

IVANE JAVAKHISHVILI TBILISI STATE UNIVERSITY

Radioisotopes and radiopharmaceuticals for nuclear medicine in Georgia

Medea Abramishvili (TSU-Masters program: Nuclear physics and nuclear safety)

Supervisor: prof. Revaz Shanidze

8TH GEORGIAN – GERMAN SCHOOL AND WORKSHOP IN BASIC SCIENCE (GGSWBS' 18)

Contents:

Introduction

Radioisotopes used in Georgia

Radioisotope production and import in Georgia

> Example:

Aversi clinic

Summary and outlook

Introduction

Radio-isotopes for nuclear medicine:

- Diagnostic (nuclear / molecular imaging):

Biologically active elements (H, C, O.), Short life-time, ...

- Therapy/treatment

 60 Co (radiation therapy), 192 Ir – brachytherapy

- Calibration sources:

C H O P S

⁵⁷Co, ⁶⁸Ge , ¹³⁷Cs

Physical properties of radionuclides used in nuclear medicine studies

Radionuclide	Decay Mode	Principal Photon Emissions	Half-Life	Primary Use
пС	β*	511 keV	20.4 min	Imaging
¹³ N	β+	511 keV	9.97 min	Imaging
¹⁵ O	β+	511 keV	2.03 min	Imaging
${}^{18}F$	β*	511 keV	110 min	Imaging
^{32}P	β-	—	14.3 d	Therapy
⁶⁷ Ga	EC	93, 185, 300 keV	3.26 d	Imaging
⁸² Rb	β+	511 keV	1.25 min	Imaging
⁸⁹ Sr	β-	—	50.5 d	Therapy
^{99m} Tc	IT	140 keV	6.02 hr	Imaging
¹¹¹ In	EC	172, 247 keV	2.83 d	Imaging
¹²³ I	EC	159 keV	13.2 hr	Imaging
¹²⁵ I	EC	27-30 keV x rays	60.1 d	In vitro assays
¹³¹ I	β-	364 keV	8.04 d	Therapy/ imaging
^{153}Sm	β-	41, 103 keV	46.7 hr	Therapy
¹⁸⁶ Re	β-	137 keV	3.8 d	Therapy
²⁰¹ Tl	EC	68-80 keV x rays	3.04 d	Imaging

EC, electron capture; IT, isomeric transition.

Source:Radionuclide and radiopharmaceutical production

Radioisotope production

Nuclear reactor

Cyclotron Used to produce radioactive very short lived tracers such as fluorine-18

Neutron-activated radionuclides of importance in biology and medicine

Radionuclide	Decay Mode	Production Reaction	Natural Abundance of Target Isotope (%)*	$\sigma_{c}(\mathbf{b})^{\dagger}$
¹⁴ C	β-	¹⁴ N(n,p) ¹⁴ C	99.6	1.81
²⁴ Na	(β-,γ)	23 Na(n, γ) 24 Na	100	0.53
^{32}P	β-	${}^{31}P(n,\gamma){}^{32}P$	100	0.19
		${}^{32}S(n,p){}^{32}P$	95.0	0.1
³⁵ S	β-	${}^{35}\mathrm{Cl}(\mathbf{n,p}){}^{35}\mathrm{S}$	75.8	0.4
42 K	(β-,γ)	${}^{41}K(n,\gamma){}^{42}K$	6.7	1.2
$^{51}\mathrm{Cr}$	(EC,γ)	${}^{50}\mathrm{Cr}(\mathbf{n},\!\gamma){}^{51}\mathrm{Cr}$	4.3	17
⁵⁹ Fe	(β-,γ)	${}^{58}\mathrm{Fe}(\mathrm{n},\gamma){}^{59}\mathrm{Fe}$	0.3	1.1
75 Se	(EC,γ)	74 Se(n, γ) 75 Se	0.9	30
^{125}I	(EC,γ)	$^{^{124}}\mathrm{Xe}(n,\gamma)^{^{125}}\mathrm{Xe} \xrightarrow{^{\mathrm{EC}}} \xrightarrow{^{125}}\mathrm{I}$	0.1	110
^{131}I	(β-,γ)	$^{130}Te(n,\gamma)^{131}Te \xrightarrow{\beta^{-}} {}^{131}I$	33.8	0.24

Medical facilities that use radio-isotopes for diagnosis/treatment

Aversi- Center of nuclear medicine. Radioisotopes: ^{99m}Tc, ¹³¹I

Clinical medicine scientific-research institute- Todua Radioisotopes: ^{99m}Tc, ¹³¹I, ¹⁸F, ¹⁹²Ir, ⁶⁸Ge, ⁵⁷Co, ¹³⁷Cs

Radiation medicine center Radioisotopes: ^{99m}Tc, ¹³¹I, ⁶⁰Co

Radio-isotopes used in Georgia

lsotope	Τ _{1/2}	Eγ(kev)	Nuc. Med.	Production	Clinic
¹⁸ F(β+)	109.78 m	511	Imaging	Cyclotron	RMC, HIMC
⁹⁹ ^m Τc (γ)	6.01 h	140	Imaging	Reactor (⁹⁹ Mo/ ^{99m} Tc Generator)	Aversi, RMC, RICM
¹³¹ Ι (β-)	8.02 d	364	lmaging Treatment	Reactor	Aversi, RMC, RICM
⁶⁰ Co (γ)	5.2714 y	1173	Treatment	Reactor	RMC
¹⁹² lr (β⁻)	73.8 d	180	Treatment	Accelerator	RMC
⁵⁷ Co	272 d	14.4	For calibration	Cyclotron	RMC
⁶⁸ Ge	270.8 d	106	For calibration	⁷⁶ Ge	RMC
¹³⁷ Cs (β-)	30.08 y	1170	For calibration	Reactor	RMC

¹RICM – Research Institute of Clinical Medicine (Medical Center of Acad. Todua) ²RMC - Radiation Medicine Center Import of radioisotopes in Georgia

SOME RADIONUCLIDE GENERATORS USED IN NUCLEAR MEDICINE

Daughter*	Decay Mode	$T_{1/2}$	Parent	$T_{_{1/2}}$
⁶² Cu	β⁺,EC	9.7 min	⁶² Zn	9.3 hr
⁶⁸ Ga	β^+, EC	$68 \min$	⁶⁸ Ge	271 d
⁸² Rb	β^+, EC	$1.3 \min$	$^{82}\mathrm{Sr}$	$25 \mathrm{d}$
$^{87\mathrm{m}}\mathrm{Sr}$	IT	2.8 hr	⁸⁷ Y	$80 \ hr$
^{s9m} Tc	IT	6 hr	^{99}Mo	$66 \ hr$
113mIn	IT	100 min	113 Sn	120 d

*Generator product.

EC, electron capture; IT, isomeric transition.

Radio-isotopes also can be produced by generators. For example, isotope ^{99m}Tc is produced from ⁹⁹Mo, which is imported in Georgia from Iran by company called "Parstek", also from turkish company "Monrol". Example: Aversi- center of nuclear medicine

Gamma-camera used in Aversi Used for 2 radioisotopes: ^{99m}Tc, ¹³¹I Example from Aversi nuclear medicine center: Full body scan with ^{99m}Tc (bone scintigraphy)

Nuclear medicine treatment

Basically, Radioactive Iodine (^{131}I) is the only isotope used for treatment of thyrotoxicosis. Therapeutic effect depends on emission of β rays. Isotope is Imported from Hungary.

131

53

Example from Aversi nuclear medicine center: Thyroid scan with ^{99m}Tc

Summary and Outlook

- Radio-isotopes in Georgia are imported from different countries
- Research nuclear reactor (Mtskheta) was decommissioned in 1990.
- > PET scan require short lived radio-isotope (^{18}F)
 - ! limiting factor for the PET-technique in Georgia

> Cyclotron for radio-isotope production in Georgia is under consideration

Thank you for attention!