

Ana Dolidze

Studying advection schemes of EURAD-IM model

Supervisors: Ramaz Botchorishvili (TSU) Hendrik Elbern (FZJ, Uni Köln),

23.08.2018, Tbilisi

•Developed since 1987;

•Rheinish Institute of Environmental Research at the University of Cologne (RIU);

•Based on EURAD-CTM (EURopean Air Pollution Dispersion-Chemistry Transport Model);

•It is part of European Union COPERNICUS CAMS project.

ScienceBRIDGE

CONNECTING PEOPLE AND KNOWLEDGE

http://db.eurad.uni-koeln.de/index2_e.h tml?/monitoring/aqada.php

mosphere Monitoring

Objective of the IM group, in the frame of a large European Union Project Copernicus CAMS

opernicus

- Provide air quality forecasts for Europe and selected regions,
- ☐ Combine models with data for **optimal analyses**
- Regional scale (15 to 1 km resolution)
- Central Europe (5km)
- Black Sea Area (15km)
- NRW (5km)
- Ruhr-Rur Area (1km)
- •Main institutional user: EPA

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen

This can be transferred to Georgia

Example:

Central Europe and local area with

Research Plan

- Studying code of Eurad-IM model
 - Extracting advection numerical scheme
- Studying theoretical and numerical properties of the schemes
 - Stability analysis
 - New advection test cases
 - Numerical experiments
- Adjoint advection schemes
 - New artificial source term method for adjoint development
- Data assimilation experiments

EURAD-IM advection schemes

- Bott's area-preserving flux-form (APF) scheme
- Monotone version of APF (MAPF) scheme
- Walcek scheme
- Smolarkiewicz scheme
- Prathers scheme

EURAD-IM advection schemes

- Bott's area-preserving flux-form (APF) scheme
- Monotone version of APF (MAPF) scheme
- Walcek scheme
- Smolarkiewicz scheme
- Prathers scheme

Bott's area-preserving flux-form (APF) and Monotone version of APF (MAPF) schemes

Equation for transport of non-diffusivity quantity

Finite-difference flux-form

• Upstream method flux $F_{j+\frac{1}{2}}^n = \frac{\Delta x}{\Delta t} [c_j^+ \psi_j^n - c_j^- \psi_{j+1}^n].$

on-diffusivity quantity
$$\frac{\partial \psi}{\partial t} = -\nabla(v\psi)$$

 $\psi_j^{n+1} = \psi_j^n - \frac{\Delta t}{\Delta r} [F_{j+\frac{1}{2}}^n - F_{j-\frac{1}{2}}^n]$

The Bott's monotonic scheme is a monotonic version of the Bott's original scheme

• Bott's method flux $F_{j+\frac{1}{2}} = \frac{\Delta}{\Lambda}$

$$F_{j+\frac{1}{2}} = \frac{\Delta x}{\Delta t} \left[\frac{i_{l,j+\frac{1}{2}}}{i_{l},j} \psi_{j} - \frac{i_{l,j+\frac{1}{2}}}{i_{l},j+1} \psi_{j+1} \right]$$

$$\begin{split} i_{l,j+\frac{1}{2}}^{+} &= max(0, I_{l}^{+}(c_{j+\frac{1}{2}})), i_{l \ i+\frac{1}{2}}^{-} = max(0, I_{l}^{-}(c_{j+\frac{1}{2}})), i_{l,j} = max(I_{i,j}, (i_{l \ i+\frac{1}{2}}^{+} + i_{l,j+\frac{1}{2}}^{-} + \epsilon)) \\ &I_{l}^{+}(c_{j+\frac{1}{2}}) = \int_{\frac{1}{2}-c_{j}^{+}}^{\frac{1}{2}} \psi_{j,l}(x')dx' = \sum_{k=0}^{l} \frac{a_{j,k}}{(k+1)2^{k+1}} [1 - (1 - 2c_{j}^{+})^{k+1}] \\ &I_{l}^{-}(c_{j+\frac{1}{2}}) = \int_{\frac{1}{2}-c_{j}^{+}}^{\frac{1}{2}} \psi_{j+1,l}(x')dx' = \sum_{k=0}^{l} \frac{a_{j+1,k}}{(k+1)2^{k+1}} (-1)^{k} [1 - (1 - 2c_{j}^{+})^{k+1}] \end{split}$$

EURAD-IM advection schemes

- Bott's area-preserving flux-form (APF) scheme
- Monotone version of APF (MAPF) scheme
- Walcek scheme
- Smolarkiewicz scheme
- Prathers scheme

Walcek scheme

Advection equation of constituent concentration within a moving fluid

 $C-concentration \ u-velocity$

Numerical fluxes: $(\Delta t u \rho Q_f)_{i+\frac{1}{2}} = [Q_i^t D_{d-1} - Q_i^{t+\Delta t} D_d] \Delta x_i + (\Delta t u \rho Q_f)_{i-\frac{1}{2}} \quad u_{i+\frac{1}{2}} \ge 0,$ $(\Delta t u \rho Q_f)_{i-\frac{1}{2}} = [Q_i^{t+\Delta t} D_d - Q_i^t D_{d-1}] \Delta x_i + (\Delta t u \rho Q_f)_{i+\frac{1}{2}} \quad u_{i-\frac{1}{2}} < 0.$

D is the fluid density: $D_{0} = \rho_{i},$ $D_{1} = D_{0} - [(\rho u)_{i+\frac{1}{2}} - (\rho u)_{i-\frac{1}{2}}]\Delta t / \Delta x_{i}$ $D_{2} = D_{1} - [(\rho v)_{j+\frac{1}{2}} - (\rho v)_{j-\frac{1}{2}}]\Delta t / \Delta y_{j}$ $D_{3} = D_{2} - [(\rho w)_{k+\frac{1}{2}} - (\rho w)_{k-\frac{1}{2}}]\Delta t / \Delta z_{k}$

EURAD-IM advection schemes

- Bott's area-preserving flux-form (APF) scheme
- Monotone version of APF (MAPF) scheme
- Walcek scheme
- Smolarkiewicz scheme
- Prathers scheme

Smolarkiewicz scheme

Continuity equation for advection of non-diffusive quantity in flow field

$$\frac{\partial \psi}{\partial t} + div(V\psi) = 0$$

Upstream advection scheme $\psi_i^{N+1} = \psi_i^N - [F(\psi_i^N, \psi_{i+1}^N, u_{i+\frac{1}{2}}^N) - F(\psi_{i-1}^N, \psi_i^N, u_{i-\frac{1}{2}}^N)]$

where

$$F(\psi_i, \psi_{i+1}, u) = [(u+|u|)\psi_i + (u-|u|)\psi_{i+1}]\frac{\Delta t}{2\Delta x}$$

Eventually the scheme has the following look:

$$\psi_i^* = \psi_i^N - [F(\psi_i^N, \psi_{i+1}^N, u_{i+\frac{1}{2}}^N) - F(\psi_{i-1}^N, \psi_i^N, u_{i-\frac{1}{2}}^N)]$$

$$\psi_i^{N+1} = \psi_i^* - \left[F(\psi_i^*, \psi_{i+1}^*, \bar{u}_{i+\frac{1}{2}}) - F(\psi_{i-1}^*, \psi_i^*, \bar{u}_{i-\frac{1}{2}})\right]$$

$$\bar{u}_{i+\frac{1}{2}} = \frac{(|u_{i+\frac{1}{2}}|\Delta x - \Delta t u_{i+\frac{1}{2}}^2)(\psi_{i+1}^* - \psi_i^*)}{(\psi_i^* + \psi_{i+1}^* + \epsilon)\Delta x}$$

Theoretical study of numerical schemes

Von Neumann stability analysis of Bott's scheme

For error of schemes we have : $E_j^n = e^{\gamma nh} e^{i\beta jk} = \xi^n e^{i\beta jk}$

Write numerical approximation for the error of finite difference schemes. $\xi^{n+1}e^{i\beta jk} = \xi^n e^{i\beta jk} - \alpha(\xi^n e^{i\beta jk} - \xi^n e^{i\beta(j-1)k})$

Cancellation of common terms yields: $\xi = 1 - \alpha(1 - e^{-i\beta k})$

Condition for stability is that the amplification $\xi = \left| \frac{E_j^{n+1}}{E_j^n} \right| = \left| e^{\gamma h} \right| \le 1$

We have developed an expression for the amplification factor ξ for Bott's approximation. we now merely need to see what requirements are involved such that $|\xi| < 1$ hold for all β k.

we get if $1 - \alpha \leq 0$ then $|\xi| \leq 1$. This means that $\alpha = u \frac{\Delta t}{\Delta x} \leq 1$ is the stability condition. This is CFL condition.

Artificial source term method for adjoint schemes

New fast and efficient method for adjoint development. The method can be used when the numerical flux function is limited with or without flux limiters

Numerical experiments

- Advection experiments for forward schemes
- Rotational flow field test
- Smolarkiewicz deformational flow field test
- Divergent flow field test
- Advection experiments for adjoint schemes
 - Rotational flow field test
 - divergence flow field test
- Data assimilation experiments
- □ Convergence of iterative process
- Manipulating with weights of background and observation terms
- □ Impact of number of observations

Experiment 1: Rotational flow field test

Goals :

- Studying advection schemes of EURAD-IM model for different initia data.
- Comparison of schemes.
- Velocity vector components : u(x,y)=-0.1(y-70) ;
 v(x,y)=0.1(x-70)
- Domain 150x150 nodes; Spatial steps Δx=Δy=1; Time step Δt=0.04;
- One full rotation -1570 time steps.
- initial conditions :
- □ cone with maximum height 4, with base radius 10 unit .
- □ cylinder with radius 10 and height 4 center at (100, 100).
- □ the slotted cylinder.

3.Bott monotone scheme

4. Walcek scheme

Result for Rotational Cone after one full rotation, 1570 time steps,

Bott scheme

initial condition and result after one rotation, 1570 time steps,

3. Bott monotone scheme

Slotted cylinder after one full rotation, 1570 time steps

N

Results (III).

$$l_{1,rel} = \frac{\sum_{i=1}^{N} |\Omega_i| |q_i - q_i^{true}|}{\sum_{i=1}^{N} |\Omega_i| |q_i^{true}}, \quad l_{1,abs} = \sum_{i=1}^{N} |q_i - q_i^{true}|$$

$$l_{2,rel} = \frac{\sqrt{\sum_{i=1}^{N} |\Omega_i| (q_i - q_i^{true})^2}}{\sqrt{\sum_{i=1}^{N} |\Omega_i(q_i^{true})^2}}, \quad l_{1,abs} = \sqrt{\sum_{i=1}^{N} (q_i - q_i^{true})^2}$$

$$l_{\infty,rel} = \frac{\max_{i=1,N} |q_i - q_i^{true}|}{\max_{i=1,N} |q_i^{true}|}, \quad l_{\infty,abs} = \max_{i=1,N} |q_i - q_i^{true}|$$

initisl Data	norms	Smolarkiewicz scheme	Bott scheme	Bott non-monotone scheme	Walcek scheme
	Absolute firs norm	164.67596	23.5887794	33.9459610	29.2817116
	Absolute second norm	8.94577026	1.52778172	2.69549799	1.81237614
	Absolute infinite norm	1.39720035	0.499090195	0.984883547	0.245351791
Cone	Relative firs norm	0.393162668	5.63551225E -02	8.10991004E -02	6.99559078E-02
	Relative second norm	0.308932424	5.27602769E -02	9.30860862E-02	6.5884384E -02
	Relative infinite norm	0.349300086	0.124772549	0.246220887	6.13379478E -02
	Absolute firs norm	676.746826	289.457520	274.378540	275.241180
	Absolute second norm	30.3927231	18.3770294	8.4850121	18.9958382
	Absolute infinite norm	2.80773306	2.42684531	2.23414564	2.25216651
Cylinder	Relative firs norm	0.554710507	0.237260267	0.224900439	0.225607529
	Relative second norm	0.435070574	0.263066411	0.264612198	0.271924645
	Relative infinite norm	0.701933265	0.606711328	0.558536410	0.563041627
	Absolute firs norm	915.308960	352.183105	522.810181	369.109100
	Absolute second norm	40.9977875	20.2291603	27.7285976	22.0090618
Slotted cvlinder	Absolute infinite norm	3.77520108	2.90145874	3.32671690	2.80783129
-,,	Relative firs norm	0.299341649	0.115177572	0.170979261	0.120713033
	Relative second norm	0.689548671	0.340237647	0.466371924	0.370174110
	Relative infinite norm	0.943800271	0.725364685	0.831679225	0.701957822

Experiment 2:

Goal:

Check stability of numerical schemes

Smolarkiewicz deformational flow field test.

- □ Domain is [0,100]X [0,100], with spatial step 1.
- Initial condition is cone with center at (50,50), height 4, radius 15 unit.

The velocity field is :

$$\begin{split} u(x,y) &= \frac{8\pi}{25} sin(\frac{\pi x}{25}) sin(\frac{\pi y}{25}) \\ v(x,y) &= \frac{8\pi}{25} cos(\frac{\pi x}{25}) cos(\frac{\pi y}{25}) \end{split}$$

results after 38 and 75 iteration: 1.Smolarkiewicz scheme, 2. Bott scheme; 3. Bott monotone scheme 4. Walcek scheme

JÜLICH

Results: Smolarkiewicz deformational flow

First 100 time step with Bott scheme

Results after 3768 time steps: 1.Smolarkiewicz scheme, 2. Bott scheme

Experiment 3: Divergent flow field test

- Domain is [0 ; 2π]× [- π/2; π/2].
- Initial condition is two cone with center at (3/4 π ;0) and in (5/4 π ; 0) points, with radius π/8 and height 1 unit.
- Velocity vector fields:

$$u(x, y, t) = -\sin^2(x/2)\sin(2y)\cos^2(y)\cos(\pi t/T),$$

$$v(x, y, t) = \frac{1}{2}sin(x)cos^3(y)cos(\pi t/T),$$

3. Bott monotone scheme

1. Smolarkiewicz scheme,

2. Bott scheme

4. Walcek scheme

Results: Divergent flow field test

schemes	Smolarkiewicz $scheme$	BAPF scheme	BMAPF scheme	$Walcek \\ scheme$
$l_{1,abs}$	0.234864667	0.159404129	0.206967369	8.89417753E - 02
$l_{1,rel}$	9.90675688E - 02	6.72377795E - 02	8.73002931E - 02	3.75162661E - 02
$l_{2,abs}$	0.183403566	0.109545931	0.148490980	9.58164409E - 02
$l_{2,rel}$	0.279403597	0.166886210	0.226216495	0.145970210
$l_{\infty,abs}$	0.446476221	0.221779764	0.336575985	0.232931197
$l_{\infty,rel}$	0.416936547	0.207106426	0.314307511	0.217520058

1. Bott monotone scheme

2. Bott scheme

3. Walcek scheme

Experiment 4: Advection tests for adjoint advection schemes

Goal:

- comparison of adjoints of advection schemes;
- chek new artificial source term method

- This numerical experiment is same as numerical experiment 1;
 Adjoint of schemes is built with artificial source term method.
 Initial condition are :
 - cone
- slotted cylinder

1. Smolarkiewicz scheme,

3. Bott monotone scheme

schemes	Smolarkiewicz scheme	BAPF scheme	BMAPF scheme	Walcek scheme
l _{1,abs}	188.782913	31.9276543	35.0605850	25.4268589
$l_{1,rel}$	7.07334131E - 02	1.19626932E - 02	1.31365433E - 02	9.52696707E - 03
l2.abs	9.08317280	1.59539938	2.71032405	1.63549256
l2,rel	0.268162996	4.71010618E - 02	8.00170451E - 02	4.82847355E-02
$l_{\infty,abs}$	1.35477161	0.494075775	0.985207558	0.265397787
$l_{\infty,rel}$	0.330432117	0.120506287	0.240294531	6.47311658E - 02

error norms for moving cone after 1570 time iteration

schemes	Smolarkiewicz	BAPF	BMAPF	Walcek
l _{1,abs}	931.690430	353.013550	502.949432	351.707336
$l_{1,rel}$	0.304699004	0.115449160	0.164484024	0.115021981
$l_{2,abs}$	41.0834274	20.2251072	27.4740562	21.4147530
$l_{2,rel}$	0.690989077	0.340169460	0.462090760	0.360178322
$l_{\infty,abs}$	3.46076822	3.00966358	3.42613435	2.73499990
$l_{\infty,rel}$	0.865192056	0.752415895	0.856533587	0.683749974

error norms for moving slotted cylinder after 1570 time iteration

Experiment 5: test for data assimilation Convergence of iteration process

- Data assimilation experiment for rotational cone test;
- Walcek scheme.
- 300 LBFGS iterations.
- ☐ 5625 observation points.

Cost function for first 10 LBFGS iterations and the second picture shows cost functions for 290-300 LBFGS iterations.

Experiment 6: Manipulating with weights of background and observation terms

- Cost functions for different weights for first 10
 LBFGS iteration and for 50 LBFGS iteration.
- increase weight of observation term up to 1 and at the same time we decrease weight of background term down to 0.
- Coefficient of observation term and Cost function after 50 LBFGS interation

Experiment 7: Impact of number of observations

- 22500 grid points
- Observation points: 2814, 5625,11250 and 22500
- 50 LBFGS iterations.

Idealized case when observations are given in all nodal points of the grid.

schemes	11250 observation	22500 observation	
	points	points	
$l_{1,abs}$	36.5611954	35.6330681	
$l_{1,rel}$	8.73470679E - 02	8.51297081E - 02	
$l_{2,abs}$	2.14778638	2.08128095	
$l_{2,rel}$	7.41714612E - 02	7.18747675E - 02	
$l_{\infty,abs}$	0.344787598	0.261573553	
$l_{\infty,rel}$	8.61968994E - 02	6.53933883E - 02	

ᲘᲕᲐᲜᲔ ᲒᲐᲕᲐᲮᲘᲨᲕᲘᲚᲘᲡ ᲡᲐᲮᲔᲚᲝᲑᲘᲡ ᲗᲑᲘᲚᲘᲡᲘᲡ ᲡᲐᲮᲔᲚᲛᲜᲘᲤᲝ ᲣᲜᲘᲕᲔᲠᲡᲘᲢᲔᲢᲘ

IVANE JAVAKHISHVILI TBILISI STATE UNIVERSITY

1918-2018

Thank you for your attention!

