

My experience in Juelich as a master student

Development and Applications of Novel Diffusion MRI Biomarkers in Neurology

Ana Gogishvili Supervisors: Priv. – Doz. Dr. Farida Grinberg Prof. Dr. Ketevan Kotetishvili Prof. Dr. N. J. Shah

Outline

- Introduction (DTI, DKI)
- Applications: Gamma distribution function metrics as biomarker of maturation
- Multimodal Study of Brain Tumors

Introduction

Diffusion MRI applications:

- neurodegenerative pathologies (Alzheimer's and Parkinson's diseases, etc.)
- stroke
- neurosurgical planning
- development and aging
- tumours

Introduction

Water Diffusion is random, microscopic movement due to thermal collisions

Introduction

Diffusion tensor imaging: accounts for diffusion anisotropy

Signal attenuation

$$-\mathring{a}^{b_{ij}D_{ij}}$$

Tensor invariants:

Fractional Anisotropy

Mean Diffusivity

$$FA = \sqrt{\frac{3}{2}} \sqrt{\frac{(MD - /_1)^2 + (MD - /_2)^2 + (MD - /_3)^2}{/_1^2 + /_2^2 + /_3^2}}$$

$$MD^{\circ} \frac{{I_1 + I_2 + I_3}}{3} = \overline{I}$$

Non- gaussian Diffusion Kurtosis Imaging (DKI)

Water diffusion is <u>anisotropic</u> and <u>restricted</u>

Mean kurtosis:

$$MK \equiv \frac{1}{5} \operatorname{Tr}(\mathbf{K}) = \langle \mathbf{K} \rangle$$

Monoexponential

Non-exponential

Non- Gaussian method: Gamma Distribution Function Imaging

JÜLICH FORSCHUNGSZENTRUM

F. Grinberg et al., PLOS ONE, 2014

$$S(b) = \hat{0} P(D) \exp(-bD) dD$$

$$P_G(D, \kappa, \theta) = D^{\kappa-1} \frac{\exp(-D/\theta)}{\Gamma(\kappa)\theta^{\kappa}}$$

<u>Free parameters</u> Kappa: $\kappa = \langle D \rangle^2 / \sigma_G^2$ Theta: $\theta = \sigma_G^2 / \langle D \rangle$

Application of Gamma Distribution function to children and adults

In particular we are interested Following questions...

- 1. Are the GDF parameters efficient in tracking the differences between children and adults?
- Can we extend our knowledge about more subtle microstructural development of specific fibres based on GDF?

Diffusion kurtosis metrics as biomarkers of microstructural development: A comparative study of a group of children and a group of adults

F. Grinberg et al., Neuroimage, 2017

Brain Development and Ageing – Lifelong Changes

Human brain undergoes life-long changes in many aspects: anatomic, physiological, mental, and also microstructural. Typical trajectories of the changes are often U-shaped or inverted-U-shaped.

Two groups for comparison children and adults

Children n=20 (9-12) years

Adults n=21 (38-64) years

whole-body 3T Siemens MAGNETOM Tim-Trio scanner

Averaged histograms

Whole brain averaged histograms show large shifts between the group of children and the group of adults

Regional analysis in white matter

Regional analysis shows large shifts for various fibers

Institute of Neuroscience and Medicine

Regional Analysis

Differences between the mean values of theta in various region

Theta values are larger in adults than children in all fibres

Group differences in percentage for Theta parameter

Fibre ranking based on Cohen's d of Theta

Protracted maturation

7 association fibres 14 Projection fibres 6 Commissural Fibres

12 September 2018

Institute of Neuroscience and Medicine

All 4 CFs+2 AFs+1 PFs

2 middle quartile between:1st and 4th quartiles All 1 PFs+2CFs

4th quartiles: All 5 AFs+ 2 PFs

Cohen's d (effect size):

 ≈ 0.2 - 'small' ≈ 0.5 - 'medium' ≈ 0.8 - 'large' > 1.2 – 'very large' le 16

Classifiers: Support Vector Machine and k Nearest Neighbour algorithm

SVM

kNN

SVM algorithm is based on finding the hyper plane that gives the largest minimum distance to the training examples An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors

Normalization of feature vector: x

$$X'_{i} = \frac{X_{i} \quad X_{min}}{X_{max} \quad X_{min}}$$

12 September 2018

Classification based on DTI and GDF metrics of different regions

Accuracies of classification (Alpha=0.01)

	FA	MD	AD	RD	Карра	Theta	DG	sG
SVM	0.89	0.94	0.95	0.76	0.99	0.73	0.87	0.95
kNN	0.87	0.91	0.92	0.78	0.99	0.76	0.92	0.97
k	3	5	3	5	1	1	3	3
γ					γ			
	DTI				GDF			

All metrics have shown high accuracies

Summary of first part

Gamma distribution function provides promising complementary metrics to a palette of maturation -sensitive MRI tools.

24 untreated tumour patient Whole body 3T Siemens MAGNETOM Tim-Trio scanner

T1-weighted images

T1-weighted images with contrast enhanced

T2-weighted image

T2FLAIR (Fluid attenuated Inversion Recovery)

Diffusion parameters

RD

AD

MD

DTI metrics

FA

DKI metrics

Color-encoded FA and fiber tracking for a tumor human brain in axial plane

Diffusion MRI gives a lot of complementary information to tumor assessment

This project is on going process and future work provide more results!

Conclusions

- Novel diffusion models provide information about tissue conditions, which is not attainable with conventional DMRI.
- The results show the efficiency of the gamma parameters, it can show the tumor heterogeneity
- All non-Gaussian models shown to provide valuable information regarding the tissue microstructure and conditions.

Acknowledgements

- Dr. Farida Grinberg
- Dr. Ezequiel Farrher
- Karina Ruzaeva
- T. Khechiashvili
- Prof. Dr. K. Kotetishvili
- Prof. Dr. N. J. Shah
- Georgian Technical University
- Shota Rustaveli National Science Foundation

Thank you for your attention !