Z-FORCE DIY Turbo Jet Engine : Z-GS1

Agricultural University of Georgia, Mechanical engineering department

Authors: Giorgi Gvasalia, Beqa Sanodze

Main purpose

• Build operating downscale jet engine for model jet aircraft.

NOTE

• we don't show all sketches in this presentation because the project is in progress and some parts must be changed.

Construction of each part

• Running and sliding fits

More Clearance	Clearance Fits	Description	Hole Basis	Shaft Basis	
(Close to Top of The Chart)		Free Running	H9/d9	D9/h9	
		Loose Running	H11/c11	C11/h11	
		Easy Running	H8/f8	F8/h8	
		Sliding	H7/g6	G7/h6	
		Close Clearance	H8/f7	F8/h7	
		Locational Clearance	H7/h6	H6/h7	
	Transition	Location- slight interference	H7/k6	K7/h7	
	Fits	Location/Transition	H7/n6	N7/h6	
More Interference	Interference	Location/Interference	H7/p6	P7/h6	
(Close to Bottom of The Chart)	Fits	Medium Drive Fit	H7/s6	S7/h6	
		Force Fit	H7/u6	U7/h6	

ISO shaft Tolerances

Example: Nominal Size 3mm-6mm; -270µm= -270(10-3)=-0.270mm

Grade	NOMINAL SHAFT SIZES (mm)																			
Over	3	6	10	18	30	40	50	65	80 100		120 140 160		180 200 225		225	250 280		315	355	
Up to and incl.	6	10	18	30	40	50	65	80	100	120	140	160	180	200	225	250	280	315	355	400
a12	-270	-280	-290	-300	-310 -320		-340	-360	-380	-410	-460	-520	-580	-660	-740	-820	-920	-1050	-1200	-1350
	-390	-430	-470	-510	-560 -570		-640	-660	-730	-760	-860	-920	-980	-1120	-1200	-1280	-1440	-1570	-1770	-1920
d6	-30	-40	-50	-65	-80		-100		-120		-145			-170			-190		-210	
	-38	-49	-61	-78	-96		-119		-142		-170			-199			-222		-246	
e6	-20	-25	-32	-40	-50		-60		-72		-85			-100			-110		-125	
	-28	-34	-43	-53	-66		-79		-94		-110			-129			-142		-161	
e13	-20	-25	-32	-40	-50		-60		-72		-85			-100			-110		-125	
	-200	-245	-302	-370	-440		-520		-612		-715			-820			-920		-1015	
f5	-10 -15	-13 -19	-16 -24	-20 -29	-25 -36		-30 -43		-36 -51		-43 -61			-50 -70			-56 -79		-62 -87	
f6	-10	-13	-16	-20	-25		-30		-36		-43			-50			-56		-62	
	-18	-22	-27	-33	-41		-49		-58		-68			-79			-88		-98	
f7	-10	-13	-16	-20	-25		-30		-36		-43			-50			-56		-62	
	-22	-28	-34	-41	-50		-60		-71		-83			-96			-108		-119	
g5	-4	-5	-6	-7	-9		-10		-12		-14			-15			-17		-18	
	-9	-11	-14	-16	-20		-23		-27		-32			-35			-40		-43	
g6	-4	-5	-6	-7	-9		-10		-12		-14			-15			-17		-18	
	-12	-14	-17	-20	-25		-29		-34		-39			-44			-49		-54	
g7	-4	-5	-6	-7	-9		-10		-12		-14			-15			-17		-18	
	-16	-20	-24	-28	-34		-40		-47		-54			-61			-69		-75	
h4	0 -4	0 -4	0 -5	0 -6	0 -7		0 -8		0 -10		0 -12			0 -14			0 -16		0 -18	
h5	0	0	0	0	0		0		0		0			0			0		0	
	-5	-6	-8	-9	-11		-13		-15		-18			-20			-23		-25	
h6	0	0	0	0	0		0		0		0			0			0		0	
	-8	-9	-11	-13	-16		-19		-22		-25			-29			-32		-36	
h7	0	0	0	0	0		0		0		0			0			0		0	
	-12	-15	-18	-21	-25		-30		-35		-40			-46			-52		-57	
h8	0	0	0	0	0		0		0		0			0			0		0	
	-18	-22	-27	-33	-39		-46		-54		-63			-72			-81		-89	
h9	0 -30	0 -36	0 -43	0 -52	0 -62		0 -74		0 -87		0 -100			0 -115			0 -130		0 -140	
h10	0 -48	0 -58	0 -70	0 -84	0 -100		0 -120		0 -140		0 -160			0 -185			0 -210		0 -230	

ISO Hole Tolerances

Example: Nominal Size 3mm-6mm; 28µm = 28x(10⁻³)=0.028mm

Grade		NOMINAL HOLE SIZES (mm)																			
over	3	6	10	18	30	40	50 65		80 100		120 140 160		180 200 2		225	250	280	315	355		
inc.	6	10	18	30	40	50	65	80	100	120	140	160	180	200	225	250	280	315	355	400	
E6	+28	+34	+43	+53	+66		+79		+94		+110		+129			+142		+161			
	+20	+25	+32	+40	+50		+ 60		+72		+85			+100			+110		+125		
E7	+32	+40	+50	+61	+75		+90	+90			+125			+146			+162		+185		
	+20	+25	+32	+40	+50		+ 60	+ 60		+72				+100			+110		+125		
E11	+95	+115	+142	+170	+21	0	+250		+292		+335			+390			+430		+485		
	+20	+25	+32	+40	+50		+ 60		+72		+85			+100			+110		+125		
E12	+140	+175	+212	+250	+30	0	+360		+422		+485			+560			+630		+695		
540	+20	+25	+32	+40	+50	_	+ 60		+72		+85			+100			+110		+125		
E13	+200	+245	+302	+370	+44	0	+520	+520			+/15			+820			+920		+1 015		
50	+20	+25	+32	+40	+50		+ 60	+ 60			100			+100			+110		+125		
FO	+18	+12	+16	+33	+41		+49		+58 +68			+79					+56		+98		
E7	+22	+29	+24	+41	+50		+60		+71		+02			+96			+108		+119		
17	+10	+13	+16	+20	+25		+ 30		+36	+36 43				+50			+56		+62		
F8	+28	+35	+43	+53	+64		+76		+90 +106				+122			+137		+151			
	+10	+13	+16	+20	+25		+ 30		+36 43			+50			+56		+62				
G6	+12	+14	+17	+20	+25		+29		+34 +39				+44			+49		+54			
	+4	+5	+6	+7	+9		+10		+ 12		+14			+15			+17		+18		
G7	+16	+20	+24	+28	+34		+40		+47		+54			+61			+69		+75		
	+4	+5	+6	+7	+9		+10		+ 12		+14			+15			+17		+18		
G8	+22	+27	+33	+40	+48		+56		+66		+77			+87			+98		+107		
	+4	+5	+6	+7	+9		+10		+ 12		+14			+15			+17		+18		
H6	+8	+9	+11	+13	+16		+19		+22		+25			+29		+32		+36			
	0	0	0	0	0		0		0		0	0					0		0		
H7	+12	+15	+18	+21	+25		+30		+35		+40	+40		+46			+52		+57		
110	0	0	0	0	0		0		0		0			0			0		0		
H8	+18	+22	+27	+33	+39		+40		+54		+63		+/2			+81		+89			
HO	+20	+26	+42	+52	+62		+74		0		+100	0		0			+120		+140		
H9	0	0	0	0	0		0		0		0		0			0		0			
H10	+48	+58	+70	+84	+10	0	+120		+140		+160			+185			+210		+230		
	0	0	0	0	0		0		0		0			0			0		0		
H11	+75	+90	+110	+130	+16	0	+190		+220		+250			+290			+320		+360		
	0	0	0	0	0		0		0		0			0			0		0		

Static rod and bearing fitting

Isometric view Scale: 1:1

3.2

Section view A-A Scale: 1:1

Isometric view Scale: 1:1

Shaft and Bearing fitting

Static rod and Oil seal fitting

Section view A-A Scale: 1:1

3.2

turbine stator fitting

Section view A-A Scale: 1:1

Section view A-A Scale: 1:1

Isometric view Scale: 1:1

Section view A-A Scale: 1:1

Isometric view Scale: 1:1

Isometric view Scale: 1:1

Mass Flow Rate

Mass Flow Rate

- $M_dot = rho^*V^*S$
- rho is density
- V is velocity
- S is section area
- Another way to calculate MFR

Stoichiometric Ratio

- Kerosene: C12H26 alkane or cycloalkane
- Kerosene: CxHy x ranges from 6 to 16
- Alkanes CnH2n+2
- CxHy + (x+(y/4))O2 = xCO2 + (y/2)H2O
- Balance: 2C12H26 + 37O2 = 24CO2 + 26H2O
- Molar mass: Carbon(C) = 12.01
- Molar mass: Oxygen(O) = 16
- Molar mass: hydrogen(H) = 1.008
- Molecular weight of kerosene: 170.34 g/mol
- Molecular weight of oxygen: 32g/mol
- 3.47 kg of air to burn 1kg kerosene
- 3.47/0.23 = 15.11 air/fuel ratio

Nozzle Flange Gap (example Saturn V)

Future plans

- Finish manufacturing processes
- Make the engine start manually
- Working on ECU (electronic control unit)
- Estimate optimal working condition of the whole system

Thanks for listening