

The Large Hadron Collider in the Middle of its Lifetime

Dr. Thomas Kress, III. Physikalisches Institut B (Prof. A.Stahl), RWTH Aachen 8th Georgian-German School & Workshop in Basic Science (GGSWBS'18)

Outline of this Presentation

- The Standard Model of particle physics
- The CERN Lab, the LHC accelerator and one of the four detectors
- From LHC Run 1 to Run 2
 - discovery of "a/the" Higgs boson in Run 1
 - benefits in Run 2
- A few selected new ATLAS and CMS results
 - focus on Higgs physics
 - skipped ALICE's Heavy lons and LHCb results
- The LHC beyond 2018 Run 3 + Run 4
- Conclusions
- (Activities of the local RWTH Aachen University CMS/HEP groups)

The smallest particles

The smallest particles

Actually we have three "generations"

The forces

The big problem

quarks

leptons

particles

III. Physikalisches

τ

Picture is incomplete – we need a mechanism to create mass

μ

e

The Standard Model (SM) of Particle Physics

A HEP experimentalist's view:

Standard Model of Elementary Particles

Source: PBS Nova, Fermilab.

 $\begin{array}{l} \partial_{\mu}g_{\mu}^{a}g_{\mu}^{b}g_{\nu}^{c} - \frac{1}{4}g_{\nu}^{2}f^{abc}f^{abc}g_{\mu}^{b}g_{\nu}^{c}g_{\mu}^{d}g_{\nu}^{c} - \partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}\\ \frac{1}{4\pi}M^{2}Z_{\mu}^{b}Z_{\mu}^{b} - \frac{1}{4}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_{w}(\partial_{\nu}Z_{\mu}^{b}(W_{\mu}^{+}W_{\nu}^{-}\\ -W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - \\) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-})W_{\mu}^{-}) \end{array}$ $Z^{0}_{\nu}(W^{+}_{\mu}\partial_{\nu}W^{-}_{\mu})$ $W^{-}_{\nu} - W^{+}W^{-}_{\nu}$ ${}_{a}^{\mu}W_{\mu}W_{\nu}W_{\nu} + \frac{1}{2}g^{\mu}W_{\mu}W_{\nu}W_{\mu}W_{\nu} + g^{\mu}c_{u}(x_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{u}c_{v}(x_{\mu}W_{\nu}^{-}) - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-}$
$$\begin{split} & \psi_{1}^{*}\psi_{1}^{*} - 2\mathcal{A}_{n}^{*}\mathcal{Z}(W,W_{1}^{*}) = \frac{1}{2}\mathcal{A}_{n}^{*}\mathcal{A}_{n}^{*} - \mathcal{A}_{0}^{*}\phi_{1}^{*}\phi_{1}^{*}\phi_{2}\phi_{2}^{*} - \\ & \int_{0}^{*} \frac{1}{4}\frac{H}{4} + \frac{H}{4}(H^{*}\phi_{1}^{*}\phi_{2}^{*}\phi_{2}^{*}\phi_{2}^{*}\phi_{1}^{*}) - \\ & g_{n}\mathcal{A}_{n}(H^{*}(H\phi_{1}^{*}) + \mathcal{A}_{0}\phi_{1}^{*}\phi_{2}^{*}+\mathcal{A}_{0}\phi_{1}^{*}\phi_{1}^{*} - \mathcal{A}_{0}\phi_{1}^{*}\phi_{1}^{*}) - \\ & \frac{1}{2}g_{n}^{*}\alpha_{n}(H^{*}(\Phi_{1}\phi_{1}^{*}) + \mathcal{A}_{0}\phi_{1}^{*}\phi_{1}^{*} + \mathcal{A}_{0}\phi_{1}^{*}\phi_{1}^{*} + \mathcal{A}_{0}\phi_{1}^{*}) - \\ & g_{n}\mathcal{A}_{n}^{*}(W,W_{1}^{*}) - \frac{1}{2}g_{n}^{*}\mathcal{Z}_{n}^{*}\mathcal{Z}_{n}^{*} - \\ & \frac{1}{4}\left(W_{1}^{*}(\Phi_{0}\phi_{1}^{*} - \Phi_{0}\phi_{1}^{*}) + \frac{1}{2}g_{n}^{*}\mathcal{Z}_{n}^{*}\mathcal{Z}_{n}^{*}\right) - \\ & \frac{1}{4}\left(W_{1}^{*}(\Phi_{0}\phi_{1}^{*} - \Phi_{0}\phi_{1}^{*}) + \frac{1}{2}g_{n}^{*}\mathcal{Z}_{n}^{*}\mathcal{Z}_{n}^{*}\right) - \\ & \frac{1}{4}g_{n}^{*}\mathcal{A}_{n}^{*}(W_{0}\phi_{1}^{*} - \Phi_{0}\phi_{1}^{*}) + \frac{1}{2}g_{n}^{*}\mathcal{Z}_{n}^{*}\mathcal{Z}_{n}^{*}\mathcal{Z}_{n}^{*}\mathcal{Z}_{n}^{*}\right) + \\ & \frac{1}{4}g_{n}^{*}\mathcal{A}_{n}^{*}(W_{0}\phi_{1}^{*} - \Phi_{0}\phi_{1}^{*}) + \frac{1}{4}g_{n}^{*}\mathcal{A}_{n}^{*}(W_{0}\phi_{1}^{*}) - \\ & \frac{1}{4}g_{n}^{*}\mathcal{A}_{n}^{*}(W_{0}\phi_{1}^{*}) - \frac{1}{4}g_{n}^{*}\mathcal{A}_{n}^{*}(W_{0}\phi_{1}^{*}) - \\ & \frac{1}{4}g_{n}^{*}\mathcal{A}_{n}^{*}(W_{0}\phi_{1}^{*}) - \frac{1}{4}g_{n}^{*}(W_{0}^{*}) - \frac{1}{4}g_{n}^{*}(W_{0}^{*}) - \\ & \frac{1}{4}g_{n}^{*}\mathcal{A}_{n}^{*}(W_{0}\phi_{1}^{*}) - \frac{1}{4}g_{n}^{*}(W_{0}^{*}) - \\ & \frac{1}{4}g_{n}^{*}\mathcal{A}_{n}^{*}(W_{0}\phi_{1}^{*}) - \\ & \frac{1}{4}g_{n}^{*}\mathcal{A}_{n}^{*}(W_{0}^{*}) - \\ & \frac{1}{4}g_{n}^{*}(W_{0}^{*}) - \\ & \frac{1}{4}g_{n}^{*}(W$$
$$\begin{split} & \partial_{0} \mathcal{A}^{+} \mathcal{W}_{0}^{0} \partial_{0} \mathcal{A}^{+} \mathcal{W}_{0}^{0} \partial_{0} \mathcal{A}^{+} \partial_{0} \mathcal{W}_{0}^{0} \mathcal{W}_{0}$$
 $\begin{array}{c} \frac{1}{33\sqrt{7}}\phi^{0}\left(-m_{0}^{0}(U^{0}\gamma_{m}(1-\gamma)^{0}\gamma)+m_{0}^{0}(U^{0}\gamma_{m}(1-\gamma)^{0}\gamma)+m_{0}^{0}(U^{0}\gamma_{m})-m_{0}^{0}(U^{0}\gamma_{m})-m_{0}^{0}(U^{0}\gamma_{m})-m_{0}^{0}(U^{0}\gamma_{m})-\frac{1}{2}\frac{1}{2}M(U^{0}\gamma)-\frac{1}{2}\frac{1}{2}\frac{1}{2}M(U^{0}\gamma_{m})-\frac{1}{2}\frac{$ $\begin{array}{l} & \frac{1}{(2M)} e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) - e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) - e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) - e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) - e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) + e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right) \\ & + \left(e^{-\frac{1}{2}} \left(e^{-\frac{1}{2}} \right) \right)$

A HEP theoretician's view:

Standard Model Lagrangian

The Large Hadron Collider at CERN

CERN budget: ~1 billion €/year International science lab since 1954 CERN

Oliver Poot

8/24

LHC: 27 km ring, -100 m Accelerates and collides bunches of protons Four huge experiments/detectors

LHC tunnel

RWTHAAC

31

The CMS Detector

Records huge number of "events" with specific pattern of objects (#,E,angle,..) Performing statistical ensemble analysis

III. Physikalisches Institut B

(1000 TB/sec

LHC Achievements in Run 1 (2010 – 2012) at E_{cm} = 7 & 8 TeV

Analysis: construct sensitive observables, study shape and/or compare measured data with predictions with vs. w/o new effects/particles

Numerous important physics publications

A Higgs boson (m=125 GeV) as the cornerstone of the Standard Model established by ATLAS+CMS in several (bosonic) channels

mass $2\omega_{*} \{V''(\omega_{*}^{2})\}^{1/2}$; Eqs. (2a) and (2c

1964 predicted 2011/12 established 2013 Noble Prize

Higgs explains masses of $W^{+/-}$, Z^0 (also masses of the fermions (for neutrinos more complex))

In Run 1 no observation of physics beyond the SM

From Run 1 at 7/8 TeV to Run 2 (2015-2018) at 13 TeV

Major changes:

(Much) Higher potential for SM & searches (in most cases) "higher E_{cm} beats more lumi" (15 TeV, ggF+bbA)

Improvements in theory calculations and Monte Carlo model generators

A few detector upgrades, trigger ~1kHz Computing becomes more flexible

Much more data is available for analyses

- LHC peak luminosity ~2 x design (use lumi levelling to get less pile-up)
- plus (CMS) "parking" of b physics data
- 2018 expect ~65 fb⁻¹ for whole year

Selected New Results from Run 2 – Higgs Physics

S.Rahatlou, CMS

HIGGS FROM DISCOVERY TO PRECISION Higgs to fermion coupling first established in H-> $\bar{\tau}\tau$

First observation of a Higgs to (direct) quark coupling $(t\bar{t})$ (in production) by ATLAS/CMS

H-> $b\overline{b}$ now > 5 standard dev. (huge cross section but high backgrounds)

Higgs spin consistent with 0

As expected small total width (measured by ZZ on-/off-shell interference)

Selected New Results from Run 2 – Higgs Physics

Nearing theory-limited territory with just 2016 data

Shahram Rahatlou, Roma Sapienza & INFN

10

Selected New Results from Run 2 – SM Measurements

Measurements overview

Selected New Results from Run 2 – SUSY (Supersymmetry)

Many were hoping to establish SUSY – unfortunately no sign so far -> set limits!

28 publications on SUSY searches with 2015-2016 data (36 fb⁻¹). ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary

July 2018					$\sqrt{s} = 7, 8, 13 \text{ TeV}$				
Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb]	Ma	ss limit		$\sqrt{s} = 7, 8 \text{Te}$	$\sqrt{s} = 13 \text{ TeV}$
$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{t}_{1}^{0}$	0 mono-jet	2-6 jets 1-3 jets	Yes	36.1 36.1	[2x, 8x Degen.] [1x, 8x Degen.]	0.43	0.9	1.55	m(\tilde{t}_{1}^{0})<100 G m(\tilde{q})-m(\tilde{t}_{1}^{0})=5 G
$\tilde{g}\tilde{g}$. $\tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	36.1			Forbidden	2.0 0.95-1.6	$m(\tilde{t}_{1}^{0})$ <200 Ge $m(\tilde{t}_{1}^{0})$ =900 Ge
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell\ell)\tilde{\chi}_{1}^{0}$	3 e, µ ee, µµ	4 jets 2 jets	Yes	36.1 36.1				1.85	$m(\tilde{x}_{1}^{0}) < 800 \text{ G}$ $m(\tilde{x}) - m(\tilde{x}_{1}) = 50 \text{ G}$
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$	0 3 e. u	7-11 jets 4 jets	Yes	36.1			0.98	1.8	$m(\tilde{\xi}_{1}^{0}) < 400 \text{ G}$ $m(\tilde{z}) - m(\tilde{\xi}_{2}^{0}) = 200 \text{ G}$
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	0-1 e, µ 3 e, µ	3 b 4 jets	Yes	36.1 36.1				2.0	m(t)-m(t)=300 G
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \hat{\chi}_1^0 / t \hat{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	Forbidden	Forbidden Forbidden	0.9 0.58-0.82 0.7	m(ش(آر)=2	$m(\tilde{k}_{1}^{0})=300 \text{ GeV}, \text{BR}(h\tilde{k}_{1}^{0})=300 \text{ GeV}, \text{BR}(h\tilde{k}_{1}^{0})=300 \text{ GeV}, \text{BR}(h\tilde{k}_{1}^{0})=\text{BR}(t\tilde{k}_{1}^{0})=00 \text{ GeV}, \text{BR}(t\tilde{k}_{1}^{0})=300 \text{ GeV}, \text{BR}(t\tilde{k}_{1}^{0})=30$
$\tilde{b}_1\tilde{b}_1,\tilde{\imath}_1\tilde{\imath}_1,M_2=2\times M_1$		Multiple		36.1	Forbidden		0.7		$m(\tilde{t}_{1}^{0})=60 \text{ G}$ $m(\tilde{t}_{2}^{0})=200 \text{ G}$
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{H} \text{ LSP}$	0-2 e, µ	0-2 jets/1-2 Multiple	b Yes	36.1 36.1	Fashiddan		1.0	$m(\bar{x}_{c,0}^{\alpha}) =$	$m(\tilde{x}_{1}^{0})=1$ G 150 GeV, $m(\tilde{x}_{1}^{0})-m(\tilde{x}_{1}^{0})=5$ GeV, \tilde{r}_{1}
$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	Multiple 2c	Yes	36.1 36.1	Porbidden		0.48-0.84	$m(x_1) = m(x_1) = m$	$150 \text{ GeV}, m(\tilde{t}_1^n) - m(\tilde{t}_1) = 5 \text{ GeV}, I_1 = 150 \text{ GeV}, m(\tilde{t}_1^n) - 5 \text{ GeV}, I_1 = 100 \text{ GeV}, I_1 = 1000 \text{ GeV}, I_1 = 1000 \text{ GeV}, I_1 = 100 \text{ GeV}, I_1 = 100 $
	0	mono-jet	Yes	36.1		0.46			$m(\tilde{t}_1, \tilde{c}) - m(\tilde{t}_1^0) = 50 \text{ G}$ $m(\tilde{t}_1, \tilde{c}) - m(\tilde{t}_1^0) = 5 \text{ G}$
$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 e, µ	4 b	Yes	36.1			0.32-0.88		$m(\tilde{t}_1^0)=0$ GeV, $m(\tilde{t}_1)-m(\tilde{t}_1^0)=180$ G
$\tilde{x}_{1}^{*}\tilde{x}_{2}^{0}$ via WZ	2-3 e, µ ee, µµ	≥ 1	Yes Yes	36.1 36.1	1/x ² 1/x ² 0.17		0.6		$m(\tilde{\ell}_{1}^{\pm})-m(\tilde{\ell}_{1}^{0})=10 \text{ G}$
$ \begin{array}{l} \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \; \text{via} \; Wh \\ \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0, \tilde{\chi}_1^{+} {\rightarrow} \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 {\rightarrow} \tilde{\tau} \tau(\nu \tilde{\nu}) \end{array} $	<i>ℓℓ/ℓγγ/ℓbb</i> 2 τ	:	Yes	20.3 36.1	1/x ⁰ 0.26		0.76	m(ž [*] 1)-m(ž ⁰ 1)	$m(\tilde{\xi}_{1}^{0})=0, m(\tilde{\tau}, \tilde{\tau})=0.5(m(\tilde{\xi}_{1}^{0})+m(\tilde{t})=100 \text{ GeV}, m(\tilde{\tau}, \tilde{\tau})=0.5(m(\tilde{\xi}_{1}^{0})+m(\tilde{t})=0.5(m(\tilde{\tau}, \tilde{\tau})+m(\tilde{t})=0.5(m(\tilde{\tau}, \tilde{\tau})+m(\tilde{t}))=0.5(m(\tilde{\tau}, \tilde{\tau})+m(\tilde{t})=0.5(m(\tilde{\tau}, \tilde{\tau})+m(\tilde{t}))=0.5(m(\tilde{\tau}, \tilde{\tau})+m$
$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, µ 2 e, µ	0 ≥ 1	Yes	36.1 36.1	0.18	0.5			m($\tilde{\ell}_1^0$)=5 C
$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 4 e, µ	$\geq 3b$	Yes Yes	36.1 36.1	0.13-0.23	l	0.29-0.88		$BR(\tilde{\chi}^0_1 \rightarrow h\tilde{G})$ $BR(\tilde{\chi}^0_1 \rightarrow Z\tilde{G})$
$\operatorname{Direct} \tilde{\chi}_1^* \tilde{\chi}_1^- \operatorname{prod., long-lived} \tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	0.15	0.46			Pure W Pure Higgs
Stable g R-hadron	SMP	-	-	3.2				1.6	
Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2 y	Multiple	Yes	32.8 20.3	[τ(ĝ) =100 ns, 0.2 ns]	0.44		1.6 2.4	$m(\tilde{t}_{1}^{0})=100 \text{ G}$ $1 < r(\tilde{t}_{1}^{0}) < 3 \text{ ns. SPS8 mo}$ $\tilde{t} < cr(\tilde{t}_{1}^{0}) < 3 \text{ ns. SPS8 mo}$
$gg_{,X_1} \rightarrow eev_{/e\mu}v_{/\mu\mu}v$	eu er ur	-	-	3.0				1.0	* =0.11. document
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, µ	0	Yes	36.1	${}^{*}_{1}/\tilde{\chi}^{0}_{2} [\lambda_{c33} \neq 0, \lambda_{124} \neq 0]$		0.82	1.33	m(x ⁰)=100 0
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}^0_1, \tilde{\chi}^0_1 \rightarrow qqq$	0 4	-5 large-R je Multiple	ets -	36.1 36.1	[m(\hat{x}_{1}^{*})=200 GeV, 1100 GeV] [$\lambda_{112}^{\prime\prime}$ =2e-4, 2e-5]		1.0	1.3 1.9 5 2.0	Large . m(ℓ ₁ ⁰)=200 GeV, bino-
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tbs / \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$ $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$		Multiple Multiple		36.1 36.1	[λ''_{323} =1, 1e-2] [λ''_{323} =2e-4, 1e-2]	0.55	5 1.0	1.8 2.1 5	m(<i>x</i> ⁰ ₁)=200 GeV, bino- m(<i>x</i> ⁰ ₁)=200 GeV, bino-
$\tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow bs$	0	2 jets + 2 b	-	36.7	[qq, bs]	0.42 0	0.61	0.4-1.45	$BR(\tilde{i}_1 \rightarrow be/b\mu) > 2$

Tancredi. ATLAS

Selected New Results from Run 2 – Exotic Searches

Many were hoping to find (other) physics beyond the SM – not (yet)

ATLAS

Physics potential for the next two decades – huge increase of data set

Run 3: "moderate" increase of luminosity, a few "upgrades phase 1" detector and trigger upgrades, probably increasing E_{cm} a bit (13->14 TeV) Run 4: trigger, electronics, computing, detector (radiation esp. in endcap regions), major "upgrade phase 2" replacements necessary – huge challenges ahead!

High

LHC & HL-LHC Schedule and Challenges - Detectors

CMS PHASE II UPGRADE

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz for 750 kHz PFlow-like selection rate
- HLT output 7.5 kHz

Calorimeter Endcap

precise timing

18/24

Si, Scint+SiPM in Pb-W-SS
3D shower topology with

Barrel Calorimeters

https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40
- MHz with precise timing for e/y at 30 GeV
- ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- New GEM/RPC 1.6 < η < 2.4
- Extended coverage to $\eta \simeq 3$

Beam Radiation Instr. and Luminosity, and Common Systems and Infrastructure https://cds.cern.ch/record/2020886

MIP Timing Detector

https://cds.cern.ch/record/2296612

- $\simeq 30 \text{ ps resolution}$
- Barrel layer: Crystals + SiPMs
- · Endcap layer: Low Gain Avalanche Diodes

34

Shahram Rahatlou, Roma Sapienza & INFN

Tracker https://cds.cern.ch/record/2272264

Design for tracking in L1-Trigger

Extended coverage to n ~ 3.8

Si-Strip and Pixels increased granularity

LHC & HL-LHC Schedule and Challenges - Computing

HL-LHC Current Data Predictions

 These plots were created at the request of our funding agencies and represent what the needs would be extrapolating from current practice.

For Run 4 (for ALICE Run 3): with a "flat budget" and current technology extrapolation and harvesting of "opportunistic resources" still a factor ~5 for CPU and storage missing

- · We do this today with a world wide computing grid. It will need to grow.
- Reliable and performant networking is key to our federated data model.
- Usage of this infrastructure will have to expand to support other HEP domains as well.

🛟 Fermilab

11 9-Jul-2018 Liz Sexton-Kennedy I Future of Software and Computing for HEP

19/24

Conclusions:

LHC Run 2: excellent performance of accelerator, detectors, computing, analyses

- Resonance at 125 GeV seems to be THE SM Higgs, lots of quantitative H results
- So far in CMS and ATLAS no evidence of signals for SUSY or other "new" physics
 - most of us think there must be more ... SM is great but has fundamental "deficiencies"
 - No more low-hanging fruits have to explore niches in parameter space, other ideas, ...
- (LHCb with a lot of new interesting results on CP, spectroscopy/particle compositions; first indications of flavor anomalies (to be confirmed with full Run2 data))
- (As usual ALICE Heavy lons data taking will start end of the year)

Collaborations are already working intensively on detector, computing, ... upgrades for Run 3/4

Challenging ~15 years of LHC physics with a huge data set are still ahead of us!

- In the next few years, do we find/establish "New Physics" (at LHC)?
- If nature is different than our expectations, perhaps this is even more exciting?!

HEP theory and three large experimental CMS groups

Almost 100 persons!

- Theory HEP group: 10 seniors/post-docs, ~25 Ph.D./master/bachelor students
 - Top & Higgs physics, SUSY phenomenology
- Institute I B: 3 seniors/post-docs, ~10 Ph.D./master/bachelor students
 - Silicon tracker upgrade, SUSY analyses
- Institute III A: 10 seniors/post-docs, ~25 Ph.D./master/bachelor students
 - Muon chamber upgrade, exotica searches & single top analyses, improved analysis techniques, H->cc
- Institute III B: 8 seniors/post-docs, ~10 Ph.D./master/bachelor students
 - Head: Prof. Achim Stahl
 - Silicon Tracker upgrade, Grid computing, tau, LVF & Higgs analyses

Plus: LHCb, AMS, Auger, IceCube, EnEx/RANGE, DChooz, T2K, JUNO, Borexino/SOX, EDM/Jedi, med. applications, detector R&D, Einstein telescope, cosmology theory

CMS Hardware Projects Aachen III B (Prof. Stahl, Dr. Pooth)

Need for a new CMS Phase-2 Tracker

Level-1 Trigger with Tracker Information

CMS Analyses Projects Aachen III B (Prof. Stahl, Drs. Mueller, Sert)

- Search for additional Higgs Bosons
 - H → tautau
 - $-H \rightarrow WW$
- Search for LFV Z boson decays
- Measurement of Higgs boson properties
 - CP in ggH Production
 - CP in H \rightarrow tautau decay
- Measurement of Z boson properties
 - Tau Polarisation

CMS Computing Projects Aachen III B (Drs. Kress, Nowack)

Distributed Grid computing – Tier 2+3

Started 2005, so far 2.5 M€ invest in computer hardware

Presently 5500 CPU cores, 5 PB disks, in 12 racks

Supporting entire CMS collaboration German & Aachen CMS users get extra resources

Started to work on virtualization/cloud techniques

> Typical RWTH network WAN GRID data transfer rate (record so far: 30 Gbit/s)

