

AUTOMATIC DOG FEEDER

HELLO!

I AM ALEKSANDRE KOBESHAVIDZE Fifth Semester (junior) MAJOR – MECHANICAL ENGINEERING MINOR – COMPUTER ENGINEERING

THE PROBLEM

According to statistics, the number of dog owners is increasing over and over

STATISTICS

•

Number of dogs in the U.S. 2000 - 2017 Number of dogs compared to other pets \blacklozenge

DESIGN

DESIGN OPTIONS

Little door which is controlled by electric timer

The second one is equipped with its own drawer

CHOOSEN DESIGN

8

MECHANISMS

RACK AND PINION CAM AND FOLLOWER

RACK AND PINION

They are characterized with perfect durability and are very compact in size

PARAMETERS

- Module m = P_t/π (Input Value)
- Number of teeth Z₁/Z₂ (Input Value)
- Pitch circle diameter d_w = mz
- 🔪 Pitch angle α
- Height of teeth h_d = 2m
- Fillet radius r_i = 0.4m
- Addendum height h_{wa} = m
- Dedendum height h_{wf} = m
- Pitch $P_t = m\pi$
- Addendum circle d_a = m(z+2) Dedendum circle - d_f = m(z-2.5)

OUTPUT PARAMETERS

CALCULATED WITH THE SOFTWARE CODE WRITTEN BY ME IN C++

- Height of tooth $h_d = 2m = 4mm$
- Fillet radius r_i = 0.4m = 0.8mm
- Addendum height h_{wa} = m = 2mm
- Dedendum height h_{wf} = m = 2mm
- Pitch $P_t = m\pi = 6.28mm$
- Addendum circle $d_a = m(z+2) = 38mm$
 - Dedendum circle d_f = m(z-2.5) = 29mm

CAM AND FOLLOWER

The universality and flexibility in the design are among their most attractive features

GRAPHICAL DERIVATION

Powered by

- Equation of Follower motion. Derived from Lagrange interpolation polynomial :
- $L(x) = -14 * (x^2 6.28x)/9.85$

OPTIMAL RADIUS

 Every point under hatched plane can be used for Cam center point

RACK AND PINION vs. CAM AND FOLLOWER

MAX. POSSIBLE STRAIN

STRAIN CALCULATION

- Maximum possible strain [δ]= 10/196 = 0.051 (kg/cm²) = = 5003(N/m²)
- $I_x = b^*h^3/12 = 137.2(cm^4) = 1.372 \times 10^{-6}(m^4)$
- $\delta_{max} = M_x * y_{max} / I_x = 140 * 0.3 / 137.2 = 0.3 (kg/cm^2) =$ = 29400(N/m²)

MINIMIZING MAXIMUM STRAIN

AUTOCAD PROTOTYPE

CONCLUSION

TASKS DONE:

- OPTIMAL DESIGN
- CHOOSING AND CALCULATING OPTIMAL MECHANISM
- STRAIN CALCULATIONS

TASKS IN DEVELOPMENT

- ENGINE SELECTION
- ELECTRICAL PART
- PROTOTYPE CREATION

THANKS!

ANY QUESTIONS?

