

San Diego State University Georgia, Tbilisi, Georgia Faculty of Chemistry

Synthetic strategies to obtain [¹⁸F]radiolabeled compounds

The fourth year BS student: Sergi Betkhoshvili

Desirable properties of radiotracers

Minimal difference in biological activity from the ordinary biomolecule

Stability of attachment between radionuclei and biological molecules.

Labeling compounds with ¹⁸F nuclei is attractive due to its several advantageous properties

- Lowest energy positron emission leads to greatest spatial resolution of PET and decrease of risk for patient.
- Half-life of 109.8 min allows for synthesis and delivery from external site to the PET centers and finds a balance to allow for a minimized dose of radioactive substance to a patient.
- Strong bond between fluorine and carbon.
- Usually minimal effect on the biological activity of the compound to be labeled, C-F bond usually mimics C-O bond quite well.

Radionuclide	Mode of Decay	Half-life	Emax (mean)
¹⁸ F	β^+	109.8 min	0.63 MeV
⁶⁸ Ga	β^+	68 min	1.90 MeV
^{99m} Tc	IC	6.02 h	0.14 MeV
¹¹¹ In	EC	2.8 d	0.24 MeV
¹²³ I	EC	13.2 h	0.16 MeV

3

Desirable properties of chemical reactions

- Chemo- and regioselectivity
- As quick a reaction as possible –¹⁸F decays, therefore it is desirable to put the ¹⁸F on the very last stage (or withing trivial and fast transformations)
- Ease of product purification

There are several strategies and modifications of the labeling compounds with $^{18}\mathrm{F}$

□Most common reactions are nucleophilic substitutions:

- Nucleophilic substitution at saturated carbons $S_N 2$
- Nucleophilic substitution in aromatic ring- S_NAr \Box Electrophilic aliphatic/aromatic reactions with ${}^{18}F_2$ \Box Organometallic chemistry can be used
- Catalysis or organometallic substrates
- Coordination complexes can be used for labeling some metabolites readily
- Electrochemical routes have been proposed and shown to work

□Prosthetic groups can be used for indirect incorporation of ¹⁸F

Nucleophilic substitution at saturated carbons – $S_N 2$. Putting ¹⁸F in the molecule.

General Reaction

Applied conditions:

- Kryptofix 2.2.2
- Polar aprotic solvents
- Weak, non-nucleophilic base, K₂CO₃ or Cs₂CO₃
- Elevated temperatures, usually 100 150 °C

Common schemes

Exemplification

Scheme 7. Reagents and conditions: (a) Pd(OAc)₂, XantPhos, Cs₂CO₃, 3-aminophenol, 1,4-dioxane, 110 °C, 3 h, 74%. (b) Cs₂CO₃, ethane-1,2-diyl bis(4-methylbenzenesulfonate) DMF, 80 °C, 5 h, 20%. (c) [¹⁸F]fluoride, K₂CO₃, Kryptofix®222, MeCN, DMSO, 120 °C, 15 min, 3% (d.c.).

Reference [1]

Common Schemes

Exemplification

Scheme 1. Radiosynthesis of [¹⁸F]VAT using a two-step procedure.

Reference [2]

Exemplifications

Direct [18F]fluorination

Fig. 2. Radiosynthesis of [¹⁸F]1 by [¹⁸F]fluorination of tosylate precursor 2 with [¹⁸F]F⁻ and [¹⁸F]fluoroethylation of phenol precursor 3 with [¹⁸F]FEtBr in this study. Reference [3]

Aliphatic ¹⁸F Nucleophilic Substitution Reactions

Fig. 15. Aliphatic ¹⁸F nucleophilic substitution reactions.

α -carbon substitutions (rate enhanced due to orbital reasons)

Nucleophiles attack α -carbon rather than carbonyl carbon if carbonyl group is compatible, in this case, even if fluoride attacked carbonyl, this attack is reversible, while attack on saturated carbon is not.

Application of α -carbon substitution

Scheme 2. The two-step route of ¹⁸F-FPGLU radiosynthesis.

Reference [6]

Scheme 1. One-pot two-step radiosynthesis of [18F]GE179 in the PETCHEM automated module.

Total process time 110 min with a radiochemical yield of $12 \pm 6\%$ (n = 4, decay corrected), radiochemical purity > 95%, molar activity of 146 ± 32 GBq/µmol (at the end of synthesis), an average mass of GE179 at 2.2 µg/batch, and total impurities less than 0.5 µg/batch (n = 4)

Scheme 1. General scheme for the synthesis of 1-(2-[¹⁹F]fluoroethyl)-tryptophan (DL-[¹⁹F]5) (Pathway A), the radiosynthesis of 1-(2-[¹⁸F]fluoroethyl)-tryptophan (DL-[¹⁸F]5) following our strategy (Pathway B), or following the strategy involved by Sun & al. (Pathway C) [9]. Reactions carried out in the same reactor are framed together in the pathways above. 16 Reference [8]

Challenges with automation

Reference [10]

Scheme 4. Reaction of dimethylcarbamoyl-protected penciclovir analog with the fluoride ion.

Eliminations and, sometimes, hydrolysis can happen

Stavudine (d4T)

Fig. 2. Radiosynthesis of [¹⁸F]FLT and formation of stavudine (d4T).

Reference [11]

Nucleophilic substitution reaction in aromatic ring- S_NAr

- Pyridines and pyrimidines
- Benzene rings with strongly electrowithdrawing groups

Variety of activating (electrowithdrawing) and leaving groups

Common schemes for S_NAr substitutions

Synthetic pathways for S_NAr

Scheme 2. Schematic depiction of the automated synthesis pathway using the chiral phase-transfer catalysts 5a/b [41]. Reference [12]

Scheme 3. Two-step radiosynthesis towards [¹⁸F]**9** starting from precursor **7**: incorporation of [¹⁸F]fluoride, followed by deprotection and purification. Total yield of the radiosynthesis: 22 ± 3% after 90 min overall synthesis time.

Reference [12]

¹⁸F Nucleophilic Reaction with electron-withdrawing group at *m*-position

¹⁸F Nucleophilic Reaction on weakly activated compound

Fig. 12. Direct aromatic ¹⁸F nucleophilic reactions.

Scheme 37. Direct synthesis of [¹⁸F]haloperidol (**66**) from the corresponding nitro precursor **70**.

Scheme 40. One-step synthesis of 74 from bis(4-bromophenyl)iodonium salts.

Scheme 38. Synthesis of simple [¹⁸F]fluoroaromatic precursors by direct nucleophilic ¹⁸F substitution. $AG = activating group (NO_2, nitrile, or carbonyl). LG = leaving group (NO_2, halide, triflate, tosylate, mesylate, trialkylamonium halide, or iodonium salt). X = halide I or Br.$

Scheme 41. Synthesis of ortho-[¹⁸F]fluoroanisole (79) using the heteroaromatic iodonium salt 78. 25

Electrophilic aliphatic/aromatic reactions with ${}^{18}F_2$ or [${}^{18}F$] acetyl hypofluorite.

Fig. 10. Direct electrophilic fluorination for PET probe construction.

Reference [4]

Organometallic reactions

Scheme 34. Synthesis of [¹⁸F]fluoro-L-DOPA (**59**) and 2-[¹⁸F]fluoro-Ltyrosine (**61**) from their corresponding organotin precursors by direct fluorination with [¹⁸F]F₂. Refere **Scheme 35.** Preparation of **63**, with improved specific activities, by reaction of the corresponding organotin reagent with $[^{18}F]F_2$.

Reference [14]

Scheme 3. Radiosynthetic route of [¹⁸F]fluorobenzene *via* copper-mediated nucleophilic [¹⁸F]fluorination method. Reference [15]

Coordination complexes can be made

Reference [16]

Fig. 1. The [¹⁸F]AlF labeling of NOTA-HL.


```
Reference [17]
```

Scheme 1. Synthesis of TCO-NOTA precursor and cold reference.

Electrochemical methods have been proposed

Fig. 1. Electrochemical ¹⁸F-fluorination described by He et al.

Fig. 2. Carrier-added ¹⁸F-fluorination of methyl 2-(phenylthio)acetate (3).

Reference [19]

Prosthetic groups can be used for ¹⁸F incorporation

Fig. 17. ¹⁸F labeling through amine reactive prosthetic groups.

Fig. 18. ¹⁸F labeling through Carboxylic acid reactive and Thiol-reactive prosthetic groups.

Reference [4]

Scheme 51. Reagents for the ¹⁸F labeling of proteins, peptides, and oligonucleotides.

Scheme 52. Synthesis of ¹⁸F-labeled proteins by reaction of [¹⁸F]maleimides and free thiol groups.

Scheme 53. [¹⁸F]Malemide reagents that react with thiol groups for peptide and protein labeling. 33

Synthetic Ingenuity and various methods

¹⁸F labeling via phosphorous-¹⁸F bond formation

¹⁸F labeling via boron-¹⁸F bond formation

¹⁸F labeling via silicon-¹⁸F bond formation

Reference [4]

Reference [4]

Fig. 20. The use of "click" reaction for PET probe construction.

References

[1] Gabellieri, E., Capotosti, F., Molette, J., Sreenivasachary, N., Mueller, A., Berndt, M., Schieferstein, H., Juergens, T., Varisco, Y., Oden, F., Schmitt-Willich, H., Hickman, D., Dinkelborg, L., Stephens, A., Pfeifer, A., & Kroth, H. (2020). Discovery of 2-(4-(2-fluoroethoxy)piperidin-1-yl)-9-methyl-9H-pyrrolo[2,3-b:4,5-c']dipyridine ([18F]PI-2014) as PET tracer for the detection of pathological aggregated tau in Alzheimer's disease and other tauopathies. *European Journal of Medicinal Chemistry*, 204, 112615. https://doi.org/10.1016/j.ejmech.2020.112615

[2] Yue, X., Bognar, C., Zhang, X., Gaehle, G. G., Moerlein, S. M., Perlmutter, J. S., & Tu, Z. (2016). Automated production of [18F]VAT suitable for clinical PET study of vesicular acetylcholine transporter. *Applied Radiation and Isotopes*, *107*, 40–46. <u>https://doi.org/10.1016/j.apradiso.2015.09.010</u>

[3] Mori, W., Takei, M., Furutsuka, K., Fujinaga, M., Kumata, K., Muto, M., Ohkubo, T., Hashimoto, H., Tamagnan, G., Higuchi, M., Kawamura, K., & Zhang, M. R. (2017). Comparison between [18F]fluorination and [18F]fluoroethylation reactions for the synthesis of the PDE10A PET radiotracer [18F]MNI-659. *Nuclear Medicine and Biology*, 55, 12–18. https://doi.org/10.1016/j.nucmedbio.2017.08.002

[4] Li, Z., & Conti, P. S. (2010). Radiopharmaceutical chemistry for positron emission tomography. *Advanced Drug Delivery Reviews*, 62(11), 1031–1051. https://doi.org/10.1016/j.addr.2010.09.007

[5] Clayden, J. (2012). Organic chemistry (2nd ed.). New York: Oxford University Press.

[6] Sun, A., Liu, S., Tang, X., Nie, D., Tang, G., Zhang, Z., Wen, F., & Wang, X. (2017). Simple and rapid radiosynthesis of N-18F-labeled glutamic acid as a hepatocellular carcinoma PET tracer. *Nuclear Medicine and Biology*, 49, 38–43. <u>https://doi.org/10.1016/j.nucmedbio.2017.02.003</u>

[7] Yue, X., Xin, Y., Chugani, H. T., Chugani, D. C., & Zhang, S. (2019). Automated production of a N-methyl-D-aspartate receptor radioligand [18 F]GE179 for clinical use. *Applied Radiation and Isotopes*, *148*(November 2018), 246–252. <u>https://doi.org/10.1016/j.apradiso.2019.03.035</u>

[8] Henrottin, J., Lemaire, C., Egrise, D., Zervosen, A., van Den Eynde, B., Plenevaux, A., Franci, X., Goldman, S., & Luxen, A. (2016). Fully automated radiosynthesis of N1-[18F]fluoroethyl-tryptophan and study of its biological activity as a new potential substrate for indoleamine 2,3-dioxygenase PET imaging. *Nuclear Medicine and Biology*, *43*(6), 379– 389. <u>https://doi.org/10.1016/j.nucmedbio.2016.03.001</u>

[9] Venkatachalam, T. K., Stimson, D. H. R., Pierens, G. K., Bhalla, R., & Reutens, D. C. (2018). Challenges in the automated synthesis of [18F]-1-fluoroethyl tryptophan: Formation of both O- and N-alkylated products. *Applied Radiation and Isotopes*, *131*(October 2017), 41–48. <u>https://doi.org/10.1016/j.apradiso.2017.10.047</u>

[10] Liu, J., Barrio, J. R., & Satyamurthy, N. (2017). Efficient synthesis of 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG) and 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG). *Journal of Fluorine Chemistry*, 201(July), 24–42. <u>https://doi.org/10.1016/j.jfluchem.2017.08.007</u>

[11] Marchand, P., Ouadi, A., Pellicioli, M., Schuler, J., Laquerriere, P., Boisson, F., & Brasse, D. (2016). Automated and efficient radiosynthesis of [18F]FLT using a low amount of precursor. *Nuclear Medicine and Biology*, 43(8), 520–527. <u>https://doi.org/10.1016/j.nucmedbio.2016.05.009</u>

[12] Pretze, M., Franck, D., Kunkel, F., Foßhag, E., Wängler, C., & Wängler, B. (2017). Evaluation of two nucleophilic syntheses routes for the automated synthesis of 6-[18F]fluoro-L-DOPA. *Nuclear Medicine and Biology*, 45, 35–42. <u>https://doi.org/10.1016/j.nucmedbio.2016.10.007</u>

[13] Dammicco, S., Goux, M., Lemaire, C., Becker, G., Bahri, M. A., Plenevaux, A., Cinier, M., & Luxen, A. (2017). Regiospecific radiolabelling of Nanofitin on Ni magnetic beads with [18F]FBEM and in vivo PET studies. *Nuclear Medicine and Biology*, *51*, 33–39. <u>https://doi.org/10.1016/j.nucmedbio.2017.04.006</u>

[14] Miller, P. W., Long, N. J., Vilar, R., & Gee, A. D. (2008). Synthesis of11C, 18F, 15O, and 13N radiolabels for positron emission tomography. *Angewandte Chemie - International Edition*, 47(47), 8998–9033. <u>https://doi.org/10.1002/anie.200800222</u>

[15] Qiao, Z., Mardon, K., Stimson, D. H. R., Migotto, M. anne, Reutens, D. C., & Bhalla, R. (2020). Synthesis and evaluation of 6-[18F]fluoro-3-(pyridin-3-yl)-1H-indole as potential PET tracer for targeting tryptophan 2, 3-dioxygenase (TDO). *Nuclear Medicine and Biology*, 84–85, 1–10. <u>https://doi.org/10.1016/j.nucmedbio.2019.12.007</u>

[16] Yu, H. M., Chan, C. H., Yang, C. H., Hsia, H. T., & Wang, M. H. (2020). Hexavalent lactoside labeled with [18F]AlF for PET imaging of asialoglycoprotein receptor. *Applied Radiation and Isotopes*, *162*(October 2019), 109199. <u>https://doi.org/10.1016/j.apradiso.2020.109199</u>

[17] Ruivo, E., Adhikari, K., Elvas, F., Fissers, J., Vangestel, C., Staelens, S., Stroobants, S., Van der Veken, P., Wyffels, L., & Augustyns, K. (2019). Improved stability of a novel fluorine-18 labeled TCO analogue for pretargeted PET imaging. *Nuclear Medicine and Biology*, 76–77, 36–42. <u>https://doi.org/10.1016/j.nucmedbio.2019.11.001</u>

[18] Basuli, F., Zhang, X., Williams, M. R., Seidel, J., Green, M. V., Choyke, P. L., Swenson, R. E., & Jagoda, E. M. (2018). One-pot synthesis and biodistribution of fluorine-18 labeled serum albumin for vascular imaging. *Nuclear Medicine and Biology*, 62–63, 63–70. <u>https://doi.org/10.1016/j.nucmedbio.2018.05.004</u>

[19] Waldmann, C. M., Lebedev, A., Allison, N., & Sadeghi, S. (2017). An automated synthesizer for electrochemical 18F-fluorination of organic compounds. *Applied Radiation and Isotopes*, *127*(April), 245–252. https://doi.org/10.1016/j.apradiso.2017.06.028

[20] Sugiura, G., Kühn, H., Sauter, M., Haberkorn, U., & Mier, W. (2014). Radiolabeling strategies for tumor-targeting proteinaceous drugs. In *Molecules*. https://doi.org/10.3390/molecules19022135

Thank you for your Attention