How to achieve precision in physics a case study - mass of the charged pion

Detlev Gotta

Institut für Kernphysik, Forschungszentrum Jülich / Universität zu Köln

GGSWBS'18, Tbilisi, Georgia 8th Georgian – German School and Workshop in Basic Science August 23, 2018

EXPERIMENT DESIGN

general considerations

think of all you can imagine – there will be more!

MOTIVATION

- Is there an interesting physics question?
- Do we understand preconditions and possible show stoppers?
- Is there an appropriate experimental technique available

for the envisaged precison (~ method & statistics) ?

- Which level of accuracy (≈ systematics) is achievable?
- o Impact of the expected result?

• FIND YOUR LABORATORY

- Acquire the pre-experiment level of knowledge
- Understanding the laboratory conditions
- Is the experiment affordable (money & man power)?
- How to get it approved?

EXPERIMENTAL APPROACH

- Planning set-up and experiment
- Do not underestimate mechanics!
- How to control an ongoing measurement and

gather all necessary information and even more!

- Analysis strategy
- Uncertainties

ASSESSMENT

- The result
- New physics or experimental aspects
- Assessment of limits
- Presentation of results
- Publication in an appropiate journal
- New approaches and outlook

EXAMPLE

CHARGED PION MASS

$$rac{\Delta m_{\pi}}{m_{\pi}}pprox 1ppm$$
 $au_{\pi^{\pm}}=26~ns$

MOTIVATION

LABORATORY

EXPERIMENTAL APPROACH

SOME RESULTS

classical: in a field a force acts on a charge

quantum field theory: "virtual" exchange particle

"exchange" force

electromagnetic force

strong force

strong-interaction potential U

medium and long range part

PIONS, NUCLEONS - INTERACTION in terms of QCD

CHIRAL PERTURBATION THEORY (xPT), ...

scattering (production experiments)

J. Gasser et al., Nucl. Phys. B307, 779 (1988)

Fig. 1. A typical term in the expansion (3.7) of the nucleon propagator. ------ nucleon; - - -

PIONS – LIGHTEST CARRIER of NUCLEAR FORCE

charge	Q	0 , ± 1	isospin triplet
mass	M_{π}	$pprox m_{ m p}$ / 7 $pprox$ 270 \cdot m $_{ m e}$	
spin	S	0	
size		0.6 ⋅ 10 ⁻¹⁵ m	
life time	τ_0	π [±] 26 · 10 ^{- 9} s	m $_{\pi\pm} \approx$ 139 MeV/c ²
		π ⁰ 8 · 10 ⁻¹⁷ s	m $_{\pi 0} \approx 135 \text{ MeV/c}^2$

decay

 $\pi^{\pm} \rightarrow \mu^{\pm} \nu$ limit for the muon neutrino mass $m_{\nu\mu}$ (1973: dark matter?) $\pi^{0} \rightarrow \gamma \gamma$ $n_{colour} = 3!$

MOTIVATION

LABORATORY

EXPERIMENTAL APPROACH

SOME RESULTS

EXOTIC ATOMS

Folie 13

ATOM

$$V_{Coulomb} = -\frac{Ze^2}{r}$$

quantisation of action:
$$E \cdot t = 2\pi\hbar$$

$$a_n = \frac{\hbar c}{m_{red} c^2 \alpha} \cdot \frac{n^2}{Z}$$

$$a_{Bohr} = \frac{\hbar c}{m_{red} c^2 \alpha}$$

$$B_n = -m_{red} c^2 \alpha^2 \cdot \frac{Z^2}{2n^2}$$

EXOTIC ATOM

replace electrons by heavier negatively charged particles

ATOMIC BINDING ENERGY

ATOMIC BINDING ENERGY

ATOMIC BINDING ENERGY

including STRONG INTERACTION

CANDIDATE

MOTIVATION

EXOTIC ATOM

EXPERIMENTAL APPROACH

SOME RESULTS

SUMMARY OF ALL EXPERIMENTAL PROBLEMS

EXPERIMENT I

How to achieve the necessary precison in the energy determination ?

BRAGG'S LAW $n\lambda = 2d \cdot sin\theta_B$

EXPERIMENT II

How to produce a suitable X-ray source = many of exotic atoms (statistics)?

CYCLOTRON TRAP

L. Simons, Physica Scripta 90 (1988), Hyperfine Int. 81 (1993) 253

"wind up" range curve in a (weakly) focusing magnetic field $n = -\frac{\frac{\partial B}{B}}{\frac{\partial r}{r}} < 1 \qquad field index$

increase in stop density
compared to a linear stop arrangement
pions (PSI) x 200
antiprotons (LEAR) x 10⁶

⇒ high X - ray line yields
⇒ bright X - ray source

EXPERIMENT III

How to bring it <u>together</u>?

JOHANN-TYPE SET-UP

BRAGG CRYSTAL

Si 111

spherically curved

R = 3 m $\Phi = 10 cm$

Large - Area Focal Plane Detector 🥖

N. Nelms et al., Nucl. Instr. Meth 484 (2002) 419

CYCLOTRON TRAP

one coil removed

DETECTOR crystal spectrometer Large - Area Focal Plane Detector

CCD: charge-coupled device

pixel distance

manufacturer

@ 20°C 40.0 μm ± 0.17 nm
 @ -100°C 39.9775 μm ± 0.6 nm

P. Indelicato et al., Rev. Sc. Instr. 77 (2006) 043107

$\Delta \rightarrow$ 4.2ppm of M_{π}

2 × 3 array of 24 mm × 24 mm devices

N. Nelms et al., Nucl. Instr. Meth 484 (2002) 419

- 1. try wire eroded mask
 - gap 🗏
 - pixel size ?
- 2. try nano mask (C. David LNS/PSI)

illuminated by light source at 6 m distance $T = 20^{\circ}C$

@ -100°C HOR 39.9802±0.0026 μm VER 39.9794±0.0022 μm

SET-UP at the pion factory of Paul-Scherrer-Institute (Switzerland)

SPECIAL DEMANDS FOR EXOTIC ATOMS

 \rightarrow coordinate x or energy

CCD = Charge-Coupled Devic

 $\Delta E/E$ like Si(Li)

projection onto axis of dispersion

 \rightarrow coordinate x or energy

EXPERIMENT IV

LET'S DO IT!

STARTING POINT - two solutions for M_{π}

 $A \Rightarrow m_{\nu\mu}^2 < 0!$

 π^{-} Mg (4f – 3d) $E_{\rm X} = 25.9 \ \rm keV$

measurement

DuMont (transmission-type) crystal spectrometer

Mg solid state target - refilling of electrons

- B. Jeckelmann, et al., Phys. Rev. Lett. 56 (1986) 1444.
- B. Jeckelmann, et al., Nucl. Phys. A 457 (1986) 709.
- B. Jeckelmann, P.F.A. Goudsmit, H.J. Leisi, Phys. Lett. B 335 (1994) 326.

interpretation A / interpretation B

*∆ E*_{exp} */ E* = 3ppm <u>but</u> *linewidth* > resolution!

1 or 2 K electrons? 2 solutions A & B: $\triangle^{AB} = 15$ ppm

$$\mathsf{A} \Rightarrow m_{_{\!\!\mathrm{V}\!\!\mathrm{u}}}^2 < 0!$$

FIRST STEP - How to get rid of the electrons?

RESULT

$$\Delta m_{\pi}/m_{\pi} = 4ppm$$

15ppm discrepancy removed

S. Lenz et al. PL B 416 (1998) 50

SECOND STEP - How to improve the calibration standard?

Energy calibration with muonic atom

- point like Coulomb potential
- no electron screening

•
$$\frac{E_{\mu O(5g-4f)}}{E_{\pi N(5g-4f)}} = \frac{m_{\mu}}{m_{p}} + \cdots$$

μO(5g-4f) *π*N(5g-4f)

How to measure the spectrometer response?

response function calibration measurement **πN(5g-4f)** μ**O(5g-4f) πNe(6h-5g)** $\pi^{-14}N$ π^{-20} Ne $\mu^{-16}0$ **0** ר h hi h 8 p g -5 n=6 2.19 keV 🖊 2.20 keV n=5 N= 2.72 keV -10 4.05 keV 4.02 **k**eV n=6 n=4 4.51 keV n=5 -15 -8.70 keV 8.77 keV 8.31 keV -20 n=4 E_B/keV

RESPONSE FUNCTION from exotic atoms

no narrow γ - rays available for these energies

MOTIVATION

LABORATORY

• EXPERIMENT

ASSESSMENT of RESULTS

RESUL	.TS rela	ative to world average PDG 2004 (± 2.5ppm)
<mark>πN/Cu Kα</mark> πMg	1998 1994 B	+ 3.8 ± 3.8 ppm - 1.7 ± 2.5 ppm
π Ν/μΟ	2016	+ 4.2 \pm 0.8 _{stat} \pm 1.0 _{sys} (± 1.3) ppm

Side result: new X-ray standards

D.F.Anagnostopoulos et al., Phys. Rev. Lett. 91 (1999) 2018

Limits

Possible solution: double flat crystal spectrometer

Line shape: $R_1(\Theta) \otimes R_2(\Theta)$

advantage

- absolute angle calibration
- no Coulomb explosion (noble gas)

disadvantage

- accurate knowledge of lattice constant d Si $\Delta d/d \approx 10^{-8}$
- " " of ∆ind
- measuring time (one measurement per bin)

Outlook: Laser-induced excitation of metastable π -*He*+ *states*

M. Hori, A. Sótér, V. I. Korobov, PR A 89, 042515 (2014)

"Spin-off": Chemical effects – Mn Ka

MnF₂ - core Mn²⁺

Mn(V)-complex - core Mn⁵⁺

M. Jabua / GTU 2016 PhD 2016

PION MASS collaboration

experiments R-94.01 & R-97.02

Paul-Scherrer-Institut (PSI), Villigen, Switzerland

Ioannina¹ – Jülich² – Leicester³ – Paris⁴ – PSI⁵

D. F. Anagnostopoulos¹, G. Borchert², A. Dax⁵, D Gotta², M. Hennebach², P. Indelicato⁴, Y.-W. Liu⁵, B. Manil⁴, N. Nelms³, L. M. Simons⁵, M. Trassinelli⁴, A. Wells³

CCDs	Leicester, PSI
Crystal spectrometer	Jülich
Cyclotron trap	PSI
Data analysis	Ioannina, Jülich, Paris

THANK YOU

