

Mitglied der Helmholtz-Gemeinschaft

PIONIC HYDROGEN and DEUTERIUM

Detlev Gotta

Institut für Kernphysik, Forschungszentrum Jülich

EXA 2021 15.9.2021

• WHY PIONIC HYDROGEN & ... ?

EXPERIMENTAL APPROACH

- ANALYSIS
- RESULTS
- CONCLUSIONS

PIONS, NUCLEONS - INTERACTION in terms of QCD

J. Gasseretal., Nucl. Phys. B307, 779 (1988)

 $\pi \otimes N \text{ isospin} \qquad 1 \otimes 1/2 = 1/2 \oplus 3/2$ $a^{\pm} \equiv \frac{1}{2} \left(a_{\pi^- p} \pm a_{\pi^+ p} \right)$

$$a_{\pi^- p} = \frac{1}{3} (2a_{1/2} + a_{3/2}) + ... = a^+ + a^- + ...$$

$$a_{\pi^- p \to \pi^0 n} = -\frac{\sqrt{2}}{3} (a_{1/2} - a_{3/2}) + ... = -\sqrt{2} a^- + ...$$

$$a_{\pi^{-}p} + a_{\pi^{-}n} = 2 \cdot \frac{1}{3} (a_{1/2} + 2a_{3/2}) + \dots = 2 \cdot a^{+} + \dots$$

... : calculabe within the framework of χPT

recent reviews theory: J. Gasser, V.E. Lyubovitskij, A. Rusetsky, Phys. Rep. 456, 167 (2008) M. Hoferichter et al., Phys. Rep. 625, 1 (2016)

PION-NUCLEON SCATTERING LENGTHS related quantities

LABORATORY: EXOTIC ATOMS

experiment X-ray energy, line width, and intensity

general review experiment: D. Gotta, Prog. Part. Nucl. Phys. Rep. 52, 133 (2004)

$\pi H \& \pi D$ - origin of shift ϵ_{1s}

$\pi H \& \pi D$ - origin of broadening Γ_{1s}

• WHY PIONIC HYDROGEN & ... ?

• EXPERIMENTAL APPROACH

ANALYSIS

RESULTS

CONCLUSIONS

DE-EXCITATION CASCADE and COLLISIONAL EFFECTS

Physics effects

Stark mixing

Molecular formation

Coulomb de-excitation

Apparative solution

Suitable X-ray source

- cyclotron trap $I \rightarrow II$
- cryogenic hydrogen target
- minimize background

Sufficient energy resolution

- Bragg crystal spectrometer
- ECR source: response from X-rays of He-like atoms

STARK - MIXING strong density dependence of yields for Z = 1 (Z = 2)

PIONIC and MUONIC HYDROGEN

Lyman series

A.J. Rusi el Hassani et al., Z. Phys. A 351, 113 (1995)

cascade calculation:

V. E. Markushin and T.S. Jensen, Hyperfine Int. 138 (2001) 71

MOLECULAR FORMATION additional line shift

n-1

- known to exist from muon-catalysed fusion
- μH experiment quenching of μp_{2s} via [(μpp)p]ee formation R. Pohl et al., Phys. Rev. Lett. 97 (2006) 193402

 $\pi^{-} p_{nl} + H_2 \rightarrow [(\pi^{-} pp)_{njv} \cdot p] ee_{kv}$ decay usually by Auger process

Jonsell, Froelich and Wallenius for n = 1,2,3, Phys. Rev A 59 (1999) 3440 Lindroth, Wallenius and Jonsell, Phys. Rev A 68 (2003) 032502 Kilic, Karr and Hilico, Phys. Rev. A70 (2004) 042506

X-rays from molecular states ? \Rightarrow energy shift of np levels

if existing - extrapolation to density zero necessary!

COULOMB DE-EXCITATION

additional line broadening

first observed from NEUTRON - TOF

J.B. Czirr et al., Phys. Rev. 130, 341 (1963) A. Badertscher et al., Eur. Phys. Lett. 54 (2001) 313 (status)

$$(\pi^{-}p)_{nl} + H = H \rightarrow (\pi^{-}p)_{n'l'} + H + H + kinetic energy$$

EXEMPLIFICATION of Coulomb de-excitation

low background essential !

typical resolution (FWHM)

272 meV

390 meV

STRATEGY - VARY TRANSITION & VARY DENSITY

X-ray source

CYCLOTRON TRAP

L. Simons, Physica Scripta 90 (1988), Hyperfine Int. 81 (1993) 253

"wind up" range curve in a (weakly) focusing magnetic field $n = - rac{\partial B}{\partial r} < 1$ field index

increase in stop density
compared to a linear stop arrangement
pions (PSI) x 200
antiprotons (LEAR) x 10⁶

⇒ high X - ray line yields
⇒ bright X - ray source

Cryogenic target: density adjustmentby temperature variation

pion set-up 2002

Energy resolution

JOHANN-TYPE CRYSTAL SPECTROMETER

D. Gotta, Prog. Part. Nucl. Phys. 52 (2004) 133 D.E. Gotta, L.M.Simons, Spectrochim. Acta Part B 120 (2016) 9

TYPICAL SET-UP at PSI

TYPICAL SET-UP at PSI

CRYSTAL RESPONSE - NO SOLUTION

fluorescence X-rays excited by means of X-ray tubes

problem

large natural line width and satellite lines

exotic-atom X-rays from hydrogen-like systems

<u>MEASURE</u> SPECTROMETER RESPONSE new approach

S. Biri, L. Simons, D. Hitz et al., Rev. Sci. Instr., 71 (2000) 1116 K. Stiebing, Frankfurt – design assistance

ECRIS

Electron Cyclotron Resonance Ion "Source" = cyclotron trap + hexapole magnet

superconducting coils

cyclotron trap

permanent hexapole

- . AECR-U type
- . 1 Tesla at the hexapole wall
- . open structure

CRYSTAL SPECTROMETER and **PSI ECRIT**

Electron Cyclotron Resonance Ion Trap = cyclotron trap (4) + hexapole magnet (2)

CRYSTAL SPECTROMETER and **PSI ECRIT**

Electron Cyclotron Resonance Ion Trap = cyclotron trap (4) + hexapole magnet (2)

SPECTROMETER RESPONSE at π H Lyman ENERGIES

30000 events in line (3 h) \leftrightarrow tails can be fixed with sufficient accuracy

to be compared with Monte-Carlo ray tracing folded with plane crystal response

D.F.Anagnostopoulos et al., Nucl. Instr. Meth. B 205 (2003) 9 D.F.Anagnostopoulos et al., Nucl. Instr. Meth. A 545 (2005) 217

• WHY PIONIC HYDROGEN & ... ?

EXPERIMENTAL APPROACH

ANALYSIS

RESULTS

CONCLUSIONS

DETERMINATION OF E1s

find angle difference to reference line

πH(3p - 1s)

energy calibration

 π H / π O mixture

mixture H₂ / O₂ (98% / 2%)

1.2 bar @ T = 85K

energy calibration simultanuously

 π H / π O alternating

mixture ${}^{4}\text{He} / {}^{16}\text{O}_{2} / {}^{18}\text{O}_{2} (\approx 80\% / 10\% / 10\%)$

2 bar @ T = 86K

πH(3p - 1s) ε_{1s}

<u>no</u> density dependence identified \Rightarrow "no" X-ray transitions from molecular states

ETHZ-PSI H.-Ch.Schröder et al. Eur.Phys.J.C 1(2001)473 $\epsilon_{1s} = +7.0858 \pm 0.0096 \text{ eV} (\pm 0.14\%)$

$$a_{\pi^- p} = (85.26 \pm 0.12) \cdot 10^{-3} \ m_{\pi}^{-1}$$

$$a^+ + a^- = (93.4 \pm 0.12_{exp} \pm 2.8_{th}) \cdot 10^{-3} m_{\pi}^{-1}$$

M. Hennebach, PhD thesis, Cologne 2003 M. Hennebach et al., Eur. Phys. J. A 50 (2014) 190

most recent value for $m\pi \pm 1.3ppm$ M. Trassinelli et al, Phys. Lett. B 759 (2016) 583 $\Rightarrow \Delta \varepsilon_{m\pi} = \pm 0.8 \text{ meV}$ new QED value $\Delta \varepsilon_{QED} = \pm 1.4 \text{ meV}$ S. Schlesser et al. Phys. Rev. C 84 (2011) 015211 $\Rightarrow -22 \text{ meV}$

PhD thesis: Th. Strauch, Cologne 2009 Th. Strauch et al., Phys.Rev.Lett.104 (2010)142503; Eur. Phys.J A 47 (2011)88

line shape = Lorentzian $\otimes RESPONSE \otimes \sum_i D_i$

EXTRACTION OF Γ_{1s}

find model for Coulomb de-excitation

Prediction from cascade theory

ESCM (extended standard cascade model) model follows development of kinetic energy

EC	CN	
LO		

extended standard cascade calculation and cross sections T.S.Jensen and <u>V.E.Markushin</u>, Eur. Phys. J. D 19,165 (2002); ibid.D 21,261 (2002); ibid.D 21,271 (2002)

new cross sections G.Ya. Koreman, V.N. Pomerantsev and V.P. Popov, JETP. Lett. 81, 543 (2005)

V.N. Pomerantsev and V.P. Popov, Phys. Rev A 73, 040501 (2006)

V.P. Popov and V.N. Pomerantsev, arXiv:0712.3111v1[nucl-th] (2007)

V.P. Popov and V.N. Pomerantsev, Phys. Rev A 86, 052520 (2012)

STRATEGY - phenomenological approach

neglected here: possible $\Delta n=2$ Coulomb transitions

maximal Doppler broadening of X-ray line

$$\Delta E_{X,max} = 1, 5 \text{ eV} \quad \mu H(3p - 1s)$$

$$\Delta E_{X,max} = 3.0 \text{ eV} \quad \pi \text{H}(2\text{p} - 1\text{s})$$

 $\Delta E_{X,max} = 2.1 \text{ eV} \quad \pi \text{H}(3\text{p} - 1\text{s})$
 $\Delta E_{X,max} = 1.5 \text{ eV} \quad \pi \text{H}(4\text{p} - 1\text{s})$

ANALYSIS METHODS

MAXIMUM LIKELIHOOD "FIT"

"MINUIT" χ^2 analysis

"bias" problem

BAYESIAN APPROACH

ANALYSIS - µH(3p - 1s)

comparison: 3-component model

ANALYSIS - µH(3p - 1s)

Bayesian approach: two-dimensional posterior probability

D.S. Covita, PhD thesis Coimbra 2008 D.S. Covita et al., Phys. Rev. Lett. 102, 023401 (2009) M.Theisen, Diploma thesis FZJ 2013 D.S. Covita et al., Eur. Phys. J. D 72, 72 (2018)

ANALYSIS - π H(np - 1s) Γ_{1s}

π H(np - 1s) Γ_{1s}

experiment

D. Sigg et al., Phys. Rev. Lett. 75 (1995) 3245, H.-Ch. Schröder et al., Phys.Lett. B 469 (1999) 25; Eur. Phys. J. C 21 (2001) 433

$$\Gamma_{1s} = 856 \pm 27 \text{ meV} (\pm 3.1\%)$$

$$a_{\pi^- p}^{cex} = (-124.4 \pm 2.0) \cdot 10^{-3} \ m_{\pi}^{-1}$$

$$a^{-} = (88.2 \pm 1.4_{exp} \pm 0.6_{th}) \cdot 10^{-3} m_{\pi}^{-1}$$

A. Hirtl, PhD thesis, TU Vienna, 2008 A. Hirtl et al., Eur. Phys. J. A 57 (2021) 70

 Γ_{1s} / meV

"FIT" bias corrected 852 ± 22

Bayesian approach 856 ± 27

KIn. energy distribution from cascade theory $\Gamma_{1s} = 781 - 963 \pm (7 - 20) \text{ meV}$ no solution!

$\pi D(3p-1s)$ Γ_{1s}

$$\Gamma_{1s} = (1.171 + 0.023) eV (+ 2\%) - 4\%$$

$$\Im a_{\pi^- d} = (6.22 + 0.12) \cdot 10^{-3} m_{\pi}^{-1}$$

error budget

± 23 meV statistics
± 43 meV Coulomb de-excitation (≤10%!)

PhD thesis: Th. Strauch, Cologne 2009 Th. Strauch et al., Phys.Rev.Lett.104 (2010) 142503; Eur. Phys. J. A 47 (2011) 88

recent cascade theory

Coulomb de-excitation small!

V. P. Popov* and V. N. Pomerantsev, Phys. Rev. A 95, 022506 (2017)

• WHY PIONIC HYDROGEN & ... ?

EXPERIMENTAL APPROACH

ANALYSIS

RESULTS

CONCLUSIONS

PION – NUCLEON

SCATTERING LENTGHS

 $\pi N \Leftrightarrow \pi N$

πN ISOSPIN SCATTERING LENGTHS a⁺ and a⁻

πD - R-06.03 : Th. Strauch et al., Eur. Phys. J. A 47 (2011) 88

Folie 46

PRODUCTION / ABSORPTION

 $NN \Leftrightarrow \pi NN$

Folie 47

NN $\Leftrightarrow \pi$ **NN** threshold parameter α

• WHY PIONIC HYDROGEN & ... ?

- EXPERIMENTAL APPROACH
- ANALYSIS
- RESULTS
- CONCLUSIONS

PIONIC HYDROGEN STORY

- πN scattering length: bands cross
- s wave π production strength
- µH singlet / triplet
 - $-\Delta E_{HFS}$
 - cascade theory \approx line shape
- atomic & πN scattering data etc. highly consistent

Comparison of various inputs

analyses involve input from χPT

refs see A. Hirtl et al., Eur. Phys. J. A 57 (2021) 70

 Iattice
 S. Dürr etal.(BMW), Phys. Rev. Lett 116, 172001 (2016)

 Y.B. Yang et al. (χQCD), Phys. Rev. D 94, 0540503 (2016)

 A. Abdel-Rehim et al. (ETM), Phys. Rev. Lett. 116, 252001 (2016)

$\sigma_{\pi N} \Leftrightarrow WIMP - nucleon scattering$

Hoferichter et al., arXiv: 1602.07688v2 Crivellin et al., Phys. Rev. D 89, 054021 (2014) Ellis et al., Phys. Rev D,065026 (2008)

...

Figure 1: Constraints on the πN scattering lengths from pionic atoms (black: level shift in πH , blue: width of πH ground state, red: level shift in πD) and from lattice σ -terms (orange: BMW [20], violet: χQCD [21], brown: ETMC [22]).

$\pi H - error of \Gamma_{1s}$ unsatisfactory

details of the high-energy components

- are not accessible
- are not critical for the numerical result of Γ_{1s}
- limit the accuracy for Γ_{1s} to about 3% \checkmark

WHAT TO DO?

PIONIC HYDROGEN collaboration

PSI experiments R-98.01 and R-06.03

Debrecen , Inst. of Nucl. Research S. Biri

Coimbra, Dept. of Physics F. D. Amaro, <u>D. S. Covita</u>, J. M. F. dos Santos, J. F. C. A. Veloso,

> Ioannina, Dept. of Material Science D. F. Anagnostopoulos

Jülich, FZJ IKP2, ZEA-2 A. Blechmann, H. Gorke, D.Gotta, <u>M. Hennebach</u>, M. Nekipelov, <u>Th. Strauch</u>, <u>M. Theisen</u>

> Paris, Lab. Kastler-Brossel UPMC ENS CNRS E.-O. Le Bigot, P. Indelicato, <u>S. Schlesser</u>, <u>M. Trassinelli</u>

> > **PSI, Lab. for Part. Physics** A. Schmelzbach, L. M. Simons

Vienna, SMI P. Bühler, H. Fuhrmann, <u>A. Gruber</u>, <u>A. Hirtl</u>, T. Ishiwatari, J. Marton, Ph. Schmid, J. Zmeskal

Cascade theory

V. E. Markushin (PSI), Th. Jensen (ETHZ, PSI, LKB, FZJ, SMI), V. Pomerantsev, V. Popov (MSU)

→ Diploma and PhD thesis ←

THANK YOU