

A NEW APPROACH: LYSO BASED POLARIMETRY FOR THE EDM MEASUREMENTS

Speaker: I. Keshelashvili

GGSWBS'18 — Tbilisi State University

Member of the Helmholtz Association

OUTLINE

Introduction

challenges for srEDM case

COSY Accelerator Facility

Spin gymnastic & operating polarimeters

New Polarimeter Concept

dedicated polarimeter for srEDM experiment

Summary

ELECTRIC DIPOLE MOMENT

of the elementary particles

In the SM, the CP violation originates from the complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which couples the quarks' weak and the mass eigenstates, and the θ term in the QCD Lagrangian.

CP (K° decays) violation means T is also violated assuming CPT symmetry. The existence of a non-zero EDM is a violation of P and T simultaneously & the search for a EDM is a search for CP violation and a search for direct T symmetry violation.

SM CP violation is enough to explain what has been observed in the *K* & *B* meson systems but orders of magnitude smaller than observed in the universe

$$\eta = \frac{N_B - N_{\bar{B}}}{N_{\gamma}} = \sim 10^{-18} (SCM) \sim 6 \cdot 10^{-10} (BAU)$$

1967: Sacharov conditions for the Baryon Asymmetry of the Universe

- At least one N_p violating process.
- 2) C and CP violation
- 3) Interactions outside of thermal equilibrium.

Measurement of the non zero EDM \rightarrow physics beyond SM

STORAGE RING – EDM

method differs strongly from nEDM

For all **EDM** experiments Interaction of **d** with **E** is necessary!

$$\frac{d\vec{s}}{dt} \propto d \cdot \vec{E} \times \vec{s}$$

- a) Store longitudinally polarized protons
- b) Interact with a radial E-field
- c) Analyze Polarization Build-up (this talk)

build-up of vertical polarization

$$\vec{s_{\perp}} \propto |\boldsymbol{d}|$$

POLARIMETER & WIEN FILTER SETUP @ COSY

Internal and external beams

High polarization (p, d)

Spin manipulation !!!

Energy range (min.-- max.): 0.045 – 2.8 GeV (p) 0.023 – 2.3 GeV (d) Max. momentum ~ 3.7 GeV/c Electron & Stochastic cooling Feed-forward machine

RF-WIEN-FILTER

second generation at COSY

RF-WIEN-FILTER

commissioning beam time done

WF at nominal angle 0°

August 23rd, 2018

FIRST MEASUREMENT OF EDM-LIKE BUILDUP SIGNALS

EDM induced vertical polarization oscillations

Rate of out-of-plane rotation angle $\dot{\alpha}(t)|_{t=0}$ as function of Wien filter RF phase ϕ_{RF}

- B field of RF Wien filter normal to the ring plane.
- Wien filter operated at $f_{WF} = 871 \text{ kHz}$.
- Variations of $\phi_{\text{rot}}^{\text{WF}}$ and $\chi_{\text{rot}}^{\text{Sol 1}}$ affect the pattern of observed initial slopes $\dot{\alpha}$.

Planned measurements:

- 1st EDM measurement run Nov-Dec/2018 (6 wk).
- 2^{nd} run planned for Fall/Winter 2019 (6 wk).

COSY BEAM MWPC PROFILE

COSY 2D PROFILE

START COUNTER

Clearly seen deuteron pile-ups

TARGET WHEEL

Materials: D=50mm and 5mm [C, Mg, Al, Si], 2mm [Ni, Sn] thickness

August 23rd, 2018

srEDM – <u>Precision Experiment !</u>

- ► Reaction with Large **FOM** $(\sigma A_v^2) \& (\sigma_{ela}/\sigma_{tot})$: Best $dC \rightarrow dC$
- Maximum Detection & Data Taking Efficiency
- Full ϕ in Reasonable **FOM**(θ) region
- No strong Magnetic / Electric Field
- Stability Long / Short Term

Y.SATOU AT AL.

deuteron carbon ellastic scattering

Slide 13147

 $FOM = A_y^2 \cdot \sigma_{ela.}$

EDDA & WASA

Carbon block 18mm or fiber 25 μ m

POLARIMETER SKETCH

JUDIT

Juelich ballistic Diamond pellet Target

POLARIMETER

POLARIMETER

only LYSO + 4cm plastic can cover 320 MeV kinetic energy + cooper degrader can increase up to 350 MeV kinetic energy

degrader will be adjusted for the proton magic momentum and used for the deuteron energy calibration too

GEANT 4 Figure of merit

hHIT

hFOM

INTERNAL POLARIMETER

August 23rd, 2018

August 23rd, 2018

August 23rd, 2018

STEP 3 Test setup for polarimeter

BIG KARL EXP. HALL

BIG KARL EXP. HALL

LYSO MODULE

New improved mechanics and electronic components

SADC BASED DAQ SYSTEM

SADC BASED DAQ SYSTEM

SIGNAL SHAPES

Full signal shape vs 8 accumulator/integral region

SIGNAL SHAPES

Full signal shape vs 8 accumulator/integral region

Member of the Helmholtz Association

ONLINE MONITORING SYSTEM

Monitoring of all amplitudes

LYSO-SIPM LINEARITY

Comparison of different SiPM sensors

SAINT-GOBAIN PRELUDETM 420 (LYSO)

SAINT-GOBAIN CRYSTAIS S. Bitshuta **, V. Ou S. Bitshuta **, V. Ou	ation Ie Crystals spenski ¹ , P. Menge ² , K. Yang ²
2014 IEEE NSS * Lamon Converting Automatic Statement Sta	1 Sant Onian Reviewie, AMERICANNE, MANOR
Normal Subject of Patients Networks Networks Networks Image: State S	There is any space with the set of the set o
Consequences of co-doping	Limits of standard co-doping Description of the standard sector of
	And the second s
Solutions and Improvements (3 rd Generation LYSO)	
Cyclinitized composition Cyclinitized compo	Castrolid Growth
	Image: Section of the sectio
Conclusions & Perspectives expresente as of the intervention of the endoting guert technique expresente as of the intervention of the endoting guert technique expresente as of the intervention of the endoting guert technique expresente as of the intervention of the endoting guert technique expresente as of the intervention of the endoting guert technique expresente as of the endoting expression of the endoting guert technique expression of the endoting expression of the endoting guert technique expression of the endoting expression of the endoting expression expression of the endoting expression of	1 ¹⁷ GENERATION LYSO grug GLERT that betwin the dood PV MVV (= 450 MV) ; GENERT the destrict the dood PV MVV (= 450 MV) ; GENERT the dood NU MVV (= 450 MV) ; GENERT the dood NU MVV (= 450 MV) ; GENERT the dood NU MVV (= 450 MV) ; GENERT the dood NU MVV (= 450 MV) ; GENERT the dood NU MVV (= 450 MV) ; GENERT the dood NU MVV (= 450 MV) ; GENERT the dood NU MVV (= 450 MV) ; GENERT the dood NU MVV (= 450 MV) ; GENERT the dood NU MVV (= 450 MVV) ; GENERT the dood NU MVV (= 450 MVV) ; GENERT the dood NU MVV (= 450 MVV) ; GENERT the dood NU MVV (= 450 MVV) ; GENERT the dood NU MVV (= 450 MVV) ; GENERT the dood NU MVV (= 450 MVV) ; GENERT the dood NU MVV (= 450 MVV) ; GENERT the dood NU MVV (= 450 MVV) ; GENERT the dood NU MVV (= 450 MVV) ; GENERT the dood NU MVVV (= 450 MVVV) ; GENERT the dood NU MVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
References III Research Research America Patronica and Colombia Mill Research Colombia Million Research Colombia III Research Patronycycan Patronica Patronica America A Carego and Colombia Static Patronica Million	
Acknowledgereets E Leinwein Lein Gaan Oyaa, Dinn, Fawe 2014 HTE: Nachar Science Symposium & Modical Imaging Confir Nov. 09 – 15, 2014 Workbanen State Conversion Conter + Sortle 12	

SAINT-GOBAIN PRELUDE[™] 420 (LYSO)

SAINT-GOBAIN PRELUDETM 420 (LYSO)

It was actually appearing almost randomly... The same crystal time to time had absolutely clean signal but in some situations monifesting double peakl

Member of the Helmholtz Association

SAINT-GOBAIN PRELUDE[™] 420 (LYSO)

SAINT-GOBAIN PRELUDE[™] 420 (LYSO)

Member of the Helmholtz Association

SAINT-GOBAIN PRELUDETM 420 (LYSO)

SAINT-GOBAIN PRELUDETM 420 (LYSO)

PLASTIC SCINTILLATOR TRACKER

Consisting of the overlapping triangular scintillator bars. The upstream (forward) frame is installed to be fixed vertically relative to the beam while the downstream (backward) frame can scan the beam.

All scintillators were scanned vertically and horizontally (along the bar).

PLASTIC SCINTILLATOR TRACKER READOUT PCB

Dual channel operational amplifier based SiPM signal preamplifier PCB

The supply voltage $\pm 6V$ and reverse bias voltages +29V is shared for each PCB

PLASTIC SCINTILLATOR TRACKER

Left-up: the view through the wrapped triangular scintillator bar where the kaleidoscopic picture of the SiPM's is seen from another end.

Left-down: the end cup of the bar is shown with four SiPM's split into two independent preamplifier channels. Middle: already attached tracker in front of LYSO modules.

Right: one of the layers with three bars after assembly.

Each counter has 4 independent preamplifier output, 2 each end, and eight 6 × 6 mm SiPM's four each end.

SLOW CONTROL SYSTEM

Controls all movements

🗯 Firefox File Ed	it View History Bookmarks	Tools Window Help	B, O O # B	1 · · · * mot:1:	39 🔶 📢 100% 🕅	Sun 17 Dec 21:10	irakli Q 🥝 🖃
🗧 😑 🔍 💐 LYSO II	Experiment Control X +						
$\leftarrow \rightarrow$ C $$	i raspi02.ikp.kfa-juelich.de	1		🛡 🏠 🔍 Search		👱 li\ 🕈 🕲	💩 🗈 🕫 🖬 🗉
C Most Visited W wild G	Google 📡 Researchers make p 🛅 New	s 🛅 Software 🛅 Hardware 🛅 FZJ	🛅 gligbo 🛅 Art 🛅 Multimet	dia 🛅 Physics 🛅 tmp			
LYSO II	I Experiment Status	s	Position Contro	ol	Po	sition Control	
Actuators							
g-Rotation:	online		U4 U4 U4	<u> </u>	Q. Covorago:		
Start Counter:	online		01 02 03		O-coverage.		
Target Driver:	online		U3 U3 U3	\	16 🖯 🗍	10 ° - 20 °] Set
X-Axis:	online			7			
Y-Axis:	online		01 02 03				
Z-Axis:	online		C1 U1 U1 U1 C1				
Positioning			01 01 02 03 02		X-Position:		
a-Rotation:	55 °	L4 L3 L2		R2 R3 R4	o 0 [-	-299 mm - 263 mm] Set
Θ-Coverage:	15 °	03 03 03		01 01 01			
X-Offset:	299 mm		L1 () R1	R2 R3 R4			
X-Position:	0 mm			P2 P3 P4			
Y-Offset:	268 mm	01 01 01		03 03 03	Y-Position:		
Y-Position:	0 mm		C1 D1 D1 D1 C1		0 0 f -	-268 mm - 311 mm	1 Set
Z-Offset:	0 mm		04 03 02 01 03		· ·		
Z-Position:	0 mm	Y	D2 D2 D2				
Target		† 🗸 Z	03 02 01	((T))			
Active Target:	Silicon		D3 D3 D3 <		Z-Position:		
Start Counter			D4 D4 D4		a	0 mm - 570 mm	1 Set
Status:	out of the beam		03 02 01		୍ୟ	0 11111 - 370 11111	J
Voltage:	0 V						
	Target	Control	_	5	Start Counter		
	Empty Target	Nickel		Position:			
	Carbon	Tin		Мс	ove Start Counter In		
	Aluminum	Silicon		Voltage:			
	Magnesium	Polyethelene] : 0	0 V - 1200 V] Set	

Carbon at $\Theta_{max} = 10^{\circ}$ and $\Theta_{max} = 15^{\circ}$

Carbon at $\Theta_{max} = 10^{\circ}$ and $\Theta_{max} = 15^{\circ}$

Member of the Helmholtz Association

August 23rd, 2018

Different target materials (left Nickel; right Tin)

Different target materials (left Nickel; right Tin)

JEPO AT ANKE

JEPO AT ANKE

JEPO AT ANKE

ACKNOWLEDGMENT

People contributing to the experiment

- Mechanics: N. DeMary, M. Maubach, G. D'Orsaneo & D. Spölgen
- Electronics: Tanja Hahnraths-von der Gracht & T. Sefzick
- DAQ & FEE: D. Mchedlishvili, & P. Wüstner
- G4: H. Jeong (PhD), G. Macharashvili, & N. Lomidze
- Ms.: O. Javakhishvili, G. Kvantrishvili, M. Gagoshidze, & D. Kordzaia
- PhD: F. Müller, D. Shergelashvili, & S. Basile

SUMMARY

- We have functional online polarimeter –needs further software development!
- Mechanical support & slow control shows excellent performance
- New DAQ system reached its max. designed data transfer of 400 MB/s
- We have assembled and tested new LYSO and SiPM vendors in total 48+4 Modules
- Next step: installation at ANKE

Appendix

Contacting me via e-mail

Click here: i.keshelashvili@fz-juelich.de

GENERAL FORMALISM

$$PA_{y}(\theta) = \frac{\sigma^{L}(\theta) - \sigma^{R}(\theta)}{\sigma^{L}(\theta) + \sigma^{R}(\theta)} \approx \frac{N^{L}(\theta) - N^{R}(\theta)}{N^{L}(\theta) + N^{R}(\theta)} - \text{between } -1 : 1$$

$$\sigma^{\text{pol}}(\theta, \phi) = \sigma_{0}(\theta) [1 + \frac{3}{2}PA_{y}(\theta)\cos\phi + \{\frac{1}{3}\sum P_{ii}A_{ii}\}]$$

$$CR(\theta) = \frac{\sqrt{N^{L\uparrow}N^{R\downarrow}} - \sqrt{N^{R\uparrow}N^{L\downarrow}}}{\sqrt{N^{L\uparrow}N^{R\downarrow}} + \sqrt{N^{R\uparrow}N^{L\downarrow}}} \approx PA_{y} - \text{known } A_{y} : \text{calculate } P$$

$$FOM(\theta) = \sigma A_{y}^{2} - \text{max. } FOM : \text{monitor } \frac{d\tilde{s}}{dt}$$

$$V$$

$$OLeft = 0^{\circ} O = 0^{\circ}$$

$$O = 0^{\circ} O = 0^{\circ}$$

$$O = 0^{\circ} O = 0^{\circ}$$

