

Ana Dolidze

Studying advection schemes of EURAD-IM model

Supervisors: Ramaz Botchorishvili (TSU) Hendrik Elbern (FZJ, Uni Köln),

23.08.2018, Tbilisi

My story

EURAD-IM model

- •Developed since 1987;
- •Rheinish Institute of Environmental Research at the University of Cologne (RIU);
- •Based on EURAD-CTM (EURopean Air Pollution Dispersion-Chemistry Transport Model);
- •It is part of European Union COPERNICUS CAMS project.

http://db.eurad.uni-koeln.de/index2_e.h tml?/monitoring/aqada.php

mosphere Monitoring

Objective of the IM group, in the frame of a large European Union Project Copernicus CAMS

opernicus

- ❑ Provide **air quality forecasts** for Europe and selected regions,
- ❑ Combine models with data for **optimal analyses**
- Regional scale (15 to 1 km resolution)
- Central Europe (5km)
- Black Sea Area (15km)
- \blacksquare NRW (5 km)
- Ruhr-Rur Area (1km)
- •Main institutional user: EPA

Landesamt für Natur. **Umwelt und Verbraucherschutz** Nordrhein-Westfalen

This can be transferred to Georgia

Example:

Central Europe and local area with

Research Plan

- Studying code of Eurad-IM model
	- Extracting advection numerical scheme
- Studying theoretical and numerical properties of the schemes
	- Stability analysis
	- New advection test cases
	- Numerical experiments
- Adjoint advection schemes
	- New artificial source term method for adjoint development
- Data assimilation experiments

EURAD-IM advection schemes

- **● Bott's area-preserving flux-form (APF) scheme**
- **Monotone version of APF (MAPF) scheme**
- **● Walcek scheme**
- **● Smolarkiewicz scheme**
- **● Prathers scheme**

EURAD-IM advection schemes

- **● Bott's area-preserving flux-form (APF) scheme**
- **Monotone version of APF (MAPF) scheme**
- **● Walcek scheme**
- **● Smolarkiewicz scheme**
- **● Prathers scheme**

Bott's area-preserving flux-form (APF) and Monotone version of APF (MAPF) schemes

Equation for transport of non-diffusivity quantity

Finite-difference flux-form $\psi_j^{n+1} = \psi_j^n - \frac{\Delta t}{\Delta x} [F_{j+\frac{1}{2}}^n - F_{j-\frac{1}{2}}^n]$

Upstream method flux $F_{j+\frac{1}{2}}^n = \frac{\Delta x}{\Delta t} [c_j^+ \psi_j^n - c_j^- \psi_{j+1}^n].$

The Bott's monotonic scheme is a monotonic version of the
$$
\overline{a}
$$

Bott's original scheme

 $\frac{\partial \psi}{\partial t} = -\nabla (v\psi)$

 $F_{j+\frac{1}{2}} = \frac{\Delta x}{\Delta t} \left[\frac{i_{,j+\frac{1}{2}}}{i_l, j} \psi_j - \frac{i_{l,j+\frac{1}{2}}}{i_l, j+1} \psi_{j+1} \right]$ Bott's method flux

where

$$
i_{l,j+\frac{1}{2}}^+ = \max(0, I_l^+(c_{j+\frac{1}{2}})), i_{l,j+\frac{1}{2}}^- = \max(0, I_l^-(c_{j+\frac{1}{2}})), i_{l,j}^- = \max(I_{i,j}, (i_{l,j+\frac{1}{2}}^+ + i_{l,j+\frac{1}{2}}^- + \epsilon)
$$

$$
I_l^+(c_{j+\frac{1}{2}}) = \int_{\frac{1}{2}-c_j^+}^{\frac{1}{2}} \psi_{j,l}(x')dx' = \sum_{k=0}^l \frac{a_{j,k}}{(k+1)2^{k+1}}[1 - (1 - 2c_j^+)^{k+1}]
$$

$$
I_l^-(c_{j+\frac{1}{2}}) = \int_{\frac{1}{2}-c_j^+}^{\frac{1}{2}} \psi_{j+1,l}(x')dx' = \sum_{k=0}^l \frac{a_{j+1,k}}{(k+1)2^{k+1}}(-1)^k[1 - (1 - 2c_j^+)^{k+1}]
$$

EURAD-IM advection schemes

- **● Bott's area-preserving flux-form (APF) scheme**
- **Monotone version of APF (MAPF) scheme**
- **● Walcek scheme**
- **● Smolarkiewicz scheme**
- **● Prathers scheme**

Walcek scheme

Advection equation of constituent concentration within a moving fluid

$$
\frac{\partial C}{\partial t} = -\frac{\partial u C}{\partial x}
$$

 $C-concentration$ $u - velocity$

Numerical fluxes: $(\Delta t u \rho Q_f)_{i+\frac{1}{2}} = [Q_i^t D_{d-1} - Q_i^{t+\Delta t} D_d] \Delta x_i + (\Delta t u \rho Q_f)_{i-\frac{1}{2}} \quad u_{i+\frac{1}{2}} \ge 0,$ $(\Delta t u \rho Q_f)_{i-\frac{1}{2}} = [Q_i^{t+\Delta t} D_d - Q_i^t D_{d-1}] \Delta x_i + (\Delta t u \rho Q_f)_{i+\frac{1}{2}} \quad u_{i-\frac{1}{2}} < 0.$

D is the fluid density:

$$
D_0 = \rho_i,
$$

\n
$$
D_1 = D_0 - [(\rho u)_{i + \frac{1}{2}} - (\rho u)_{i - \frac{1}{2}}] \Delta t / \Delta x_i
$$

\n
$$
D_2 = D_1 - [(\rho v)_{j + \frac{1}{2}} - (\rho v)_{j - \frac{1}{2}}] \Delta t / \Delta y_j
$$

\n
$$
D_3 = D_2 - [(\rho w)_{k + \frac{1}{2}} - (\rho w)_{k - \frac{1}{2}}] \Delta t / \Delta z_k
$$

EURAD-IM advection schemes

- Bott's area-preserving flux-form (APF) scheme
- Monotone version of APF (MAPF) scheme
- Walcek scheme
- Smolarkiewicz scheme
- Prathers scheme

Smolarkiewicz scheme

Continuity equation for advection of non-diffusive quantity in flow field

$$
\frac{\partial \psi}{\partial t} + div(V\psi) = 0
$$

Upstream advection scheme $\psi_i^{N+1} = \psi_i^N - [F(\psi_i^N, \psi_{i+1}^N, u_{i+\frac{1}{2}}^N) - F(\psi_{i-1}^N, \psi_i^N, u_{i-\frac{1}{2}}^N)]$

where

$$
F(\psi_i, \psi_{i+1}, u) = [(u+|u|)\psi_i + (u-|u|)\psi_{i+1}] \frac{\Delta t}{2\Delta x}
$$

Eventually the scheme has the following look:

$$
\psi_i^* = \psi_i^N - [F(\psi_i^N, \psi_{i+1}^N, u_{i+\frac{1}{2}}^N) - F(\psi_{i-1}^N, \psi_i^N, u_{i-\frac{1}{2}}^N)]
$$

$$
\psi_i^{N+1} = \psi_i^* - [F(\psi_i^*, \psi_{i+1}^*, \bar{u}_{i+\frac{1}{2}}) - F(\psi_{i-1}^*, \psi_i^*, \bar{u}_{i-\frac{1}{2}})]
$$

$$
\bar{u}_{i+\frac{1}{2}}=\frac{(|u_{i+\frac{1}{2}}|\Delta x-\Delta t u_{i+\frac{1}{2}}^2)(\psi_{i+1}^*-\psi_i^*)}{(\psi_i^*+\psi_{i+1}^*+\epsilon)\Delta x}
$$

Theoretical study of numerical schemes

Von Neumann stability analysis of Bott's scheme

For error of schemes we have : $E_i^n = e^{\gamma n h} e^{i\beta j k} = \xi^n e^{i\beta j k}$

Write numerical approximation for the error of finite difference schemes.
 $\xi^{n+1}e^{i\beta jk} = \xi^n e^{i\beta jk} - \alpha(\xi^n e^{i\beta jk} - \xi^n e^{i\beta(j-1)k})$

Cancellation of common terms yields: $\xi = 1 - \alpha(1 - e^{-i\beta k})$

Condition for stability is that the amplification $\xi = \left|\frac{E_j^{n+1}}{E_i^n}\right| = \left|e^{\gamma h}\right| \leq 1$

We have developed an expression for the amplification factor ξ for Bott's approximation. we now merely need to see what requirements are involved such that $|\xi|$ < 1 hold for all β k.

we get if $1 - \alpha \leq 0$ then $|\xi| \leq 1$. This means that $\alpha = u \frac{\Delta t}{\Delta x} \leq 1$ is the stability condition. This is CFL condition.

Artificial source term method for adjoint schemes

New fast and efficient method for adjoint development. The method can be used when the numerical flux function is limited with or without flux limiters

Numerical experiments

- ❏ Advection experiments for forward schemes
- ❏ Rotational flow field test
- ❏ Smolarkiewicz deformational flow field test
- ❏ Divergent flow field test
- ❏ Advection experiments for adjoint schemes
	- ❏ Rotational flow field test
	- ❏ divergence flow field test
- Data assimilation experiments
- ❏ Convergence of iterative process
- ❏ Manipulating with weights of background and observation terms
- ❏ Impact of number of observations

Experiment 1: Rotational flow field test

Goals :

- Studying advection schemes of EURAD-IM model for different initial data.
- Comparison of schemes.
- ❖ Velocity vector components : u(x,y)=-0.1(y-70) ; $v(x,y)=0.1(x-70)$
- ❖ Domain 150x150 nodes; Spatial steps Δx=Δy=1; Time step $\Delta t = 0.04$;
- ❖ One full rotation -1570 time steps.
- ❖ initial conditions :
- ❏ cone with maximum height 4, with base radius 10 unit .
- ❏ cylinder with radius 10 and height 4 center at (100, 100).
- ❏ the slotted cylinder.

3.Bott monotone scheme 4. Walcek scheme

Result for Rotational Cone after one full rotation, 1570 time steps,

Bott scheme

initial condition and result after one rotation, 1570 time steps,

3. Bott monotone scheme

Slotted cylinder after one full rotation, 1570 time steps

Results (III).

and it and continue \$1500 com-

$$
l_{1,rel} = \frac{\sum_{i=1}^{N} |\Omega_i| |q_i - q_i^{true}|}{\sum_{i=1}^{N} |\Omega_i| |q_i^{true}}, \quad l_{1,abs} = \sum_{i=1}^{N} |q_i - q_i^{true}|
$$

$$
l_{2,rel} = \frac{\sqrt{\sum_{i=1}^{N} |\Omega_i| (q_i - q_i^{true})^2}}{\sqrt{\sum_{i=1}^{N} |\Omega_i(q_i^{true})^2}},
$$

$$
l_{1,abs} = \sqrt{\sum_{i=1}^{N} (q_i - q_i^{true})^2}
$$

$$
l_{\infty,rel} = \frac{\max_{i=1,N} |q_i - q_i^{true}|}{\max_{i=1,N} |q_i^{true}|}, \quad l_{\infty,abs} = \max_{i=1,N} |q_i - q_i^{true}|
$$

Experiment 2:

Goal:

Check stability of numerical schemes

Smolarkiewicz deformational flow field test.

- ❏ Domain is [0,100]X [0,100], with spatial step 1.
- ❏ Initial condition is cone with center at (50 ,50), height 4, radius 15 unit.

The velocity field is :

$$
\begin{split} u(x,y) &= \frac{8\pi}{25}sin(\frac{\pi x}{25})sin(\frac{\pi y}{25})\\ v(x,y) &= \frac{8\pi}{25}cos(\frac{\pi x}{25})cos(\frac{\pi y}{25}) \end{split}
$$

results after 38 and 75 iteration: 1.Smolarkiewicz scheme, 2. Bott scheme; 3. Bott monotone scheme 4. Walcek scheme

Results: Smolarkiewicz deformational flow field test.

First 100 time step with Bott scheme

Results after 3768 time steps: 1.Smolarkiewicz scheme, 2. Bott scheme

Experiment 3: Divergent flow field test

- \diamond Domain is [0 ; 2π]× [- π/2; π/2].
 \diamond Initial condition is two cone with α
- ❖ Initial condition is two cone with center at (3/4 π ;0) and in (5/4 π ; 0) points, with radius π/8 and height 1 unit.
- ❖ Velocity vector fields:

$$
u(x,y,t) = -\sin^2(x/2)\sin(2y)\cos^2(y)\cos(\pi t/T),
$$

$$
v(x, y, t) = \frac{1}{2} \sin(x) \cos^3(y) \cos(\pi t/T),
$$

3. Bott monotone scheme

1. Smolarkiewicz scheme, 2. Bott scheme

4. Walcek scheme

Results: Divergent flow field test

1. Bott monotone scheme 2. Bott scheme 3. Walcek scheme

Experiment 4: Advection tests for adjoint advection schemes

Goal:

- comparison of adjoints of advection schemes;
- chek new artificial source term method

- ❏ This numerical experiment is same as numerical experiment 1; ❏ Adjoint of schemes is built with artificial source term method. Initial condition are :
	- ❏ cone
- slotted cylinder

1. Smolarkiewicz scheme,

3. Bott monotone scheme

error norms for moving cone after 1570 time iteration

error norms for moving slotted cylinder after 1570 time iteration

Experiment 5: test for data assimilation Convergence of iteration process

- Data assimilation experiment for rotational cone test;
- Walcek scheme.
- ❏ 300 LBFGS iterations.
- ❏ 5625 observation points.

samiaton_with_walcok to' using 1:2 \setminus

Cost function for first 10 LBFGS iterations and the second picture shows cost functions for 290-300 LBFGS iterations.

Experiment 6: Manipulating with weights of background and observation terms

- Cost functions for different weights for first 10 LBFGS iteration and for 50 LBFGS iteration.
- increase weight of observation term up to 1 and at the same time we decrease weight of background term down to 0.
- Coefficient of observation term and Cost function after 50 LBFGS interation

Experiment 7: Impact of number of observations

- 22500 grid points
- Observation points: 2814, 5625,11250 and 22500
- 50 LBFGS iterations.

Idealized case when observations are given in all nodal points of the grid.

03550 3535603300005 5550000505 **ᲗᲑᲘᲚᲘᲡᲘᲡ ᲡᲐᲮᲔᲚᲒᲬᲘᲤᲝ ᲣᲜᲘᲕᲔᲠᲡᲘᲢᲔᲢᲘ**

IVANE JAVAKHISHVILI TBILISI STATE UNIVERSITY

Thank you for your attention!

