrange the live points into
several clusters, and to approximate each cluster with an ellipsoid. This prevents a lot
of rejects, because the ratio of the target volume VL>L0 to a clustered sampling volume
V1 +V2 and in consequence the efficiency is significantly higher than to the volume V0 of
a large enveloping ellipsoid (see Figure 4.8)

V1 + V2 � V0

⇒ VL>L0

V1 + V2
� VL>L0

V0
.

Figure 4.8.: Comparison of sampling volumes with a total enveloping ellipsis or individual
ellipses.

An immediate difficulty is to classify the live points into different clusters as well as to
decide on how many clusters are necessary. The methods described in section 4.2.2 can
then be used to envelop each cluster individually with a separate ellipsoid. When a set of
ellipsoids is found, additional challenges arise from sampling from overlapping ellipsoids.
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Clustering of live points

The clustering of points in an n dimensional parameter space is a common machine
learning problem. To define and quantify a distance relation between two distinct points,
a kind of metric is required. For common Rn vector spaces, an obvious choice would
be the Euclidean metric. The Euclidean metric, however, is not suitable to assess the
distance between two points in the parameter space, because the scales of the individual
dimensions can vary widely. This causes a dominance of large-scale parameter dimensions
during the clustering.
Nevertheless, given the precision matrix C (see section 4.2.2) of all live points, a (very

rough) idea of the relative scales and therefore a metric is available, which at least weakens
the dominance of large-scale dimensions and provides a more realistic distance between
two distinct points.
Based on this metric, well-known algorithms such as k-means-clustering [40] can be

used to partition the live points into a set of k clusters. The real difficulty in this step
lies defining a number of clusters k.
A method developed by J.R. Shaw et al. [41] assumes two clusters recursively until a

sufficient partitioning is achieved. Inspired by the discussion of different methods and
techniques in a publication by F. Feroz and M.P.Hobson [37], a simplified clustering
method was developed.
The basic idea is to start with one cluster and monitor the acceptance rate r of the

hit-and-miss selection. If the efficiency drops below a (predefined) fraction f0 of the
expected efficiency rexp (see eq. 4.1), an additional cluster is assumed to be necessary.
The purpose of this clustering sampler is to approximate the form of the posterior

as well as possible and reasonable. With the presumption that the combined ellipsoid
volumes envelop the L > L0 posterior volume entirely, and their volume ratio f =
VL>L0/Vtot,k, a quantity f is given to quantify the accuracy of the approximation. The
posterior volume VL>L0 is of course not accessible directly, but the ratio VL>L0/Vtot,k can
be estimated via the acceptance rate (see eq. 4.1)

f =
VL>L0

Vtot,k
= r · dn .

By imposing the condition f > f0 with f0 being a predefined, minimal fineness of the
approximation, a limit is available after which an additional cluster becomes necessary.

46



4.2. Prior space sampling

(a) Step 1, the enveloping ellipsis to the col-
lection of points must be determined to pro-
vide a metric for the clustering step.

(b) With the given metric, a clustering al-
gorithm (e. g. k-means) can be used to par-
tition the points into distinct groups.

(c) Each cluster gets its own elliptic enve-
lope. Their union is a new, better approxi-
mation to the total collection of live points
then the original ellipsis.

(d) After enlarging the clusters by a con-
stant factor d, the comparison with the to-
tal, enlarged ellipsis shows the reduction in
sampling volume (hatched area), providing
a higher efficiency.

Figure 4.9.: Basic procedure to cluster and approximate the collection of live points using
several ellipses.
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Sampling uniformly within all clusters

Sampling from an arbitrary number of possibly overlapping ellipsoids with different vol-
umes requires some additional steps to ensure uniformity. Generating a sample from a
single ellipsoid was discussed in section 4.2.2, but the question remains, from which of
the ellipsoids to sample.
Assuming for now non-overlapping clusters, then for any point p within that clusters

and a total volume Vtot =
∑

i Vi, the density is given by

Etot(p) =
1

Vtot

The probability to find a point within a certain cluster i is then given by the proportional
volume

Ei =
Vi
Vtot

which of course has to add up to one

⇒
∑
i

Ei =

∑
i Vi

Vtot
= 1 .

By choosing the cluster to sample from randomly with weights Ei, uniformity across all
clusters can be guaranteed.
Overlapping clusters destroy the uniformity, because the overlapping volumes are over-

sampled. Samples from a volume element belonging to n clusters are n times more prob-
able to be sampled than from a volume element of a single cluster. In order to correct
this, only every nth sample from that volume element must be accepted. This can be
achieved by an additional selection of accepting samples with a probability of 1/n.
In summary, given a set of clusters, a sample can be generated by the following proce-

dure:

1. Choose a cluster randomly with a probability of Vi/Vtot for each cluster i.

2. Sample from this cluster using ellipsoidal sampling (see section 4.2.2).

3. Determine the number of clusters n which contain this sample.

4. Accept the sample with a probability of 1/n or return to step 1.

5. Apply prior and likelihood hit-and-miss selection (see section 4.2.2), return to step
1 on rejection.

(Dis-)Advantages

As visualized in Figure 4.9d, a better approximation of the live point distribution by
using several ellipses, can reduce the number of rejections significantly. For multimodal
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4.2. Prior space sampling

posterior distributions, this effect is even greater. There is, however, a considerable
computational overhead in the clustering step (because, instead of only one, k ellipses
have to be determined, in addition to the clustering itself), and the sampling (the number
n of ellipsoid volumes a sample lies in has to be determined. Depending on the amount
of overlaps, a lot of samples have to be rejected).
The additional workload has to be balanced against the advantage of a better ap-

proximation. In the case of multimodal posterior distributions, clustered sampling is
mandatory, because a single ellipsoid always envelops all modes and thus contains a huge
amount of prior space volume between these modes where the likelihood does not fulfill
the constraint L > L0. A single ellipsoid could not contract further, and due to the
nature of nested sampling, the efficiency would decrease to zero with each iteration.
In order to achieve good performance, both the interval of re-clustering has to be

configured along with the efficiency fraction at which a new cluster is assumed, and the
maximum allowed number of clusters.
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4. Numerical methods

4.3. Likelihood function

A crucial point in Bayesian data analysis is the specification of a likelihood function to
relate the experimental data to a hypothesis. The likelihood for a single data point Dk,
Lk(Dk

∣∣ p,H), can usually be partitioned into two functions

Lk(Dk

∣∣ p,H) = prob
(
Dk

∣∣µH(k, p
)
) (4.13)

with µH(k, p) being the value expected, given the parameter vector p. It is thus necessary
to find an appropriate distribution prob

(
D
∣∣µ), as well as deriving expected values µH

from a hypothesis H and parameters p.

4.3.1. Statistical properties of the data

The required distribution prob
(
D
∣∣µ) depends on the nature of the experiment and the

collected data. The analyses described later (see chapter 5) are based on X-ray spectra.
These spectra were effectively gathered by binning single photon counts in a position-
space histogram. Thus, the distribution in each channel was assumed to follow a Poisson
distribution.

Pois(Dk

∣∣µH(k, p)) =
µH(k, p)Dke−µH(k,p)

Dk!
(4.14)

where the expected count µH(k, p) in a channel k must be expressed using the hypothe-
sis H.

Given that, a likelihood function for each channel k can be defined by

Lk(Dk

∣∣H, p) = Pois(Dk

∣∣µH(k, p)) (4.15)

and, due to the statistical independence of the data points Dk, combined to a total
likelihood by multiplication

L(D1, D2, . . . , Dm

∣∣H, p) =
∏
k

Lk(Dk

∣∣H, p) (4.16)

=
∏
k

µH(k, p)Dke−µH(k,p)

Dk!
(4.17)

Working with large products

In floating point arithmetics, real numbers are internally represented similar to the scien-
tific notation 234.5 = 2.345 ·102 (but to a base of 2 instead of 10). On multiplication, the
exponents are added and the mantissa are multiplied. For double precision floating point
numbers the exponent is represented by eleven bits [42], making its minimal value −1023
and its maximum +1023. Even with fairly small numbers, e. g. a = 210 = 1024, after
several multiplications

∏1000
k=0 a = 210000, these boundaries are pushed. Loss of precision
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4.3. Likelihood function

already occurs with much lower values.
Therefore, in these numerical computations, multiplications are usually replaced by

summations of the logarithms. Applying this principle on eq. 4.17 yields [30]

L̃ := ln(L) (4.18)

=
∑
k

ln

(
µH(k, p)Dke−µH(k,p)

Dk!

)
(4.19)

=
∑
k

[
Dk · ln(µH(k, p))− µH(k, p)

]
(4.20)
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4.4. General procedure

The general procedure of the Bayesian analyses was very similar for all of the experiments.
Due to the nature of the line shapes (see chapter 2) and their complicated representation,
a few preparational steps were necessary before the actual analysis.
The first and foremost step was to decide on a set of models to test. For most of

the analyses, the differences in models manifested themselves in varying kinetic energy
distributions. Based on that, a reasonable parameterization of these models had to be
established.

4.4.1. Parameterization

As discussed in section 2.2, a simplification was made by approximating complex kinetic
energy spectra with a few components using a superposition of rectangular-functions.
This superposition can be written as

S = R⊗

(∑
i

Di

)
⊗ L/G+ Ibg

=
∑
i

(R⊗Di ⊗ L/G)︸ ︷︷ ︸
Si

+Ibg

=
∑
i

Si + Ibg

with an additional constant background of Ibg. In order to parameterize the line shape S
properly, a total intensity I as well as relative intensities Ii have been extracted leaving
superposed line shape components S̃i

S = S(I, I1, . . . , Im) = I

[
(1−

m∑
i=1

Ii)S̃0 +

m∑
i=1

IiS̃i

]
+ Ibg (4.21)

Additional parameters arose of course from the Lorentzian component (width Γ), the
Gaussian broadening (standard deviation σ), and the position of the peak (defined at
the center of mass x0)

S̃i = S̃i(x0,Γ/σ)

⇒ S = S(x0,Γ/σ, I, I1, . . . , Im, Ibg)

These line shape components S̃i are not analytically expressable and must therefore be
rasterized and pre-calculated before the analysis. Thus, in order to evaluate parameter
values in-between the pre-calculated line shapes, interpolations have to be applied.
The scheme of the pre-calculations is illustrated in Figure 4.10. For each energy com-

ponent i, a trapezoidal distribution (see section 2.2) had to be generated and convolved
with the spectrometer response function (see section 2.5) as well as Lorentzian or Gaus-
sian curves of different widths Γj resp. σj to obtain a matrix of test spectra S̃i,j .
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4.4.2. Modeling the kinetic energy distribution

As discussed in section 2.2, the complex kinetic energy distribution was modeled using a
few narrow energy intervals. To get an estimate of the complexity of the kinetic energy
distribution, i. e. how many different components are necessary to describe an X-ray
spectrum, an iterative approach proved to be useful and was generally used throughout
the analyses:

Single low-energy component of unkown width was tested.

1st high-energy contribution in addition to the low-energy component. The correlation
between the width of the low-energy component and the position of the high-energy
contribution was studied.

2nd high-energy contribution was considered, and also its correlation to the position of
the 1st high-energy component.

Model-averaging and parameter inference was done after establishing one of the above
model sets as the most probable.

4.5. Interpolation of test spectra

Due to the complexity of the line shapes analyzed in this work, largely stemming from
the response function, no analytical description of the line shape is possible. In order
to overcome this, measured data spectra were instead compared with large sets of test
spectra, which have been pre-calculated at discrete parameter values.
Using these test spectra, some parameter values in-between the discrete points have

to be interpolated. As described in section 4.4.1, parameterization has been chosen in a
way, that the total line shape S is a superposition of individual line S̃i(x0,Γ/σ) and a
constant background Ibg (see eq. 4.21).
Subsequently, these individual line shapes S̃i were pre-calculated at discrete x-values

for a fixed center of mass x0 = 0 and several Γj or σj . The evaluation of other discrete
center of mass values x′0 was then just a matter of shifting the test spectrum along the
x-axis. To apply center of mass values between the discrete samples, the test spectrum
was shifted to the nearest discrete value, and an additional cubic spline interpolation was
performed. This required the selection of a test spectrum an appropriate Γ/σ, which itself
had to be interpolated. In order to achieve this, the following procedure was used [27]:

1. Given the parameter values (x0,Γ), choose three test spectra S̃i,j with Γj = bΓc,
Γj = bΓc+ 1, and Γj = bΓc+ 2.

2. Interpolate the center of mass x in each test spectra as described above, yielding
three y-values y0, y1, y2.

3. Correct the difference Γ− bΓc by parabolic interpolation between y0, y1, and y2.
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4. Numerical methods

Figure 4.10.: Scheme of the general procedure, common for all analyses. In principle,
it consists of three parts: 1. preparation of the test spectra and models, 2. numerical
evaluation of the evidences of each model by means of nested sampling, 3. visualization
and analyses of the results.
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4.6. Post processing

As mentioned above, the method of nested sampling primarily calculates a probability
weight for each tested model, but also produces large amounts of posterior samples (with
attributed weights), which mimic the posterior distribution of the model parameters.
This gives rise to the opportunity to extract more information about a parameter than

an averaged value and standard deviation (conventionally estimated by sample variance).
By projecting the posterior samples in one dimension i and subsequent binning, an
approximation of the distribution of this parameter λi can be achieved. This corresponds
to a marginalization over the remaining parameters λj 6=i. Using this histogram, an
estimate for the most probable value is available via the maximum.

4.6.1. Credibility intervals

The disparity between an actual posterior and a Gaussian distribution renders the quan-
tification of error margins by means of standard deviation ineffective. The interesting
point about the standard deviation, or in extend 2σ, 3σ intervals, is the containment of
≈ 68.3%, 95.4%, 99.7% of probability volume within 1σ, 2σ, 3σ intervals respectively.
By inversion of this relationship, thus calculating the interval which contains e. g. 68.3%
of the total volume, similar error margins are accessible, called (1σ) credibility interval(s).

4.6.2. Deconvolution

The numerical deconvolution used in this work is a technique developed by L. Simons [27]
and is based on bin-wise model-averaging of the kinetic energy distribution. The goal is
to determine a kinetic energy spectrum from a line shape with as little assumptions as
possible.
The idea is to divide the important part (0 eV to Tmax) of the kinetic energy scale into

n components Bi of width Tmax/n. Using m pairwise different components out of n, a
total of N models are generated

N =
n!

m! · (n−m)!
.

After the evaluation by means of nested sampling, each of the N models has an at-
tributed probability weight wk (given by the Bayes factor), and relative intensities for
each component (given by the inferred parameters Ik,i). A model-averaged intensity Ii
for the ith channel is then available via3

Ii =

∑
k Ik,i · wk∑

k wk
.

3Ii must not be confused with the circumstantial information I of section 3.2.
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5. Analysis

5.1. Simulation of pionic hydrogen (πH) spectra

In order to assess the sensitivity of the analysis methods, simulations of πH transitions
were carried out with a few simplified kinetic energy distributions, each consisting of
two narrow intervals - one low-energy component at 0 − 2 eV(L) and one high-energy
contribution at 72−74 eV(H). All simulations used the same parameter values (specified
in Table 5.1), but three different relative intensities, namely L/H = 50/50, 70/30 and
85/15.
The analyses of the simulated spectra helped to understand the limitations of the

method itself and the correlation of the precision of the analysis with the statistical
quality of the data.

1. How well can the low- and high-energy contributions be distinguished i. e. can
positions, widths and intensities be reproduced and to which accuracy?

2. To which extend is the hadronic width reproduced and in particular by the corre-
lation of the intensity of the high-energy components and the hadronic width?

parameter value

peak position channel 600

hadronic width 900 eV

line intensity 43190 counts

background 8.3 counts / channel

low-energy box 0− 2 eV

high-energy box 72− 74 eV

Table 5.1.: Parameter values used in all of the simulations. The parameters are adapted
to a measurement of the πH(2p-1s) transition.
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5.1.1. Model-independent approach

To minimize the assumptions, a model-independent approach was chosen, especially con-
cerning the structure of the kinetic energy spectrum. Therefore 8436 different models,
consisting of three differently positioned Doppler components, of common width of 4 eV
each, were generated and evaluated. This yielded an evidence along with posterior dis-
tributions — and along with these, parameter estimates — for each one of the models.

5.1.2. Most probable model

Although the Bayesian methodology provides — in theory — a precise way to assess and
weigh different models against each other by comparing each ones evidence, in practice,
due to the statistical nature of the data and the nested sampling algorithm itself, the
evidence disperses. Thus identification of a single, best model is not possible and model-
selection requires a more fine-grained approach. This difficulty can be demonstrated by
showing the three most probable models for each simulation in Figures 5.1, 5.2, 5.3.
It is obvious, that the configuration of the high-energy component disperses, although

the Bayes factor ln(B) does not indicate substantial evidence towards the top-most model.

Figure 5.1.: Comparison of the input spectrum of the πH 50/50 simulation with the three
most probable spectra / models. These models do not differ much in evidence, but already
show a broad range of probable configurations of the high-energy component. The low-
energy component is consistent along all models. The simulation input spectrum has a
bin width of 2 eV, whereas the model spectra are binned in 4 eV intervals.

Hence a simple model-selection if not feasible. Even for the 50/50 model, a total of 469
(out of 8436) models showed a Bayes factor ln(B) < 2, compared to the highest evidence.
In order to work out the structure of the kinetic energy distribution, a procedure to
model-average this structure is necessary, such as the deconvolution technique described
in section 4.6.2.
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Figure 5.2.: Comparison of the input of the πH 70/30 simulation with the three most
probable spectra / models. The larger spread of these models already indicate a decrease
in sensitivity.

Figure 5.3.: Comparison of the input of the πH 85/15 simulation with the three most
probable spectra / models. With only 15% in the high-energy component, the sensitivity
is strongly limited by the statistical nature of the data.
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5.1.3. Model-averaging

Despite the fact, that even the 50/50 simulation evidences show no sharp peak favoring
a single model, taking advantage of all the information contained in all models and
posterior distributions can produce valueable results.

Deconvolution of the Doppler spectrum

The model-averaging of the different kinetic energy spectra yields a distribution which
approximates the input spectrum, but disperses significantly. This dispersion reflects the
uncertainty and limited information contained in the data.

Figure 5.4.: Model-averaged spectrum of the 50/50 πH simulation. The high-energy peak
is centered around the expected position of 72 eV, but is significantly broadened.

These examples provide a guidance to the analysis of the πH spectra, concerning the
inherent limitations. It is important to state the fact, that these limitations are founded
in the limited information content of the data and cannot be substantially improved by
more precision (e. g. by using more than the 8436 models).
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Figure 5.5.: Model-averaged spectrum of the 70/30 πH simulation. Compared to the
50/50 simulation, the dispersion of the high-energy component is even wider with its
maximum between 70 eV and 80 eV. The height of the first channel (0 eV to 4 eV) is
55.4%.

Figure 5.6.: Model-averaged spectrum of the 85/15 πH simulation. For such a small
high-energy component no structure or position can be reproduced. The 0 eV to 4 eV
channel has a height of 80.5%.
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Hadronic width

Another important quantity to be studied in pionic hydrogen is the hadronic width Γ1s of
the ground state. Figures 5.7, 5.8 and 5.9 show model-averaged posterior distributions,
resp. their projections to the parameter Γ1s. These posterior distributions incorporate
all models with a Bayes factor (relative to the maximal evidence) of ln(B) > −5.

Figure 5.7.: Model-averaged posterior distribution for the hadronic width Γ1s of the
simulated 50/50 πH spectrum. This histogram is built from 2016 models with a Bayes
factor ln(B) > −5. The most probable value is 882 meV with a credibility (1σ) interval
from −26 meV to +26 meV.

These inferred Γ1s values are largely consistent with the input parameters of the simu-
lations. It was expected that at least for the 85/15 simulation, the uncertainty increases
as the high-energy component could not be reproduced and all width-contributing fac-
tors correlate. Contrary to that, apart from a little shift of the most probable value (well
within the 1σ interval), the 1σ credibility intervals coincide.
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Figure 5.8.: Model-averaged posterior distribution for the hadronic width Γ1s of the
simulated 70/30 πH spectrum. 1203 models with a Bayes factor ln(B) > −5 were
averaged to create this histogram. The most probable value is 880 meV with a credibility
(1σ) interval from −27 meV to +27 meV.

Figure 5.9.: Model-averaged posterior distribution for the hadronic width Γ1s of the
simulated 85/15 πH spectrum. It is based on 1095 models with a Bayes factor ln(B) >
−5. The most probable value is 884 meV with a credibility (1σ) interval from −25 meV
to +24 meV.
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5.1.4. Position, intensity and background

As for the hadronic width Γ1s, the model-average for the remaining parameters of each
simulation have been determined, inluding their 1σ credibility interval, and can be found
in Table 5.2. As expected the peak position can be reproduced very accurately. The
results are overall consistent with each other and the input parameters, regarding the
most probable values and credibility intervals. As difficult as comparing just a few models
was (see section 5.1.2), a model-independent approach by evaluating a large mount of
different configurations provided a powerful way to extract a maximum of information
about the model parameters.

simulation parameter value credibility

50/50

peak position [channels] 599.669 −0.161 +0.161

hadronic width [meV] 882 −26 +25

line intensity [counts] 43663 −278 +278

bg. [counts / channel] 8.054 −0.280 +0.280

70/30

peak position [channels] 599.658 −0.147 +0.147

hadronic width [meV] 880 −27 +27

line intensity [counts] 43647 −281 +281

bg. [counts / channel] 8.077 −0.284 0.286

85/15

peak position [channels] 599.691 −0.138 +0.138

hadronic width [meV] 884 −25 +24

line intensity [counts] 43657 −274 −273

bg. [counts / channel] 8.030 −0.270 +0.275

Table 5.2.: Model-averaged parameter estimates for the three πH simulations.
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5.2. Pionic hydrogen πH(2p-1s)

After the assessment of the sensitivity and limitations of the analysis methods, a first
application was to study the 2p-1s transition in pionic hydrogen (πH). The focus was the
determination of the kinetic energy distribution in order to achieve a reliable estimate for
the hadronic width of the ground state. To accomplish this, a step by step analysis was
performed, beginning with a simple, assumed kinetic energy spectrum of one Doppler
contribution starting at 0 eV.

Figure 5.10.: Line shape of the measured πH(2p-1s) transition compared to the spec-
trometer response and a line shape composed of the response and a Lorentzian width of
Γ1s = 823 meV [2] without any Doppler broadening.

5.2.1. Low-energy component

The simplest possible spectrum consists of a single Doppler contribution at 0 eV with an
unknown width. To determine this width, 120 1-component models with widths between
0.25 eV and 30 eV were generated and evaluated (see Figure 5.11).

The results favor a width of about ≈ 12 eV, but with a rather large uncertainty as the
evidences between & 6 eV to . 15 eV provide only weak Bayes factors. The position of
the maximum around 12 eV could indicate high-energy components, which would cause
an overestimation of the width of a single component model.
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Figure 5.11.: Probabilities (logarithmic) of 120 different models with a single Doppler
contribution starting at 0 eV and variable widths. The low evidences for narrow energy
intervals (. 6 eV) may indicate the presence of high-energy components, which could
cause an overestimation of the width. The maximum (reference) value has a (logarithmic)
evidence of emax,1-comp. = 211549.07.

5.2.2. High-energy components

To study the possibility of high-energy contributions and to determine the width of the
low-energy component along the way, a set of 17969 models with two components each
and different configurations have been generated. These configurations included the same
variation of the width of the low-energy component (fixed at 0 eV) along with different
positions of a high-energy contribution (of fixed width 2 eV). The evaluated evidences
are displayed as scatterplot in Figure 5.12.
To counteract statistical noise and smoothen the distribution, this scatterplot was

convolved with a two-dimensional Gaussian distribution with σx = 0.375 eV, σy = 1.5 eV.
This allowed to determine an approximate maximum at (1.25 eV, 69 eV) as well as contour
lines for the Bayes factors (see Figure 5.13). These contour lines reveal a large area of
possible 2-component configurations with weak Bayes factors (against the maximum).
Nevertheless, the distinctness of the maximum at a position > 0 eV suggests, that there
is at least one significant high-energy component in the kinetic energy spectrum. This
is supported by the Bayes factor ln(B) = emax, 2-comp. − emax, 1-comp. = 2.86 between the
maximum 2-component and the maximum 1-component model.
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Figure 5.12.: Scatterplot of Bayes factors ln(B) for different configurations of 2-
component models. The position of the low-energy contribution is fixed at 0 eV as well
as the width of the high-energy component (2 eV). There is a clear maximum for a
narrow (. 2 eV) low-energy contribution with another component around ≈ 70 eV. The
maximum (reference) value has a (logarithmic) evidence of emax, 2-comp. = 211551.93.

Figure 5.13.: Bayes factors after smoothing with a two-dimensional Gaussian and extrac-
tion of contours. A clear maximum (ln(B) = 0) is found at around (1.25 eV, 69 eV) but
the area of configurations with a weak (see Table 3.1) Bayes factor to the maximum is
rather large.
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5.2.3. Search for a 3rd Doppler contribution

The confirmation of high-energy components in the πH spectrum begs the question, if
there is a resolvable structure in form of 2 distinguishable high-energy Doppler compo-
nents. In order to test this hypothesis, a set of 3-component models was generated, each
with 2 distinct high-energy contributions at different positions and one fixed low-energy
component at 0 eV with a width of 1 eV.

The scatterplot of the evaluated Bayes factors reveals a maximum for a 2nd contribu-
tion at ≈ 0 eV and a 3rd one at ≈ 70 eV, thus an effective 2-component model. This
falsification of a 3-component model is supported by the Bayes factor between the best
3-component and best 2-component model emax, 3-comp. − emax, 2-comp. < 300. This huge
difference demonstrates the effect of Occam’s razor in Bayesian model-selection: although
the favored 3-component model is in principal identical to the 2-component model, the
presence of an additional, redundant parameter causes a massive drop in the evidence.

Figure 5.14.: Scatterplot of evidences for 3-component models with the first contribution
fixed at 0 eV. There is an obvious maximum for configurations with the 3rd component
around 0 eV (effective 2-component models). emax, 3-comp. = 211240.86
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model max. evidence ln(B) B

2-comp. 211551.93

1-comp. 211549.07 2.86 17.5

3-comp. 211240.86 311.07 > 10135

Table 5.3.: Comparison of 1, 2 and 3 components modeling the kinetic energy spectrum of
the πH(2p-1s) X-ray line. Highest evidence is found for a 2-component model at 0−2 eV
and ≈ 70 eV. The 3-component models are strongly suppressed by their Bayes factors,
which demonstrates the effect of Occam’s razor in Bayesian model-selection making a 3rd

component superfluous.

5.2.4. Hadronic width

Analogous to the analysis of the simulated πH spectra, a model-averaged posterior distri-
bution for the hadronic width Γ1s is produced by a weighted combination of the posterior
distributions of each model, where the weights are the Bayes factors. This allowed the
determination of a most probable value for the hadronic width Γ1s as well as credibility
intervals.
As there was no evidence found for a 2nd high-energy component, the posterior was

generated using the samples of the 2-component models, more precisely all 9098 models
with a Bayes factor ln(B) > −5. The histogram is shown in Figure 5.15 along with the
maximum likelihood value and the 1σ credibility interval.

Figure 5.15.: Posterior histogram for the hadronic width Γ1s, based on the samples of
9098 averaged 2-component models with a Bayes factor ln(B) > −5.
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parameter value
credibility

1σ 2σ 3σ

Γ1s [meV] 878 −29 +32 −57 +63 −86 +89

peak pos. [channels] 888.005 −0.141 +0.141 −0.281 +0.282 −0.422 +0.423

peak int. [counts] 43942 −301 +307 −599 +614 −896 +918

bg. [counts / channel] 9.617 −0.349 +0.345 −0.694 +0.686 −1.026 +1.027

Table 5.4.: Estimate for the hadronic width Γ1s with different credibility intervals and
the remaining parameters as well.

5.2.5. Relative intensity of the low-energy component

The relative intensity of the low-energy component was inferred similarly to the hadronic
width by determining the most probable value via the posterior projection (Figure 5.16).

Figure 5.16.: Posterior histogram for the relative intensity of the low-energy component,
based on the samples of 9098 averaged 2-component models with a Bayes factor ln(B) >
−5.

70



5.2. Pionic hydrogen πH(2p-1s)

parameter value
credibility

1σ 2σ 3σ

rel. int. [%] 85.0 −6.5 +5.6 −21.8 +11.9 −77.9 +14.5

Table 5.5.: Estimate of the relative intensity of the low-energy component with different
credibility intervals.

5.2.6. Conclusions

The comparison with the previous results, obtained by frequentistic methods of data
analysis (see section 3.1), shows a general consistency [1, 2].
The value of the hadronic width of the ground state of Γ1s = 878 +32

−29 eV includes the
previous result of Γ1s = 902 +25

−25 meV [43] within its 1σ interval.
Furthermore, the difficulty to distinguish a high-energy structure in the kinetic energy

distribution could be resolved, and the assessment of a major low-energy component
85.0 +5.6

−6.5 % holds (compared to an estimation of 85 +5
−5 % in [43]). Based on the Bayes

factors (Table 5.3, Figure 5.14), it is conclusive, that for the present data, only one
high-energy component is measurable.
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5.3. Pionic deuterium πD(3p-1s)

The study of pionic deuterium aims at the determination of the hadronic width of the
ground state (see section 2.3).

The measured spectrum of the 3p-1s transition is shown in Figure 5.17, along with the
spectrometer response function, and a line shape constructed from the response function
and a Lorentzian width of Γ1s = 1171 meV [4].

Figure 5.17.: Line shape of the measured 3p-1s transition of pionic deuterium. Additional
to the data, the spectrometer response and a Lorentzian convolution (Γ1s = 1171 meV [4])
are shown. In contrast to the case of the πH(2p-1s) (Figure 5.10), no clear indication for
a Doppler broadening is seen here.

5.3.1. Determining the width of low-energy component

Again, the simplest line shape possible to assess contains only a single, low-energy
Doppler contribution at 0 eV. To pin down the width of such a low-energy component,
100 models with widths between 0.5 eV and 50 eV have been evaluated and compared
(see Figure 5.18). This comparison did not allow for an exact determination of the width,
as the statistics of the available data limits the sensitivity of this analysis, but the width
could be limited to be T . 10 eV. The Bayes factor between the models with the highest
and the lowest evidence is just ln(Bmin,max) = 0.44.
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Figure 5.18.: Bayes factors for the πD(3p-1s) line using 100 different single Doppler
component models with different widths. The maximal evidence is e1-comp. = 33646.38.

5.3.2. Search for high-energy contributions

To study the possibility of high-energy Doppler components (T > 0 eV), 1000 models
with differently positioned high-energy components (between 0−50 eV, with width 2 eV)
and varying low-energy contributions (of widths 0.5− 10.0 eV) have been evaluated and
compared. The two-dimensional evidence distribution is shown in Figure 5.19. The
purpose of the variation of the width of the low-energy component within the priorily
established limits was to eliminate a possible shadowing of a high-energy component by a
broad low-energy component. The comparison of the different 2-component models show
no indication for a high-energy contribution. In fact, the maximal evidences were found
for the effective 1-component models (where the position of the second contribution is at
0 eV - along with the fixed position of the low-energy component).

kin. energy dist. max. evidence ln(B) B

2-comp. 33646.75

1-comp. 33646.38 0.37 1.5

Table 5.6.: Comparison of the different models using the evaluated Bayes factors. The
difference in evidence between the 1-component and 2-component models is negligible.
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Figure 5.19.: The comparison of 57595 different 2-component models shows no significant
indication for a high-energy Doppler contribution. Effective single component models are
preferred of a width of about T . 10 eV. This is consistent with the result of section 5.3.1.
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5.3.3. Hadronic width

The second component contributing significantly to the line shape is the Lorentzian width
of the ground state. As both the kinetic energy as well as the hadronic component cause
a broadening of the line their parameters strongly correlate. This dependence becomes
obvious by plotting each maximum likelihood hadronic width Γ1s of the 100 models in
section 5.3.1 against the width of the low-energy component (Figure 5.20). Thus, the
determination of the hadronic width Γ1s cannot be accomplished without considering the
kinetic energy distribution, even if it contains only a low-energy component.

Figure 5.20.: The direct correlation of the width of the low-energy component with the
hadronic width Γ1s is shown in this plot. Each point corresponds to a different kinetic
energy model with one component and width given at the horizontal axis. The value at
the vertical axis shows the most probable Γ1s value for that model.

To produce a model-independent posterior distribution for the hadronic width Γ1s,
all posterior samples of all 2-component models in section 5.3.2 have been combined,
weighted by their evidences. This posterior projection, shown in Figure 5.21 is based on
a total of 6822881 samples

5.3.4. Conclusions

The analysis of the πD(3p-1) data confirmed the previous results, that no high-energy
Doppler contributions are detectable in the measured spectrum [4]. The upper limit of
the low-energy component was reestablished with the same magnitude ≈ 10 eV.
The comparison with the hadronic width Γ1s = 1171 +23

−49 meV shows a good coincidence
with the result of this work (1142 +28

−32 meV), regarding both the most probable value, as
well as the error margins.
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Figure 5.21.: Combined posterior distribution of the hadronic width Γ1s with an average
of 1142 meV and a credibility (1σ) interval of −32 meV,+28 meV.

parameter value
credibility

1σ 2σ 3σ

Γ1s [meV] 1142 −32 +28 −66 +56 −102 +84

peak pos. [channels] 817.520 −0.140 +0.141 −0.280 +0.281 −0.420 +0.421

peak int. [counts] 8823 −104 +105 −207 +210 −310 +317

bg. [counts / channel] 3.223 −0.105 +0.108 −0.209 +0.217 −0.311 +0.329

Table 5.7.: Estimate of hadronic width Γ1s and the remaining parameters in πD and
common credibility intervals.
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5.4. Muonic hydrogen µH(3p-1s)

The last spectrum analyzed was the 3p-1s transition of muonic hydrogen. As discussed
in chapter 2, the width of this line shape has no Lorentzian component and is, therefore,
ideal to study the Doppler broadening stemming from the kinetic energy distribution.

Figure 5.22 shows the data, collected at the Paul-Scherrer-Institute (PSI), Switzer-
land, along with the response functions of the individial peaks (see section 2.4) and the
sum of these (with the theoretical hyperfine splitting value of 182.725 meV, and the as-
sumed triplet / singlet population ratio of 3/1). All additional width of the line shape is
attributed to the Doppler broadening.

Figure 5.22.: Line shape of the measured 3p-1s transition of muonic hydrogen. Addi-
tional to the data, the individual spectrometer responses for each hyperfine peak and the
cumulative response function are shown. The measured line shape is considerably wider
than the response, which is the effect of the Doppler broadening.

5.4.1. Low-energy component

Although for µH at least one high-energy contribution is expected, for the sake of com-
pleteness a brief analysis with a single low-energy component was performed. The Bayes
factors for each test width (0.25 eV to 30 eV) are depicted in Figure 5.23. The pronounced
maximum at about T ≈ 18 eV suggests the presence of significant high-energy contribu-
tions. Therefore, as in the previous analysis with the frequentist approach [6, 7, 8] the
analysis was continued with 2-component models.
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Figure 5.23.: Probabilities (logarithmic) of 120 different models with a single Doppler
contribution starting at 0 eV and variable widths. The vanishingly low evidences for nar-
row energy intervals (. 12 eV) indicate the presence of high-energy components, causing
an overestimation of the width. The maximum (reference) value has a (logarithmic)
evidence of emax,1-comp. = 50171.36.

5.4.2. Search for high-energy contributions

Analogous to the procedure in the πH and πD analysis, a high-energy component was
added, along with variable widths of the low-energy component and finally evaluated.
The resulting Bayes factors can be found as scatterplot in Figure 5.24. Apart from a
relatively flat global maximum at (≈ 4.25 eV, 41 eV), the Bayes factors show a second
local maximum. The contour lines themselves suggest that the shape is made from
two ellipsoids. The conclusion that this is a hint for a second high-energy contribution
seems natural. Compared to the single low-energy models in section 5.4.1, the Bayes
factor ln(B1-comp.,2-comp.) = 57.04 clearly dictates the presence of at least one high-energy
component.
To conclude the considerations of the 2-component models, the relative intensity of the

low-energy contribution was studied. Again using model-averaging for all models with a
Bayes factor ln(B) > −5, the distribution of the low-energy intensity yields for a most
probable value and 1σ credibility interval 65.5± 3.4% (Figure 5.25).

5.4.3. 2nd high-energy contribution

As the evaluation of 2-component models already suggested to search for a 2nd high-
energy contribution, the analysis was continued with 3-component models. Basing on
the results of section 5.4.2 a low-energy component was fixed at 0 eV to 4 eV and two
high-energy contributions were added at different positions. The calculated Bayes factors

78
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Figure 5.24.: Comparison of different 2-component models, with a low-energy contri-
bution at 0 eV and variable width, and a high-energy component at positions between
23− 64 eV (of fixed width 2 eV), max. (logarithmic) evidence emax, 2-comp. = 50228.40

Figure 5.25.: Distribution of the model-averaged relative intensity of the low-energy com-
ponent in the µH analysis with two Doppler contributions. Mean is 65.5% with a credi-
bility interval (1σ) of −3.4% to +3.4%.
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according to the positions of the high-energy components can be found in Figure 5.26.
Although there is a flat maximum at about (23 eV, 57 eV), the contours are signifi-
cantly larger and less peaked compared to the 2-component results. The Bayes factor
ln(B2-comp., 3-comp.) = 0.78 weakly favors a 3-component model. Furthermore, if a 2-
component model would be more probable, the maximum should be found near one of
the axes, similar to the πH analysis, where no indication for a 3rd component could be
found (see section 5.2.3).

Figure 5.26.: Comparison of different 3-component models with a fixed low-energy contri-
bution at 0 eV to 4 eV and two variable high-energy components. There is a flat maximum
at (23 eV, 57 eV). The maximal (logarithmic) evidence is emax,3-comp. = 50229.18.

Low-energy component

The low-energy component of the kinetic energy distribution marks an important quan-
tity to compare the experimental results to ESCM calculations. Using the posterior
samples of the 3-component model-selection along with their weights (Bayes factors), a
model-averaged posterior projection for the relative intensity of the low-energy contribu-
tion is produced (see Figure 5.27).
Compared to the 2-component models (Figure 5.25), the distribution is significantly

more asymmetric with a maximum at 65.02 % and a credibility interval (1σ) of −4.33 %
to +2.58 %.
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Figure 5.27.: Histogram of the model-averaged relative intensity of the low-energy com-
ponent in the µH analysis with three Doppler contributions. The most probable value is
at 65.02 % with a confidence interval (1σ) of −4.33 % to +2.58 %.

Hyperfine structure

The hyperfine structure of the hydrogen atom (see section 2.4) manifests itself in the
presence of a second peak. The distance between these peaks corresponds to the energy
splitting (see eq. 2.1) and the intensity ratio to the population of the singlet and triplet
states.
With the help of the posterior samples and their model weights, a two-dimensional

projection (scatter plot) of the posterior for these quantities could be produced (see
Figure 5.28). There is a strong correlation present between the hyperfine splitting and
the occupation of the states.
The calculated value for the hyperfine splitting of the ground state is, as given in

section 2.4, 182.725 meV, which lies well within the 2σ credibility interval of the experi-
mental value (Table 5.8).
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parameter value
credibility

1σ 2σ 3σ

splitting [meV] 212.08 −21.81 +23.18 −47.48 +57.69 −88.01 +298.98

NT/NS 3.19 −0.70 +1.59 −1.33 +4.98 −1.94 +21.09

peak 1 pos. [channels] 975.083 −0.526 +0.555 −1.082 +1.158 −1.718 +1.834

peak 2 pos. [channels] 986.379 −1.365 +1.602 −2.84 +3.998 −4.804 +14.342

peak 1 int. [counts] 7921 −573 +563 −1234 +1185 −2119 +1885

peak 2 int. [counts] 2198 −555 +570 −1173 +1231 −1843 +2115

bg. [counts / channel] 10.154 −0.144 +0.147 −0.291 +0.298 −0.441 +0.455

Table 5.8.: Hyperfine splitting and distribution ratio NT/NS of the triplet / singlet states
for the muonic hydrogen 3-component models in the ground state (1s), along with the
remaining parameters.

Figure 5.28.: Model-averaged scatterplot of the hyperfine splitting to the intensity ratio
(of the two peaks). In total 21734069 posterior samples for 3-component models have
been combined to produce this plot. The correlation between the hyperfine splitting and
the intensity ratio is evident. A maximum can be found at about (212.08 meV, 3.19).
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5.4.4. Deconvolution

Using the method described in section 4.6.2, a deconvolution of the underlying kinetic
energy distribution was performed. The basis for this deconvolution were 20825 different
3-component models, with each component 3 eV wide. The resulting spectrum shows
the expected dominance of a low-energy contribution with a relative intensity of 60.60 %.
Noticable is the discrepancy to the previous result (Figure 5.27) with 65.02 %. This
is due to the fact, that this deconvolution technique is based on weighted averages of
each component’s relative intensity. The previous result of 65.02 % though, is the most
probable value of an extremely asymmetrical distribution and therefore not coherent with
the weighted average.

Figure 5.29.: Deconvoluted kinetic energy spectrum of the muonic hydrogen. The low-
energy component has a proportion of 60.60 % of the total intensity. There are clear
indications for high-energy components, but a reconstruction of a more complex structure
was not possible.
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5.4.5. Fixed hyperfine splitting

Additionally to the 3-component models with hyperfine splitting h as a free parameter,
a set of 3-component models with h = 182.725 meV set to the theoretical value [18], was
analyzed. The overall shape of the probability (evidence) distribution (Figure 5.30) is
similar, but the maximum is slightly sharper (compared to Figure 5.26).

Figure 5.30.: Comparison of different 3-component models with a fixed low-energy con-
tribution at 0 eV to 4 eV and two variable high-energy components. There is a flat maxi-
mum at about (25 eV, 55 eV). The maximal evidence is emax,3-comp. = 50231.41, yielding
a Bayes factor (in comparison with the analysis in section 5.4.3) of ln(B) = −2.23.

Relative population of the triplet / singlet states

The triplet / singlet population ratio correlates strongly with the hyperfine splitting (see
section 5.4.3). It was, therefore of particular interest how the posterior for this parameter
evolves, if the hyperfine splitting is fixed to the theoretical value of 182.725 meV.
Based on the 3-component evaluations, the histogram for the NT/NS posterior projec-

tion was created and its maximal value and credibility intervals were determined. The
correlation causes a lower most probable value for the triplet / singlet population as
expected, along with smaller credibility intervals.
The expected value of 3, originating from a statistical population, lies well within the

1σ-interval.
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Figure 5.31.: Comparison of the model-averaged intensity ratio of the µH 3-component
analysis with fixed, theoretical hyperfine splitting of 182.725 meV and splitting being a
free parameter.

parameter value
credibility

1σ 2σ 3σ

NT/NS 2.54 −0.51 +1.13 −0.95 +3.00 −1.31 +7.38

Table 5.9.: Relative population NT/NS of the triplet / singlet states for the muonic hy-
drogen 3-component models in the ground state (1s) with hyperfine splitting fixed to the
theoretical value.
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Relative intensity of the low-energy component

The most probable value for the low-energy intensity is slightly lower if the hyperfine
splitting is fixed to its theoretical value. The values though, are still within their 1σ
intervals and therefore do not contradict each other.

Figure 5.32.: Comparison of the model-averaged relative intensity of the low-energy com-
ponent in the µH 3-component analysis with fixed and free hyperfine splitting.

parameter value
credibility

1σ 2σ 3σ

low-energy int. [%] 63.59 −3.70 +2.31 −8.16 +4.36 −13.81 +6.18

Table 5.10.: Relative intensity of the low-energy component with fixed hyperfine splitting.

Deconvolution

The deconvolution of the kinetic energy spectrum with a fixed hyperfine splitting value
shows significantly more structure (Figure 5.33). It reveals the presence of two high-
energy components. The first maximum is at around 25 eV with a spread of ≈ ±15 eV,
and another at 50 eV with a much larger width. This is in agreement with the 3-
component evaluation in section 5.4.3.
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Figure 5.33.: Deconvolution / model-averaged kinetic energy distribution for the µH
analysis with fixed hyperfine splitting in comparison to the previous result. The relative
intensity of the first bin is 53.7%. This deconvolution shows more structure: two more
or less distinctive high-energy components can be recognized, around 25 eV and 50 eV.
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5.4.6. Theoretical kinetic energy distribution for the µH 3p state

After the evaluation of different simplified kinetic energy distributions, modeled by 1, 2
or 3 components, two complex distributions for the 3p-1s transition in muonic hydrogen,
calculated with the ESCM framework by V. Popov and V. Pomerantsev [25] from 2008
and 2013 have been applied to the measured data.

Figure 5.34.: The 2008 and the 2013 kinetic energy distribution of the 3p-1s transition
in muonic hydrogen, calculated by means of the ESCM framework by V. Popov and V.
Pomerantsev [25]. The predicted spectra differ mainly in the shape of the low-energy part
(due to different binning), and slightly around the component between 50 % and 60 %.

The 2008 ESCM kinetic energy distribution was first transformed into a line shape
(see section 4.4), by generating a line shape for each bin individually, and superposing
these using the bin heights. The thus obtained test spectrum was evaluated against the
data 24 times to counteract the dispersion of the evidence and to produce more samples.
This yielded an average (logarithmic) evidence of eth,2008 = 50227.77 ± 0.28, which is
slightly below the maximal evidence for the 2-component analysis of 50228.40.

The assessment of the 2013 kinetic energy distribution, though, resulted in an even
smaller average (logarithmic) evidence of eth,2013 = 50225.73±0.22. This relatively large
difference to the simplified 3-component model was unexpected and the result for the
most recent, and more precise 2013 spectrum was puzzling. As the difference between the
two kinetic energy distributions is the shape of the low-energy component (Figure 5.35),
it was decided to test the 2013 spectrum with a re-binned (to 1 eV) low-energy part, which
yielded an improved average (logarithmic) evidence of 50227.66 ± 0.28, very similar to
the 2008 result. In addition, the re-binned 2013 spectrum was analyzed 24 times with
a fixed hyperfine splitting parameter (182.725 eV), which gave an average (logarithmic)
evidence of 50226.96± 0.28

This sensitivity to the shape of the low-energy component was studied in an additional
analysis (see section 5.4.7).
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Figure 5.35.: Detailed view of the low-energy part of the two theoretical kinetic energy
distributions (see Figure 5.34). The 2013 spectrum is more detailed below 2 eV with a
binning of 0.1 eV (contrary to 1 eV for the rest of the 2013 and the entire 2008 distribu-
tion).

Hyperfine structure and triplet / singlet population ratio

The results for the hyperfine splitting and the triplet / singlet population ratio (Ta-
ble 5.11) show smaller confidence intervals than before (see Table 5.8). The most prob-
able values of triplet / singlet population ratio, though, differ greatly from the previous
results, and the evidences (mentioned above) suggest that these distributions do not
match the data as well as the simplified 3-component model. The same behavior is
found in the evaluation of the 2013 re-binned spectrum with fixed hyperfine splitting,
where the expected population ratio 3 is far from the result 1.70 +0.33

−0.24 and even beyond
the 3σ interval.

5.4.7. Shape of the low-energy component

Driven by the results of the theoretical kinetic energy spectra and the assumed depen-
dence on the shape of the low-energy contribution, the analysis was extended by two
steps:

1. Verifying the width of the low-energy component by varying it in the presence of
two high-energy components at the previously established positions of 23 eV and
57 eV.

2. Subdividing the low-energy component into six components, additional to the two
fixed high-energy contributions.

89



5. Analysis

kin. en.
dist.

parameter value
credibility

1σ 2σ 3σ

2008
split. [meV] 213.40 −11.09 +12.81 −21.74 +25.53 −32.17 +38.90

NT/NS 2.32 −0.38 +0.47 −0.70 +0.99 −0.98 +1.60

2013
split. [meV] 209.71 −10.03 +11.01 −19.41 +22.06 −28.76 +33.48

NT/NS 2.10 −0.31 +0.38 −0.59 +0.78 −0.82 +1.25

2013 split. [meV] 213.69 −11.00 +12.75 −21.74 +25.21 −32.21 +38.75

1 eV bins NT/NS 2.31 −0.38 +0.46 −0.70 +0.97 −0.98 +1.56

2013
1 eV bins
fixed hfs

NT/NS 1.70 −0.24 +0.33 −0.47 +0.69 −0.65 +1.08

Table 5.11.: Hyperfine splitting and distribution ratio NT/NS of the triplet / singlet states
for the muonic hydrogen theoretical kinetic energy distribution.

Width of the low-energy component

In order to verify the width of the low-energy component, 100 models with widths varying
from 0.1 eV to 10 eV and fixed high-energy contributions at 23−25 eV and 57−59 eV have
been generated and each one evaluated 20 times. The maximal evidence thus achieved
was 50230.18.
The resulting distribution of the width of the low-energy component is shown in

Figure 5.36, weighted averaging gave a result of (4.66 ± 1.96) eV, which is consistent
with the result of section 5.4.2.

Precise shape of the low-energy component

The next step was to test an 8-component model, with two high-energy contributions
at 23.5 − 24.5 eV and 57.5 − 58.5 eV (similar to those before, but of smaller width),
and a subdivided (by 1 eV components) low-energy part between 0 − 6 eV. This model
was evaluated 120 times with a fixed and free hyperfine splitting parameter to generate
enough samples in order to reliably determine the intensities of the low-energy slices.
The average (logarithmic) evidence thus found was 50333.88± 0.33 (for free hyperfine

splitting) and 50233.84± 0.32 (for fixed hyperfine splitting) and, therefore, considerably
better than the 3-component models with a rectangular low-energy component.
In order to reconstruct the individual relative intensities of the low-energy components,

the most probable value for each of these and the high-energy components was determined
individually using all samples and attributed weights of all 120 evaluations. The result
is shown in Figure 5.37.
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Figure 5.36.: Distribution of the low-energy component width, resulting in a total 20
evaluations of 100 different widths between 0.1 eV and 10 eV. The weighted average gave
a width of 4.66± 1.96 eV.

Figure 5.37.: Reconstructed low-energy component of the µH(3p-1s) X-ray line. The
shown intensities are the respective most probable values along with the 1σ credibility
interval. The model of six low-energy components provides a better agreement with
the data than the 3-component model with a single, rectangular low-energy contribution
(ln(B) = −4.7). This supports the conclusion in section 5.4.6, that the analysis is
sensitive to the shape of the low-energy component.
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Although the error margins are relatively high compared to the most probable value,
a tendency can be seen for a maximum at 0 eV, followed by smaller contributions. In
the case of the theoretical hyperfine splitting, the 0 eV energy component is significantly
more distinctive.

hfs parameter value
credibility

1σ 2σ 3σ

free
0− 1 eV

12.35 −7.54 +11.28 −11.47 +24.30 −12.29 +35.76

fixed 21.56 −14.63 +10.02 −20.26 +21.44 −21.47 +31.09

free
1− 2 eV

9.44 −5.72 +12.22 −8.79 +25.93 −9.40 +38.05

fixed 9.01 −5.54 +12.79 −8.42 +28.16 −8.97 +40.37

free
2− 3 eV

8.38 −5.17 +12.10 −7.83 +27.71 −8.34 +40.94

fixed 6.86 −4.27 +10.76 −6.42 +25.44 −6.83 +39.13

free
3− 4 eV

7.92 −4.90 +11.18 −7.41 +25.88 −7.89 +39.67

fixed 5.94 −3.69 +9.11 −5.56 +21.63 −5.93 +34.56

free
4− 5 eV

8.27 −5.05 +11.10 −7.72 +24.91 −8.23 +37.47

fixed 5.58 −3.46 +8.16 −5.22 +19.41 −5.56 +31.30

free
5− 6 eV

8.16 −4.91 +10.94 −7.60 +23.87 −8.12 +35.63

fixed 5.35 −3.31 +7.78 −5.01 +18.31 −5.33 +28.80

free
23.5− 24.5 eV

24.47 −4.42 +4.49 −9.27 +9.72 −14.62 +16.23

fixed 24.87 −4.54 +4.01 −9.35 +7.99 −14.53 +12.13

free
57.5− 58.5 eV

21.01 −2.50 +2.30 −5.73 +4.77 −10.01 +7.47

fixed 20.84 −2.14 +2.33 −4.41 +4.81 −6.82 +7.42

Table 5.12.: Most probable values and credibility intervals for the relative intensities
shown in Figure 5.37.
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Relative intensity of the non-rectangular low-energy component

The relative intensity of the total low-energy component does not depend on its shape.
The results for these are in agreement with the 3-component result (Figure 5.38, Ta-
ble 5.13).

hfs parameter value
credibility

1σ 2σ 3σ

free
low-energy int. [%]

64.11 −2.39 +2.52 −4.95 +5.22 −7.65 +8.15

fixed 62.41 −2.08 +2.44 −4.13 +5.04 −6.21 +7.84

Table 5.13.: Relative intensity of the combined low-energy components (see Table 5.12).

Figure 5.38.: Comparison of the distribution of the cumulative low-energy intensity for
the free and fixed hyperfine splitting analyses of the µH(3p-1s) line.

Hyperfine splitting and triplet / singlet population ratio

Analogous to the previous cases, the hyperfine splitting and the triplet / singlet popu-
lation ratio were determined. The analysis with hyperfine splitting as a free parameter
yields values with large credibility intervals far from the theoretical value for the expected
hyperfine splitting of 182.725 eV and triplet / singlet population ratio of 3. This broad
distribution illustrates the fact, that the width and the shape of the low-energy compo-
nent correlate with the hyperfine splitting and the triplet / singlet population ratio. In
order to pin down both, more information i. e. more data is necessary.
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In the case of the fixed hyperfine splitting, however, a good agreement of the triplet /
singlet population ratio with the expected value could be found.

hfs parameter value
credibility

1σ 2σ 3σ

free
splitting [meV] 245.53 −28.94 +68.00 −61.23 +213.59 −113.00 +452.63

NT/NS 6.72 −1.69 +6.23 −3.01 +21.93 −4.01 +63.59

fixed NT/NS 3.12 −0.61 +1.54 −1.14 +4.52 −1.60 +13.13

Table 5.14.: Hyperfine splitting and distribution ratio NT/NS of the triplet / singlet states
for the muonic hydrogen analysis of the low-energy shape.
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5.4.8. Conclusions

Due to the presence of two peaks, the muonic hydrogen 3p-1s spectrum renders sub-
stantial difficulties for the analysis. It could be established, that the kinetic energy
distribution is made of at least two high-energy components in addition to the low-
energy contribution, which is consistent with the results in [7, 8]. The evaluation of the
theoretical spectra, though, revealed a correlation between the width of the low-energy
component (expressed in the bin width) and the triplet / singlet population ratio. This
became obvious upon modeling the low-energy contribution with six 1 eV bins. The ad-
ditional parameters made it difficult to pinpoint the hyperfine splitting and therefore the
triplet / singlet population, and resulted in very broad distributions for these parameters
(see Table 5.14). With a fixed hyperfine splitting (at the theoretical value of 182.725 eV),
though, a population ratio 3.12 close to the expected value of 3 could be found.

model hfs max. evidence ln(B) B

8-comp. free 50333.88

8-comp. 182.725 meV 50233.84 0.04 1.0

3-comp. 182.725 meV 50231.41 2.43 11.4

3-comp. free 50229.18 4.70 110

2-comp. free 50228.40 5.48 239

theory 2008 free 50227.77 6.11 450

theory 2013 (re-binned) free 50227.66 6.22 502

theory 2013 (re-binned) 182.725 meV 50226.96 6.92 > 1000

theory 2013 free 50225.73 8.15 > 3400

1-comp. free 50171.36 62.52 > 1027

Table 5.15.: Comparison of the evidences / Bayes factors for all tested models for the
muonic hydrogen 3p-1s X-ray line. The 8-comp. models are the last tested models with
two high-energy and six low-energy contributions.

The comparison of the triplet / singlet population ratio with the previous results [6, 7, 8]
showed a principal agreement for the 3-component model, with slightly lower values. For
the theoretical spectra, however, they differ significantly, especially in relation to their
credibility intervals.
Wheter the broadening of the low-energy component is physical, e. g. deceleration of

high-energy components cannot be answered decisively given the quality of the data.
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5. Analysis

Figure 5.39.: Comparison to the previous results for the hyperfine splitting and state
population. A, B, C, and D mark the previous results from [6, 7, 8] given in Table 5.16.

hfs [meV] kin. energy
NT/NS β0 [%]

ln(B)
this work [7, 8, 6] this work [7, 8, 6]

B 182.725
3-comp.

2.54 +1.33
−0.51 2.90 +0.20

−0.20 64 +2
−4

61 +2
−2

A free 3.19 +1.59
−0.70 3.59 +0.51

−0.51 65 +3
−4 2.23

C free theory 2013 re-
binned

2.31 +0.46
−0.38 2.94 +0.24

−0.24
(55)

4.33

D 182.725 1.70 +0.33
−0.24 3.17 +0.27

−0.27 4.97

Table 5.16.: Comparison of the results with previous measurements [6, 7, 8]: triplet /
singlet population ratio NT/NS and relative intensity of the low-energy component β0. It
is striking that the error margins from the new analyses are quite larger compared to the
previous results. This is a consequence of the Bayesian methods, that provide a more
consistent access to error margins using confidence intervals from the posterior projection
(see Figure 5.31).
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6. Conclusion and outlook

6.1. Summary of results

The purpose of this thesis was to explore Bayesian methods regarding its applicability
for the analysis of X-ray spectra of exotic atoms at hand. The previous analysis of some
of such spectra (namely πH(2p-1s) [1], πD(3p-1s) [3], µH(3p-1s) [6]) by means of conven-
tional frequentist methods, provided results to be reproduced with the new method.
Starting with pionic hydrogen, it soon became obvious that the Doppler broadening

in the presence of a hadronic broadening is difficult to pin down. Therefore, the analysis
methods were tested at first on simulated spectra with known input parameters. It could
be shown, that a structural resolution of the high-energy Doppler components is not
possible for a relative intensity . 15 %, but the relative intensity itself of the low-energy
contribution was reproducible. The following analysis of real pionic hydrogen data then
showed a diffuse high-energy contribution, centered at around 70 eV without hints for
additional high-energy components. The result for the hadronic width Γ1s = 878 +32

−29 meV

was then in good agreement with the previous result of Γ1s = 902 +25
−25 eV.

Similar conclusions could be drawn from the pionic deuterium analysis. The absence
of any high-energy contributions was expected from the previous work [3, 4], and the
hadronic width of the ground state Γ1s = 1142 +28

−32 eV differed from the value given in [4]
by only 1σ.
For the analysis of the muonic hydrogen 3p-1s line, a lot of different models for the

kinetic energy distribution, hyperfine splitting, and level population have been tested to
fully explore the possibilities as well as limitations of model-selection using the Bayesian
approach. As the muons do not interact strongly with the nucleus, the absence of this
broadening uncovers more details in the kinetic energy distribution. In agreement with
previous works [6, 7, 8], the kinetic energy distribution could be modeled by 3 rectangular
components at 0 eV, 23 eV, and 57 eV, which yielded good results for the hyperfine split-
ting and the triplet / singlet population ratio. The evaluation of the theoretical spectra,
however, gave rise to some difficulties to establish the triplet / singlet population ratio.
This was attributed to a correlation between the shape of the low-energy component,
the hyperfine splitting and the triplet / singlet population ratio. The supplementary
study with a more complex low-energy component showed a better agreement with the
data in terms of evidence, but due to the large dimensionality of the parameter space,
the distributions of the hyperfine splitting and the triplet / singlet population parame-
ters became very diffuse. The fixing of the hyperfine splitting to the theoretical value,
though, provided a good result of the population ratio of 3.11 +1.54

−0.61, close to the expected
statistical value of 3.
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In general, the analyses have shown that the results of the conventional methods are
reproduced, which is the minimal requirement for the adoption of a new data analysis
method. Furthermore, Bayesian methods provide plenty of new possibilities. At first,
there is a coherent approach to model-selection, which was successfully applied in all
three analyses and helped to distinguish between kinetic energy distributions with a
single, two or three components.
And despite the fact, that (e. g. in the case of the muonic hydrogen), a specific 3-

component configuration could not be singled out by simply comparing the evidences of
the studied configurations, the distribution of the evidences in a scatter plot made it pos-
sible to identify a most probable combination of high-energy components. Furthermore,
model-independent parameter estimates could be produced. Another new possibility is
the deconvolution, developed by L. Simons [27], based on model-averaged kinetic energy
spectra, which could provide an alternative to modeling this distribution using several
rectangular components.
Regarding (model-averaged) parameter inference, the new methods provided a more

consistent way of obtaining parameter values along with error margins from the cor-
responding probability distribution for each parameter pi (by marginalization over the
remaining parameters pj 6=i).
During the analysis of the muonic hydrogen with widely different models, and parame-

ter space dimensionalities between 4 ≤ n ≤ 12, a correlation of the size of the credibility
intervals with the parameter space dimensionality n became apparent. As the credibility
intervals are determined using projections of the posterior distributions, the marginal-
ization over the remaining n − 1 parameters causes a broader (projected) distribution.
This can be understood in the case of the triplet / singlet population ratio of muonic
hydrogen, when comparing the models of free with the ones with fixed hyperfine split-
ting. Where the projection of the triplet-to-singlet intensity ratio for the former case is
a marginalization over all possible hyperfine splitting values, the projection of the latter
corresponds more to a slice of the posterior distribution of the free hyperfine splitting
case.

6.2. Software package

The software package developed over the course of this work provides the methods and
routines used in the analyses. An important aspect in designing this package was sensibil-
ity in order to adapt new experimental conditions and parameterizations, to implement
new methods of analysis and post processing, and to improve the numerical algorithms.
An improvisation to the nested sampling algorithm or, in particular, to the likelihood

evaluation was considered by using the vector computation unit of the GPU (graphics
processing unit). As the combined likelihood is a product of individual, independent
likelihoods, each stemming from a separate data point, vector calculation of these seems
feasible. Additionally, the interpolation of two- or three-dimensional images (or in this
case, matrix of test spectra) is a core competence of graphic processors and could provide
another speedup.
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6.3. Outlook

Having established and tested a set of methods and procedures to analyze X-ray spectra
lines, these can now be applied to various measured spectra. Other transitions (3p-1s,
4p-1s for pionic hydrogen, 2p-1s, 4p-1s for pionic deuterium and muonic hydrogen) are
to be re-analyzed and compared with this as well as with previous results.
Furthermore, an analysis of the kinetic energy distribution of pionic nitrogen (πN)

promises new insights about the Coulomb explosion of the nitrogen molecule N2, where
also a Doppler broadening occurs. In addition, the analysis of complex X-ray spectra
from electronic atoms may profit [44, 45].
Last but not least, simulations, like the ones in section 5.1, could help in designing

new experiments by assessing the required precision before hand.
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A.1. Implementation

A.1.1. Overview

As part of this thesis, a software package named BayXRay was created to implement
the numerical algorithms as well as support repetitive tasks with common routines. This
software package mainly consists of four layers. Each layer adds another level of ab-
straction to the numerical algorithms, providing different possibilities for extension and
integration. The purpose of this architecture is to provide reasonable flexibility and
extendibility without the sacrifice of computational performance.

Figure A.1.: The architectural layers of the software package BayXRay.
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Interactive shell provides an iPython based interface, similar to Matlab to perform
analyses (generate and evaluate model sets, perform post-processing tasks e. g.
histograming).

Python wrappers are an API to use the command line tools provided by the software
package to prepare model sets and test spectra, convolve input spectra or start
parallelized nested sampling runs.

NumPy routines are a set of small routines to post-process the results of nested sampling
evaluations. There are methods to generate histograms, model-averages, scatter-
plots as well as tools to create fully-contained gnuplot scripts to visualize the data
and results.

Command line tools provide small tools to perform file-based task like convolutions,
generation of spectra and nested sampling evaluations. These tools could, in general
be used directly or in Bash scripts.

C++ library is a set of classes and methods to implement the numerical algorithms
along with a set of commonly used tools.

A.1.2. Python and NumPy routines

The most important tools, which were used mostly exclusively through the analysis, are
the Python and NumPy routines. These provide the most common functions used in the
analysis of X-ray spectra, and encapsulate repetitive tasks.
Some examples of analysis scripts, which make use of these routines, are provided in

section A.2. As discussed in section 4.4, several preparation steps are required before
the actual evaluation, which can be simplified using the Python tools. The following is
a brief overview of the available routines.

Model generators

As it was a common task to create different models for the kinetic energy distribution,
with either variable widths, positions, number of components or the like, a few functions
to generate these models were written.

VariedBoxWidth(stop, start=1, step=1, position=0, add=None) Generates mod-
els with a single component at position of different widths. The widths generated range
from start to stop in steps of step. Additionally one or more fixed components can be
added to each model by using the add parameter.

SequentialBoxes(stop, step=None, start=0, width=1, n=1, add=None) This gen-
erates models with n (pairwise different) components (of width width) in sequential order.
The start, stop (max. value) and step-size (step) can be defined. Like VariedBoxWidth,
it accepts an add parameter to include more (static) boxes.
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GridBoxes(rangex, rangey, widthx=1, widthy=1, add=None) GridBoxes can be used
to generate a set of models with two components each, covering the entire area specified
by rangex and rangey.

Experiments

These are classes to represent the different experiments, along with additional parameters
necessary for the analysis (e. g. dispersion, transition energy etc.). They also include the
information, which preparational steps and which parameterization is used.
Each experiment can be initialized using the load("params.dat") function, which

expects the filename of a parameter file. This parameter file should contain the following
information (one value per line)

1. Transition energy in [keV]
2. Curvature of the Bragg crystal in [m]
3. Distance of the lattice planes in the Bragg crystal in [nm]
4. Mass of the particle (pion / muon) [eV]
5. Atomicity of the nucleus
6. Order of the Bragg reflex

MuonicHydrogen.load(params_file) Load an experimental setup for the muonic hy-
drogen, with the Gaussian width of the spectrometer response as a free parameter. The
preparational steps to create the test spectra, which are performed for this experiment
are:

1. Calculates the trapezoidal distributions for the n given kinetic energy components,
with a 10-fold resolution (compared to the data).

2. Convolves this distributions with a given response function (10-fold resolution as
well).

3. Rebins the outputs of the previous step to match the resolution of the data (com-
bines ten bins into one bin).

4. Convolves the re-binned spectra withm Gaussians of different widths, yieldingm·n
different test spectra.

MuonicHydrogenFixedGauss.load(params_file) Similar to MuonicHydrogen, but uses
a parameterization with a fixed Gaussian width. In the preparation, onlym = 1 Gaussian
is produced, yielding n different test spectra.

MuonicHydrogenFixedHFS.load(params_file) Similar to MuonicHydrogenFixedGauss,
but with one less parameter. The distance between peaks (hyperfine splitting) is fixed
to a value (which must be provided later). Thus, the preparational steps are exactly the
same as in MuonicHydrogenFixedGauss.
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PionicHydrogen.load(params_file) and PionicDeuterium.load(params_file) Rep-
resent the pionic experiments. The generation of the test spectra is similar to the case
of the muonic hydrogen:

1. Calculates the trapezoidal distributions for the n given kinetic energy components,
with a 10-fold resolution (compared to the data).

2. Convolves this distributions with a given response function (10-fold resolution as
well).

3. Rebins the outputs of the previous step to match the resolution of the data (com-
bines ten bins into one bin).

4. Convolves the re-binned spectra with m Lorentzians of different widths, yielding
m · n different test spectra.

TestSpectra(name, models, experiment, response, gamma_sigma)

Returns an object which can generate the test spectra needed for the specified models. A
unique name should be specified to identify this set of models. The experiment parameter
defines how the test spectra are prepared, response identifies the filename with the
response function and gamma_sigma is a 3-tuple start, stop, step to specify which Γ
(Lorentzian) or σ (Gaussian) curves to generate.

generate() Starts the generation of the test spectra by convolving the nDoppler broad-
enings with the response and m different Lorentzians / Gaussians. This is concludes the
preparation (see Figure 4.10).

start_nested_sampling(data, multi_modal=False, stretch=2.0) Launches the nested
sampling evaluations in several parallel processes, and logs the progress to the terminal.
Depending on the experiment/ parameterization and the number of models, this can take
from a few minutes to a few days. This function expects a Data object (see section A.1.2)
as first parameter.

load_results(data_filename) Loads the results from a nested sampling run into
memory to perform the post-analysis. Returns a Results object (see section A.1.2).

Data(data_filename, lower_cut=0, upper_cut=-1, col=0)

Reads in the data spectrum given in column nr. col in data_filename. Optional cuts
can be specified via lower_cut and upper_cut.

plot() Plot the data spectrum (e. g. to verify the cuts).

104



A.1. Implementation

Results

A Results object, as returned by TestSpectra#load_results(see A.1.2 ) , represents
the collection of nested sampling Result objects. The results are sorted in descending
order by their evidences, with the result that the first element of Results returns the
best result.

posterior_map() This creates a huge array containing all posterior samples from all
evaluated models, including their weights (model-weight and likelihood-weight), which
can be used to create model-averaged histograms and scatterplots. As the PosteriorMap
can take up up to several gigabytes of memory, it is cached on the disk.

with_box(a, b) Returns all results, whose models contain the energy component given
by (a, b).

with_evidence_gt(b) Returns all results, whose Bayes factors (compared to the best
result) are B ≥ b. Useful to select only the important results.

PosteriorMap

See section A.1.2.

_column(index_or_callable) Returns a column (parameter projection) of the poste-
rior given by index_or_callable, or alternatively if index_or_callable is a function,
every set of samples is passed to this function and the return values returned as array.
This allows the transformation of the samples,i. e. to calculate the peak distance and
intensity ratio in muonic hydrogen.

histogram(index_or_array, bins=10, range=None) Calculates a histogram for the
specified column (index_or_array), between the limits given by range with the number
of bins specified. As this function uses the NumPy histogram routine, it returns a tuple
consisting of (densities, bin_edges).

sigma1/2/3(index_or_array, avg) Determine σ credibility intervals relative to the
value given by avg.

Plot()

Creates an object which can be used to plot data series or histograms and save them as
self-contained GNUPLOT scripts.

add_data(values, using=None, _with=None, title=None) Add a series of y, x-y or
x-y-z values to this plot. Can be called several times to create multiplots.
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add_histo(histogram_values) Add histogram bins and values to this plot.

A.1.3. Shell

The shell is an iPython based console, in which the analysis can be performed interac-
tively. It can be lanuched using the console.sh command, located in the bin-directory
of the software package. This shall provides access to the methods and programs dis-
cussed in section A.1.2, as well as the entire Python standard library and the NumPy /
SciPy libraries.
Analysis scripts (similar to those presented in section A.2) can then be typed line by

line or run within the current context by calling run_script("myscript.py"). After
execution of the script, the interactive shell returns, and the local variables defined in
the script are available for further steps and inspection.

A.1.4. Commmand line tools

The routines described in section A.1.2 are based on a set of command line tools, which
perform the CPU-intensive tasks. The input / output is file based, via simple text data
files, values separated by any kind of whitespace and rows separated by linefeeds.
All these commands can also be called from within a Python script or the iPython

shell with the options passed as keyword arguments.

Convolve --input-1 a.dat --input-2 b.dat --output c.dat

Convolves the spectra given in a.dat and b.dat and saves the result to c.dat.

CompressSpectrum --input a.dat --compress n --output b.dat

Compresses (re-bins) the spectrum in a.dat by a factor of n and writes the result to
b.dat. n must be an integer value.

ConvolveCurve --input a.dat --output b.dat --type gauss_or_lorentz
--number-of-channels n

Convolves the input spectrum a.dat with a Gaussian or Lorentzian curve. The number
of channels to be evaluated on the curve has to be specified with n. Additional available
options are --position, --volume, --scale, --deviation, with the two latter only
applicable for Lorentzian or Gaussian type respectively.

ConvolveTrapezoid --input a.dat --output b.dat --number-of-channels n
--top t --bottom b --height h

Convolves the spectrum given by a.dat with a trapezoidal distribution (defined by the
half lengths of its top and bottom edges t, b, and the height h) and saves the result
to b.dat.

106



A.1. Implementation

Superpose --in a.dat b.dat ...--factors n1 n2 ...--out c.dat

Superposes the spectra given in a.dat, b.dat ..., weighted by the factors n1, n2 and
stores the result to b.dat.

GenerateSpectrum --type type --volume I --number-of-channels n

Generates a spectrum of type type (constant, gauss, lorentz or voigt) with the intensity
I and the number of channels n. An additional switch --random can be set to generate
sampled counts instead of evaluated y-values. It takes the following options, depending
on the type of curve chosen: --position, --scale, --deviation.

GenerateBoxes --min-value a --max-value b --output c.dat

Produces a trapezoidal spectrum for the lower and upper bounds given with a, b and
saves it to c.dat.

NestedSampling

This command performs one nested sampling evaluation and takes a lot of mandatory
arguments:

--data Data file to run against.

--model File containing the configuration of kinetic energy components for this evalu-
ation. Each line in the file marks a box-like component, marked by an lower and
upper limite. g.

0 2
24 26
50 52

--box-pattern A filename pattern to load the test spectra for each kinetic energy com-
ponent and Γ, σ-value, e. g.

model_box_width/test_spectra/box_%s_%s/%s.dat

would yield a path of

model_box_width/test_spectra/box_0_2/600.dat

for the test spectra of a component between 0− 2 eV with a convolved Lorentzian
of Γ = 600 meV width.

--gamma-start Lowest Γ, σ-value.

--gamma-stop Highest Γ, σ-value.

--gamma-step Distance between different Γ, σ-values.
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--number-of-channels Number of channels in the test spectra.

--lower-cut Lower channel limit of the data.

--upper-cut Upper channel limit.

--out Output directory for the result files.

--type Type of parameterization to use (e. g. muH, piH, piD, muH_hfs, muH_fixed).

Additional to these, the behavior of the nested sampling algorithm can be modified using
the following options:

--live-points 500 Number of live points to use.

--max-iterations 1000000 Maximal number of allowed iterations before cancel.

--contraction 30 Interval after that the elliptic sampler is re-determined.

--stretch 2 Additional scale for the sampling ellipsoid.

--precision 2 Desired precision of the evidence in log10 scale, so the default of two
means precise down to 0.01.

--seed 0 Seed for the random number generator. Must be specified, if more than one
evaluation is performed, to prevent correlations.

--multi-modal 0 Enable or disable the clustering sampler. Disabled by default for
performance reasons.

--max-clusters 20 Specify a maximal number of allowed clusters (only applicable if
--multi-modal) is set.

--min-acceptance 0.5 Minimal fraction of the expected acceptance ratio, before a new
cluster is assumed. Also only applicable if the clustering sampler is enabled.

EvalFit

In order to apply a set of parameters to a line shape and plot this line shape long with
the data, EvalFit can be used. It takes mostly the same mandatory arguments as
NestedSampling plus:

--params p1 p2 p3 ... Parameter values to apply, separated by spaces

--out line_shape.dat File to save the calculated line shape to.
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A.2. Analysis scripts

A.2.1. Introduction

In this appendix, an example script for each of the analysis steps performed is presented.
The scripts are a series of Python commands, which can be used interactively via the
iPython terminal, or run from a file. These commands use the routines and programs
described in (see section A.1).
Most of these scripts are examples from the πH analysis, with the exception of the

hyperfine splitting scripts from the µH studies. The steps to create sets of models and
run the nested sampling evaluations are of course independent of the experiment.
The first step is always to load an experiment and its configurational parameters.

These are transition energy, curvature (crystal), lattice constant (crystal), particle mass,
atomicity of the nucleus, order of the Bragg diffraction and should be present in a simple
textfile params.dat with one value per line.

A.2.2. Width of low-energy component

# Load the experimental parameters (pion-mass, lattice constant, etc.)
m = PionicHydrogen.load("params.dat")

# Generate 1-component models of different widths
# (starting at 0.25 eV up to 50 eV in
b = VariedWidthBoxes(30, start=0.25, step=0.25, position=0)

# Prepare the test spectra for the models b and experiment m
# collected under the name "box_width". "response.dat" contains
# the response function, (200, 600, 5) denotes the Γ values
# (from 200 eV to 600 eV in steps of 5 eV) for the
# convolution with the Lorentzian.
t = TestSpectra("box_width", b, m, "response.dat", (200, 600, 5))

# Generates the trapezoidal functions and convolves them with the
# response and the Lorentzians. These test spectra can be found
# in ‘model_box_width/‘
t.generate()

# Load a datafile, but use only the bins 620− 1180 and the values
# in column 1
d = Data("piH.dat", 620, 1180, col=1)

# Start the actual nested sampling processes. This produces a lot
# of output and takes some time. The results are saved
# in ‘results_box_width/‘
t.start_nested_sampling(d)
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# After finishing the evaluation of all models, load the results
r = t.load_results("piH.dat")

# The results are ordered by evidence in descending order, so r[0]
# is the best result. Accessing r[0] gives a quick overview.
r[0]
# => NestedSampling result: results_box_width/piH2-1.dat/0000/0048
# evidence: 211549.067207
# weight: 0.031273311867
# model: [(0.0, 12.0)]
# params: [887.9870603279975, 469.1270536486451, 44251.54923095699,
# 9.217557222163887]

# Get an x, y list with x being the width of the first component,
# and y being the Bayes factor ln(B)
ev = map(lambda x: (x.model[0][1], x.evidence() - r[0].evidence()), r)

# Create a GNUPLOT with this data
p = Plot()
p.add_data(ev)

# Save this plot to a self-contained file (including the data)
p.save("piH_box_width_evidences.gp")

A.2.3. Looking for a high-energy component

m = PionicHydrogen.load("params.dat")

# Generate 2-component models of different widths (0.5 eV
# to 30 eV) of the low-energy component, and different positions
# (0 eV to 200 eV) of the high-energy comp.
b = []
for i in range(200):

b.extend(VariedWidthBoxes(30, start=0.5, step=0.5, position=0, \
add=[(i, i + 2)])

t = TestSpectra("2box_width", b, m, "response.dat", (200, 600, 5))
t.generate()
d = Data("piH.dat", 620, 1180, col=1)
t.start_nested_sampling(d)
r = t.load_results("piH.dat")

# Get an x, y, z list with x being the width of the first component,
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# and y the position of the high-energy contribution, and z the
# Bayes factor
ev = map(lambda x: (x.model[0][1], x.model[1][0], x.evidence() - \

r[0].evidence()), r)

# The list has to be sorted for GNUPLOT
ev = sorted(ev)

# Create scatter plot (with image)
p = Plot()
p.add_data(ev, _with=’image’)

p.save("piH_2box_width_evidences.gp")

A.2.4. Smoothing / re-binning

# Given an x, y, z list ev (e.g. from previous script),
# create an ImagePlot
im = ImagePlot(ev, (0.5, 30, 0.5), (0, 200, 1))

# Get the z values as pixel-matrix (bitmap)
m = im.matrix()
# Apply a bivariate Gaussian filter, σ is in pixels.
# As this is a convolution with a finite filter, 4 · σ pixels
# at the edges are lost and should be discarded.
im.from_matrix(gaussian_filter(m, sigma=1.5, mode=’nearest’))

p = im.plot()
p.save("piH_2box_width_evidences_smoothened.gp")

A.2.5. Searching for additional high-energy contributions

m = PionicHydrogen.load("params.dat")

# Generate a set of 3-component models with a low-energy
# comp. fixed at 0− 1 eV and two variable high-energy
# components between 0 eV and 200 eV.
b = SequentialBoxes(200, step=1, width=2, n=2, add=[(0, 1)])

t = TestSpectra("3box", b, m, "response.dat", (200, 600, 5))
t.generate()
d = Data("piH.dat", 620, 1180, col=1)
t.start_nested_sampling(d)
r = t.load_results("piH.dat")
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# Get an x, y, z list with x being the position of the third
# component, and y the position of the second component, and z
# the Bayes factor
ev = map(lambda x: (x.model[1][0], x.model[0][0], x.evidence() - \

r[0].evidence()), r)

# The list has to be sorted for GNUPLOT
ev = sorted(ev)

# Create scatterplot (with image)
p = Plot()
p.add_data(ev, _with=’image’)

p.save("piH_3box_evidences.gp")

A.2.6. Γ1s posterior projection

# Given a set of results r
r = t.load_results("piH.dat")

# Select all results with Bayes factor >= -5
r5 = r.with_evidence_gt(5)

# Load all samples with their likelihood and evidence weights
pm = r5.posterior()

# The Γ value has to be doubled to meet the conventions
gammas = pm._column(lambda p: p[2] * 2.0)

# Create a histogram of the samples
h = pm.histogram(gammas, bins=80, range=(750, 1000))

# Plot the histogram
p = Plot()
p.add_histo(h)

p.save("piH_gamma_histo.gp")

# Determine maximal value gamma_m (e.g.\ parabola fit with
# GNUPLOT on the 10 highest bins)
gamma_m = 878

# Calculate credibility intervals
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pm.sigma1(gammas, avg=gamma_m)
pm.sigma2(gammas, avg=gamma_m)
pm.sigma3(gammas, avg=gamma_m)

A.2.7. Posterior projection of the low-energy intensity

# Given a set of results r and loaded samples pm
r = t.load_results("piH.dat")
r5 = r.with_evidence_gt(5)
pm = r5.posterior()

# The parameter index of the rel. intensity of the first box is
# 6 in the case of the πH 2-comp. analysis.
int_first = pm._column(lambda p: p[6] * 100)

h = pm.histogram(int_first, bins=200, range=(60, 100))
p = Plot()
p.add_histo(h)
p.save("piH_first_box_histo.gp")

int_first_m = 85
pm.sigma1(int_first, avg=int_first_m)
pm.sigma2(int_first, avg=int_first_m)
pm.sigma3(int_first, avg=int_first_m)

A.2.8. Hyperfine splitting and triplet / singlet population

m = MuonicHydrogenFixedGauss.load("params.dat")
b = SequentialBoxes(150, step=1, width=2, n=2, add=[(0, 4)])

# Prepare test spectra with a Gaussian component with
# σ = 27 meV, which corresponds to a FWHM of
# 76µrad
t = TestSpectra("3box", b, m, "response.dat", (27, 27, 1))
t.generate()
d = Data("muH.dat", 620, 1180)

# Start nested sampling, use multi-modal (clustering) sampler,
# and a smaller ellipsoid scale of 1.6 (default is 2.0)
t.start_nested_sampling(d, multi_modal=True, stretch=1.6)

# Given a set of results r
r = t.load_results("muH.dat")
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# Select all results with Bayes factor >= -5
r5 = r.with_evidence_gt(5)

# Load all samples with their likelihood and evidence weights
pm = r5.posterior()

# Transform the samples to get samples for the triplet / singlet
# population intensity ratio and the hyperfine splitting distance
hfs_int = pm._column(m.hfs_int)
hfs_diff = pm._column(m.hfs_diff)

# Create a two-dimensional histogram, this is a numpy routine
# which returns the x-edges (h[1]), y-edges (h[2]) and the data
# as two-dimensional matrix (h[0])
h = numpy.histogram2d(hfs_diff, hfs_int, bins=100,

range=((170, 250), (1, 7)))

# Convert h to a x, y, z list
xyz = []
for i in range(100):

for j in range(100):
xyz.append(h[1][i], h[2][j], h[0][i, j])

p = Plot()
p.add_data(xyz, _with=’image’)

p.save("muH_hfs.gp")

A.2.9. Theoretical kinetic energy distribution

# Read the theoretical distribution in from a file.
# Column 2 contains the densities for the 3p-1s line.
th = TheoSpectrum("e_dist_mup_12.5bar_02.2012-1.dat", 2)

# Load an experiment
m = MuonicHydrogenFixedGauss.load("params.dat")

# Generate the test spectrum
t = th.to_test_spectra("theo_spec", m, "response.dat", (27, 27, 1))

# Load data file and start nested sampling
d = Data("muH.dat", 620, 1180)
t.start_nested_sampling(d, multi_modal=true, stretch=1.6)
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# Load results
r = t.load_results("muH.dat")

A.2.10. Deconvolution

m = MuonicHydrogenFixedGauss.load("params.dat")

# Generate 20825 different models, based on 3 components of
# width 3 eV each.
b = SequentialBoxes(150, step=3, width=3, n=3)

t = TestSpectra("deconvolution", b, m, "response.dat", (27, 27, 1))
t.generate()
d = Data("muH.dat", 620, 1180, col=1)
t.start_nested_sampling(d, multi_modal=True, stretch=1.6)
r = t.load_results("muH.dat")

# Calculate the deconvolution by model-averaging. 5 denotes the
# index of the first intensity parameter.
dc = Deconvolution(r, 5)

# Access the spectrum, the first two values indicate the bin limits,
# the third the rel. intensity and the forth the integrated intensity
# => [[0.0, 3.0, 0.605936448365571, 0.605936448365571],
# [3.0, 6.0, 0.002815332253710746, 0.6087517806192818],
# [6.0, 9.0, 0.004918451401902636, 0.6136702320211844],
# [9.0, 12.0, 0.006262049397827175, 0.6199322814190116],
# ...
# ]

# Create a plot
p = dc.plot()
p.save("muH_deconvolution.gp")
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