

MR Spectroscopy Introduction to Proton MR Spectroscopy

August 20th, 2018 | Jörg Mauler

MR(I) versus MRS(I)

- Shared common principle, but:
 - MR(I): Relaxation/density/diffusion/... of water molecules

MRS(I): Chemical composition

Chemical Shift

- Electrons neglected \rightarrow nuclei of the same kind resonate at the Larmor frequency $\omega_0 = \gamma B_0$
- FORSCHUNGSZE
- Electrons included

 electrons e⁻ in the chemical environment shield the nuclei
- Electrons rotate about B₀

- Rotary motion of the e⁻ in the B₀ field \rightarrow induces magnetic moment μ
- μ has opposite orientation to $B_0 \rightarrow$ lower effective field $B = B_0 (1 \sigma)$

Larmor frequency $\omega_0 = \gamma B_0 (1 - \sigma)$ $\delta \text{ [ppm]} = \frac{\omega_0 - \omega_{\text{ref}}}{\omega_{\text{ref}}} \cdot 10^6$

J-Coupling = Indirect Spin–Spin Coupling

- Direct spin-spin coupling \rightarrow averages out to zero in liquids.
- Indirect spin-spin coupling transmitted by bonding electrons
- The more bonds → the lower the amplitude of the J-coupling

 Nucleus A coupled to a nucleus X → symmetrically split spectrum, centred at the chemical shift frequency v_A

Pulse Acquire Experiment

Mitglied der Helmholtz-Gemeinschaft

From the Raw Data to the Spectrum

- On-resonance $M_x = \sum_{n=1}^N M_{0,n} \cos(\Omega_n t)$ and $M_y = -\sum_{n=1}^N M_{0,n} \sin(\Omega_n t)$
- From magnetisation to complex signal

$$\mathbf{S} \propto \mathbf{M} \Rightarrow \mathbf{S}(t) = \mathbf{S}_x(t) + i\mathbf{S}_y(t)$$

- Single resonance, incl. T₂ relaxation $S(t) = (S_0 \cos(\Omega t) + iS_0 \sin(\Omega t)) e^{-\frac{t}{T_2}} = S_0 e^{i\Omega t} e^{-\frac{t}{T_2}}$
- Zero order phase shift $S_0 e^{i(\Omega t + \phi)} e^{-\frac{t}{T_2}} \Rightarrow \text{ introduction of } \exp(i\widetilde{\phi}) \text{ with } \phi + \widetilde{\phi} = 0$
- Phase correction $\exp(i\widetilde{\phi})S(t) = \exp(i\widetilde{\phi})S_0 \exp(i\phi) \exp(i\Omega t - \frac{t}{T_2}) = S_0 \exp(i\Omega t - \frac{t}{T_2})$
- Fourier transform
 →Lorentzian

$$\mathcal{F}\{S_0 \exp(i\Omega t - \frac{t}{T_2})\} = S_0\left(\frac{1}{\frac{1}{T_2} + i(\Omega - \Omega_0)}\right)$$

September 18, 2018

Lineshape

Data Processing – Analysis of the Spectrum

- Human subjects, H⁺-MRS: up to 20 metabolites in the brain
 - N-Acetyl-Aspartate
 - Total choline
 - Phosporylethalonamine
 - Creatine
 - Glucose
 - Lactate
 - Lipids

- Myo-inositol
- Scyllo-inositol
- Glutamate
- Glutamine

Glycine

- γ-Amino-butyric acid
- N-acetyl-aspartyl-glutamate

- Ascorbic acid
- Glutathione
- Taurine
- Aspartate
- Acetate
 - Homo-carnosine
 - Macro-molecules
- Neurotransmitters (+precursors), second messengers, energy metabolites, membrane turnover, osmoregulation, protein synthesis, anti-oxidants
- Distinguishable and quantifiable by using numerical fitting algorithms
 - Time domain data
 - <u>Frequency domain data</u> (LCModel, Tarquin, jMRUI)

Data Processing – Numerical Fitting

Measured spectrum

Decomposition into a linear combination of the spectra of the pure compounds

Unspecific macromolecular baseline contributions → polynomial functions

September 18, 2018

Basis spectra

- Complete
- Simulated
- (Measured)

First Experiment

Spectrum almost useless because of the water and lipid signal

Spatial Localisation

- Signal acquisition only from relevant areas
 - Assignment of signals to their tissue of origin
 - Less contamination with extra-cranial lipids (+dedicated lipid suppr.)
- Restriction to smaller volume \rightarrow better B₀ homogeneity \rightarrow LW narrower
- Selectively refocus the magnetisation from the voxel under investigation
- Example: <u>Point Res</u>olved <u>Spectroscopy</u> (PRESS)
- Spin echo from the magnetisation located in the cuboid formed by the intersection of three slices
- Signal intensity high
- Minimum echo time long

Water Suppression, CHESS

- Most abundant fraction of molecules: water
- Dominating signal at 4.7 ppm from the two H atoms of water
- Water suppression by exploiting
 - Relaxation, chemical shift, scalar coupling
 - Frequency selective excitation and re-focusing
- Example: Chemical shift selective (CHESS) water suppression

mholtz-Gemeinschaft

Mitglied der Hel

13

Water Suppression, MEGA (Mescher-Garwood)

- Excitation-based water suppr.: reappearing magnetisation due to T1 relax.
- Solution: frequency selective refocusing pulses
 - Water resonance experiences two refocusing pulses between two equal magnetic field gradients
 dephasing
 - Metabolites: only one 180° pulse → refocusing

- Metabolites: Flip, <u>dephasing</u> (G₁), 180 pulse, <u>rephasing</u> (G₁), echo
- Water: Flip, <u>dephasing</u> (G_1) , 180s pulse, 180 pulse, <u>dephasing</u> (G_1)

Imholtz-Gemeinschaft

Mitglied der Hel

Water Suppression, CHESS vs. MEGA

- CHESS, excitation-based water suppression,
 - Drawback: reappearing magnetisation due to T1 relaxation
 - Advantage: short echo time
- MEGA, refocusing-based
 - Drawback: longer minimum TE (required by the introduction of these 180° pulses) → vulnerability to T2 relaxation
 - Advantage: less sensitive to T1 relaxation

Mitglied der Helmholtz-Gemeinschaft

Complete MRS Experiment

- PRESS with water suppression
- Fourier transform
- Phase correction
- Spectrum

Obtained

Advanced Techniques – Spectral Editing

- MRS, so far shown: wide range of metabolites
- Metabolites may be difficult to be measured
 - a) Low SNR \rightarrow increase number of acquisitions
 - b) Overlap with peaks of other metabolites

- Solution: editing pulse sequences (and/or higher field strength)
 - Separation of overlapping resonances
 - Tailored echo times, pulses, ... such that specific resonance evolve

Spectral Editing: 2-Hydroxy-glutarate (2-HG)

- IDH-1/2 mutation relevant for prognosis of gliomas
- PRESS sequence, Quantum mechanical simulations
- Maximise resonance at 2.25 ppm under variation of t₁, t₂

- Data acquisition in 2D matrix
- Numerical fitting with basis spectra
- Smoothing

Advanced Techniques – 3D Spatial Resolution

- EPI read out
- 50 x 50 x 18 Voxel
- Vol 0.3 cm³ each vxl
- TE=17 ms
- TR=1000-2000
- Acq time: ~16 min

Summary

- Chemical shift: shielding by the electrons shifts the Larmor frequency: $\omega_0 = \gamma B_0 (1 - \sigma), \quad \delta [\text{ppm}] = \frac{\omega_0 - \omega_{\text{ref}}}{\omega_{\text{ref}}} \cdot 10^6$
- J-Coupling: transmitted by bonding electrons, splitting of the peaks
- Data processing:
 - FT, phase adjustment, numerical fitting of basis spectra
- Spatial localisation technique: PRESS
- Water suppression: CHESS, MEGA
- Spectral editing
- Full brain 3D spectroscopic imaging by using spatial-spectral sampling

Thank you for your attention !