AUTOMATIC DOG FEEDER

HELLO!

I AM ALEKSANDRE KOBESHAVIDZE Fifth Semester (junior)
MAJOR - MECHANICAL ENGINEERING
MINOR - COMPUTER ENGINEERING

THE PROBLEM

INTRODUCTION

According to statistics, the number of dog owners is increasing over and over

STATISTICS

- Number of dogs in the U.S. 2000-2017
- Number of dogs compared to other pets

Number of U.S. Households Keeping Pets

DESIGN

DESIGN OPTIONS

Little door which is controlled by electric timer

The second one is equipped with its own drawer

CHOOSEN DESIGN

MECHANISMS

- RACK AND PINION
- CAM AND FOLLOWER

RACK AND PINION

- They are characterized with perfect durability and are very compact in size

PARAMETERS

- Module - $m=P_{t} / \pi$ (Input Value)
- Number of teeth $-Z_{1} / Z_{2}$ (Input Value)
- Pitch circle diameter $-\mathrm{d}_{\mathrm{w}}=\mathrm{mz}$
- Pitch angle - α
- Height of teeth $-h_{d}=2 m$
- Fillet radius $-r_{i}=0.4 \mathrm{~m}$
- Addendum height $-h_{\text {wa }}=m$
- Dedendum height $-h_{w f}=m$
- Pitch $-P_{t}=m \pi$
- Addendum circle $-d_{a}=m(z+2)$

Dedendum circle $-\mathrm{d}_{\mathrm{f}}=\mathrm{m}(\mathrm{z}-2.5)$

OUTPUT PARAMETERS

CALCULATED WITH THE SOFTWARE CODE WRITTEN BY ME IN C++

Height of tooth $-h_{d}=2 m=4 m m$

- Fillet radius $-\mathrm{r}_{\mathrm{i}}=0.4 \mathrm{~m}=0.8 \mathrm{~mm}$
- Addendum height $-\mathrm{h}_{\mathrm{wa}}=\mathrm{m}=2 \mathrm{~mm}$
- Dedendum height $-\mathrm{h}_{\mathrm{wf}}=\mathrm{m}=2 \mathrm{~mm}$

P Pitch $-P_{t}=m \pi=6.28 \mathrm{~mm}$

- Addendum circle $-\mathrm{d}_{\mathrm{a}}=\mathrm{m}(\mathrm{z}+2)=38 \mathrm{~mm}$

Dedendum circle $-d_{f}=m(z-2.5)=29 \mathrm{~mm}$

CAM AND FOLLOWER

- The universality and flexibility in the design are among their most attractive features

GRAPHICAL DERIVATION

- Equation of Follower motion. Derived from Lagrange interpolation polynomial:
* $L(x)=-14 *\left(x^{2}-6.28 x\right) / 9.85$

OPTIMAL RADIUS

- Every point under hatched plane can be used for Cam center point

RACK AND PINION vs. CAM AND FOLLOWER

MANUFACTURING
COSTS
COMPACTINSIZE

MAX. POSSIBLE STRAIN

STRAIN CALCULATION

- Maximum possible strain $[\delta]=10 / 196=0.051\left(\mathrm{~kg} / \mathrm{cm}^{2}\right)=$
$=5003\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
- $\mathrm{I}_{\mathrm{x}}=\mathrm{b}^{*} \mathrm{~h}^{3} / 12=137.2\left(\mathrm{~cm}^{4}\right)=1.372 \times 10^{-6}\left(\mathrm{~m}^{4}\right)$

MINIMIZING MAXIMUM STRAIN

AUTOCAD PROTOTYPE

\checkmark

CONCLUSION

TASKS DONE:

- OPTIMALDESIGN
- CHOOSING AND CALCULATING OPTIMAL MECHANISM
- STRAIN CALCULATIONS

TASKS IN DEVELOPMENT
ENGINE SELECTION

- ELECTRICAL PART
- PROTOTYPE CREATION

