

MR Spectroscopy Introduction to Proton MR Spectroscopy

August 20th, 2018 | Jörg Mauler

MR(I) versus MRS(I)

- Shared common principle, but:
	- MR(I): Relaxation/density/diffusion/... of water molecules

• MRS(I): Chemical composition

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

Chemical Shift

- Electrons neglected \rightarrow nuclei of the same kind resonate at the Larmor frequency $\omega_0 = \gamma B_0$
- Electrons included \rightarrow electrons e in the chemical environment shield the nuclei
- Electrons rotate about B_0

 ω_{0}

ω,

- Rotary motion of the e- in the B_0 field \rightarrow induces magnetic moment μ
- μ has opposite orientation to B₀ → lower effective field B = B₀ (1 σ)

September 18, 2018 δ [ppm] = $\frac{\omega_0 - \omega_{\rm ref}}{\omega_{\rm ref}} \cdot 10^6$ 3 Larmor frequency $\omega_0 = \gamma B_0 (1 - \sigma)$

J-Coupling = Indirect Spin–Spin Coupling

- **Direct spin-spin coupling** \rightarrow **averages out to zero in liquids.**
- Indirect spin-spin coupling transmitted by bonding electrons
- **The more bonds** \rightarrow **the lower the amplitude of the J-coupling**

EXTER Nucleus A coupled to a nucleus $X \rightarrow$ symmetrically split spectrum, centred at the chemical shift frequency *v*_A

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-

Pulse Acquire Experiment

Static, strong magnetic field **Static, strong magnetic field Lorentzian** \bm{B}_0 *B*1 Switchable, weak, oscillating in resonance, external magnetic field B_1 RF-Coil RF-Coil RX

From the Raw Data to the Spectrum

- $M_x = \sum$ *N n*=1 $M_{0,n} \cos(\Omega_n t)$ and $M_y = -\sum$ *N* $M_{0,n} \sin(\Omega_n t)$ § On-resonance pulse about *+y*
- § From magnetisation to complex signal

$$
S \propto \mathbf{M} \quad \Rightarrow \quad \mathbf{S}(t) = \mathbf{S}_x(t) + i\mathbf{S}_y(t) \quad \boxed{\mathbf{R}^2}
$$

- $S(t) = (S_0 \cos(\Omega t) + iS_0 \sin(\Omega t)) e^{-\frac{t}{T_2}} = S_0 e^{i\Omega t} e^{-\frac{t}{T_2}}$ § Single resonance, incl. T_2 relaxation
- $S_0 e^{i(\Omega t + \phi)} e^{-\frac{t}{T_2}} \Rightarrow$ introduction of $\exp(i\widetilde{\phi})$ with $\phi + \widetilde{\phi} = 0$ Zero order phase shift
- $\exp(i\widetilde{\phi})S(t) = \exp(i\widetilde{\phi})S_0 \exp(i\phi) \exp(i\Omega t \frac{t}{T_2}) = S_0 \exp(i\Omega t \frac{t}{T_2})$) § Phase correction
- § Fourier transform \rightarrow Lorentzian

$$
\mathcal{F}{S_0 \exp(i\Omega t - \frac{t}{T_2})} = S_0 \left(\frac{1}{\frac{1}{T_2} + i(\Omega - \Omega_0)}\right)
$$

September 18, 2018

Lineshape

Data Processing – Analysis of the Spectrum

- § Human subjects, H+-MRS: up to 20 metabolites in the brain
	- § N-Acetyl-Aspartate
	- § Total choline
	- § Phosporylethalonamine
	- **Creatine**
	- § Glucose
	- **Lactate**
	- § Lipids
- **•** Myo-inositol
- Scyllo-inositol
- § Glutamate
- § Glutamine
- γ -Amino-butyric acid
- N-acetyl-aspartyl-glutamate
- § Glycine
- § Ascorbic acid
- § Glutathione
- § Taurine
- Aspartate
- Acetate
	- § Homo-carnosine
	- § Macro-molecules
- Neurotransmitters (+precursors), second messengers, energy metabolites, membrane turnover, osmoregulation, protein synthesis, anti-oxidants
- § Distinguishable and quantifiable by using numerical fitting algorithms
	- Time domain data
	- **Filter Frequency domain data (LCModel, Tarquin, jMRUI)**

Data Processing – Numerical Fitting

Measured spectrum

Decomposition into a linear combination of the spectra of the pure compounds

Unspecific macromolecular baseline contributions \rightarrow polynomial functions

Basis spectra

- § Complete
- **Simulated**
- § (Measured)

First Experiment

Spectrum almost useless because of the water and lipid signal

Spatial Localisation

- § Signal acquisition only from relevant areas
	- Assignment of signals to their tissue of origin
	- Less contamination with extra-cranial lipids (+dedicated lipid suppr.)
- Restriction to smaller volume \rightarrow better B₀ homogeneity \rightarrow LW narrower
- § Selectively refocus the magnetisation from the voxel under investigation
- **Example: Point Resolved Spectroscopy** (PRESS)
- § Spin echo from the magnetisation located in the cuboid formed by the intersection of three slices
- § Signal intensity high
- Minimum echo time long

Mitglied der Helmholtz-Gemeinschaft

meinschaft

Water Suppression, CHESS

- Most abundant fraction of molecules: water
- Dominating signal at 4.7 ppm from the two H atoms of water
- Water suppression by exploiting
	- § Relaxation, chemical shift, scalar coupling
	- § Frequency selective excitation and re-focusing
- Example: Chemical shift selective (CHESS) water suppression

Water Suppression, MEGA (Mescher-Garwood)

- Excitation-based water suppr.: reappearing magnetisation due to T1 relax.
- Solution: frequency selective refocusing pulses
	- Water resonance experiences two refocusing pulses between two equal magnetic field gradients **+** *dephasing*
	- Metabolites: only one 180° pulse → *refocusing*

- Metabolites: Flip, dephasing (G₁), 180 pulse, rephasing (G₁), echo
- Water: Flip, dephasing (G_1) , 180s pulse, 180 pulse, dephasing (G_1)

Water Suppression, CHESS vs. MEGA

- § CHESS, excitation-based water suppression,
	- Drawback: reappearing magnetisation due to T1 relaxation
	- Advantage: short echo time
- § MEGA, refocusing-based
	- § Drawback: longer minimum TE (required by the introduction of these 180 $^{\circ}$ pulses) \rightarrow vulnerability to T2 relaxation
	- **Advantage: less sensitive to T1 relaxation**

Complete MRS Experiment

- **PRESS with water suppression**
- **•** Fourier transform
- Phase correction
- § Spectrum

Obtained

Advanced Techniques – Spectral Editing NAA **3.029 2.77 2.60 2.46 Scale x2**

- MRS, so far shown: wide range of metabolites
- Metabolites may be difficult to be measured
	- a) Low SNR \rightarrow increase number of acquisitions **1.35 1.28** Phosphocreatine
	- b) Overlap with peaks of other metabolites

- → Solution: editing pulse sequences (and/or higher field strength) .
.
.
	- **Separation of overlapping resonances**
	- **Fightary Tailored echo times, pulses, ... such that specific resonance evolve 3.340**

Spectral Editing: 2-Hydroxy-glutarate (2-HG)

- § IDH-1/2 mutation relevant for prognosis of gliomas
- **PRESS sequence, Quantum mechanical simulations**
- Maximise resonance at 2.25 ppm under variation of t_1 , t_2 _{2.5}

- Data acquisition in 2D matrix
- **80** rra. • Numerical fitting with basis spectra
- \bullet

Advanced Techniques – 3D Spatial Resolution

- EPI read out
- $\overline{50 \times 50 \times 18}$ Voxel
- Vol 0.3 cm^3 each vxl
- $TE=17$ ms
- § TR=1000-2000
- Acq time: $~16$ min

Summary

- § Chemical shift: shielding by the electrons shifts the Larmor frequency: $\omega_0 = \gamma B_0 (1 - \sigma)$, δ [ppm] = $\frac{\omega_0 - \omega_{ref}}{\omega_{ref}} \cdot 10^6$
- J-Coupling: transmitted by bonding electrons, splitting of the peaks
- Data processing:
	- § FT, phase adjustment, numerical fitting of basis spectra
- § Spatial localisation technique: PRESS
- Water suppression: CHESS, MEGA
- § Spectral editing
- § Full brain 3D spectroscopic imaging by using spatial-spectral sampling

Thank you for your attention !