

THE HYDROCARBON CLOCK: A TOOL TO DISTINGUISH BETWEEN MIXING AND REACTION GGSWBS' 18

23 AUGUST 2018 I IULIA GENSCH

Motivation ●○○○ VOC reactivity

Hydrocarbon clock

Summary o

Organic Compounds - Formation Fate and Impact on Troposphere

Motivation ●○○○ VOC reactivity

Hydrocarbon clock

Summary o

Organic Compounds - Formation Fate and Impact on Troposphere

Hydrocarbon clock

Definitions

VOC: organic compounds with $T_B < 520K$

Methane is usually not included in VOC due to its

- high emission rates
- Iow reactivity compared to most other VOC

sometimes 'NMVOC'

Other definition based on vapor pressure at room T

- VOC (gas phase only) $p_i > 10^{-2} Pa$
- SVOC (both gas and particle phase) $10^{-6} < p_i < 10^{-2} Pa$
- non-volatile (particle phase only) $p_i < 10^{-6} Pa$

Important VOC categories by chemical composition

Non-methane hydrocarbons NMHC

- alkanes (ethane, propane, butanes, pentanes...), alkenes (ethene, propene), alkynes (acetylene)
- aromatic compounds (benzene, toluene, xylenes, ethylbenzene...)
- isoprene, terpenes (alkenes!)

Halogenated VOC

- methyl halides (methyl chloride, methyl bromide, dichloromethane, trichloromethane, tetrachloromethane, trichloroethane)
- chloroflurocarbons (CFC), hydrochloroflurocarbons (HCFC), hydrofluorocarbons (HFC)
- halons (bromine containing CFC or HCFC)

Oxygenated VOC (OVOC)

- carbonyls (formaldehyde, acetaldehyde, acetone)
- alcohols (methanol, ethanol)
- acids (formic acid, acetic acids)

Motivation ○○○● Hydrocarbon clock

VOC source types

Anthropogenic "man-made"

 emissions from cars and trucks, chemical industry, use of solvents, production and distribution of fuels, natural gas, crude oil, domestic heating

Biogenic

 emissions from foliage (trees and bushes), grasslands, soil, oceans (90 %)

Pyrogenic (Biomass Burning)

 forrest and savannah fires, use of biofuels (domestic heating, cooking), charcoal making, burning of agricultural waste, forest clearing

VOC chemistry

Hydrocarbon clock

Summary o

Loss processes

- photolysis
- deposition
- transport into the stratosphere
- BUT: PHOTOCHEMISTRY IS DOMINANT

O_xH radicals, ozone, CI radical, NO₃

OH radical chemistry

- average global concentration 10⁶ molecules cm⁻³
- strong diurnal cycle

midday maximum in summer up to several 10⁷ molecules cm⁻³ nighttime OH is very low, often effectively zero

Complex feedbacks

- VOC reactions form oxidants
- oxidants play key role in formation of reactants
- reactant concentrations determine VOC reaction rates

Hydrocarbon clock

Summary o

Basic reaction kinetics

Pseudo-1st-order reaction

- $\label{eq:RH} \bullet \ RH + \cdot OH \rightarrow R \cdot + H_2O \text{ second order}$
- considering [OH] constant / excess \rightarrow pseudo-1st-order

Reaction rate, rate constant

$$\frac{-dRH}{dt} = k[RH][OH] \tag{1}$$

$$\frac{1}{[OH]_0 - [RH]_0} ln \frac{[OH][RH]_0}{[OH]_0[RH]} = kt$$
(2)

$$[OH]_0 >> [RH]_0, [OH]_0 \simeq [OH] \to \frac{1}{[OH]} ln \frac{[RH]_0}{[RH]} = kt$$
 (3)

$$[RH] = [RH]_0 e^{-k[OH]t}$$
⁽⁴⁾

with k[OH] const. \rightarrow first order

Hydrocarbon clock

Graphing pseudo-1st-order reactions

Ethane and Propane

•
$$k_{ethane} = 2.5 \ 10^{-13} \ cm^3 \ molec^{-1} \ s^{-1} \ IUPAC$$

•
$$k_{propane} = 1.1 \ 10^{-12} \ \text{cm}^3 \ \text{molec} \ ^{-1} \ \text{s}^{-1} \ \text{IUPAC}$$

VOC reactivity

Hydrocarbon clock

Summary o

Graphing pseudo-1st-order reactions: in the lab

from equation 3

$$ln\frac{[RH]_0}{[RH]} = k[OH]t \tag{5}$$

Hydrocarbon clock

Half-lives of pseudo-1st-order reactions Definition

 The half-life t₁ is the time in which the initial concentration decreases by half of its original value

Calculating half lives

$$[RH]_{\frac{1}{2}} = \frac{1}{2}[RH]_0 \tag{6}$$

from equation 4:

$$\frac{[RH]_{\frac{1}{2}}}{[RH]_{0}} = \frac{1}{2} = e^{-k[OH]t}$$
(7)

$$ln0.5 = -k[OH]t_{\frac{1}{2}}$$
 (8)

$$t_{\frac{1}{2}} = \frac{ln2}{k[OH]} \tag{9}$$

Hydrocarbon clock

Half-lives of pseudo-1st-order reactions: in the lab

Hydrocarbon clock

Rate constants and corresponding atmospheric lifetimes $[OH] = 10^6 molec \cdot cm^{-3}$

Parrish et al. JGR2007

Hydrocarbon clock

Summary o

VOC life time and transport (1)

Very low reactivity $\tau >$ decades

Nearly uniform distribution in troposphere, loss often dominated by transport into the stratosphere, significant accumulation even for low emission rates, little seasonal variability. Example: CFC

Medium to low reactivity $\frac{1}{2}$ year< τ < decades

Well distributed within hemispheres, often substantial gradients between hemispheres, some transport into stratosphere, limited accumulation, strong seasonal cycles within hemispheres. Examples: methyl chloride, methyl bromide, carbonyl sulfide, HCFC

Medium reactivity month $< \tau < \frac{1}{2}$ year

Continental scale impact, often strong hemispheric gradients and strong seasonal cycle, very little transport into stratosphere. Examples: ethane, dichloromethane, tetrachloroethene

Hydrocarbon clock

Summary

VOC life time and transport (2)

High reactivity day $< \tau <$ month

Local to regional impact, high spatial and temporal variability. Examples: propane, benzene, toluene, acetone, methanol, formic acid, acidic acid, dimethylsulfide

Very high reactivity hours $< \tau < day$

Local impact, very high spatial and temporal (diurnal) variability Examples: ethene, propene, isoprene, terpenes, formaldehyde, acetaldehyde

Heart Rate (beats/min)

VOC reactivity

Hydrocarbon clock ••••••

Summary

Aging in an isolated air parcel

NHMC pairs

- Simultaneous consideration of two NMHC in an isolated air parcel removes the necessity of knowing the absolute magnitude of the NMHC concentration at the initial emission time
- Comparison of estimates of the photo chemical age from two different NMHC ratios provides a test of the quantitative utility

One or two different NMHC ratios

$$[OH]t = -\frac{1}{k_A} ln \frac{[A]}{[A]_0}$$
(10)

$$[OH]t = -\frac{1}{k_A - k_B} \left(ln \frac{[A]}{[B]} - ln \frac{[A]_0}{[B]_0} \right)$$
(11)

$$ln\frac{[A]}{[C]} = \frac{k_C - k_A}{k_C - k_B} ln\frac{[B]}{[C]} + M$$
(12)

where M depends on emission ratios and rate constants

$$M = ln \frac{[A]_0}{[C]_0} - \frac{k_C - k_A}{k_C - k_B} ln \frac{[B]_0}{[C]_0}$$
(13)

VOC reactivity

Hydrocarbon clock ○●○○○ Summary o

Aging of three hydrocarbons over eastern North Pacific

Mitglied der Helmholtz-Gemeinschaft

i.gensch@fz-juelich.de

VOC reactivity

Hydrocarbon clock

Impact of mixing among air parcels

- To hinder failure of the simple relationship between NMHC concentrations given by equation 12, a continuous, variable emission flux, $[A]'(t_E)$, is introduced into the final sampled air parcel
- Each differential emission, $[A]'(t_E)dt_E$, has its own, well-defined emission time, t_E . and represents the concentration of the NMHC that was emitted at time t_E and remains in the air parcel when sampled at time t_M

$$[A]'(t_E) = [A]'_0(t_E)e^{-\int_{t=t_E}^{t_M} k_A[OH]dt}$$
(14)

- A hemisphere scale chemical transport model is required for the solution of equation 14, that decouples chemistry from transport.
- LPDM FLEXPART \rightarrow age spectra of NMHC using CO age spectra

Hydrocarbon clock

Summary o

Evolution of NMHC ratios in the troposphere using FLEXPART

VOC reactivity

Hydrocarbon clock

Summary 0

Measurements vs. Model

- average age of each alkane correlates reasonably well with the photochemical age
- slopes different than unity
- the approximations and correlations will be better in air parcels where the concentrations of the species of interest were all injected in a narrow period of time in the past; that is, when a sharply peaked age spectra exists

Parrish et al. JGR2007

VOC reactivity

Hydrocarbon clock

Summary

Summing-up...

VOC impact on atmosphere

Definitions, categories

Reactivity

Hydrocarbon clock

VOC reactivity

Hydrocarbon clock

Summing-up...

VOC impact on atmosphere VOC are the key to atmospheric chemistry

Definitions, categories

Reactivity

Hydrocarbon clock

VOC reactivity

Hydrocarbon clock

Summary

Summing-up...

VOC impact on atmosphere

VOC are the key to atmospheric chemistry

Definitions, categories

source categories are not always "strictly logic"

Reactivity

Hydrocarbon clock

Hydrocarbon clock

Summing-up...

VOC impact on atmosphere

VOC are the key to atmospheric chemistry

Definitions, categories

source categories are not always "strictly logic"

Reactivity

the higher the reaction rate, the lower the lifetime higher spatial and temporal variability for shorter-lived species

Hydrocarbon clock

JÜLICH Forschungszentrum

VOC reactivity

Hydrocarbon clock

Summary

Summing-up...

VOC impact on atmosphere

VOC are the key to atmospheric chemistry

Definitions, categories

source categories are not always "strictly logic"

Reactivity

the higher the reaction rate, the lower the lifetime higher spatial and temporal variability for shorter-lived species

Hydrocarbon clock

the concept of identical $\int [OH] dt$ has to be replaced by individual values for VOC with different reactivity

VOC reactivity

Hydrocarbon clock

Summary

Summing-up...

VOC impact on atmosphere

VOC are the key to atmospheric chemistry

Definitions, categories

source categories are not always "strictly logic"

Reactivity

the higher the reaction rate, the lower the lifetime higher spatial and temporal variability for shorter-lived species

Hydrocarbon clock

additional information is needed \rightarrow stable isotopes?

