Electric Dipole Moment Measurements at Storage Rings (JEDI project at COSY/Juelich)

J. Pretz RWTH Aachen & FZ Jülich

European Research Council

Tbilisi, Georgia, August 2018

Outline

- Symmetries
- Electric Dipole Moments (EDMs)
- EDM Measurements at Storage Rings (JEDI project at COSY/Juelich)

Symmetries

Symmetries

Symmetry: System does not change under certain transformations: rotation, mirror image, translation, ...

Esthetic Reasons

Practical Reasons

A farmer has a fence of 20 m at his disposal. Task: Build a rectangular enclosure with the largest area.

Solution: The rectangular enclosure with the largest area has also the highest symmetry: **square**

Practical Reasons

A farmer has a fence of 20 m at his disposal. Task: Build a rectangular enclosure with the largest area.

Solution: The rectangular enclosure with the largest area has also the highest symmetry: **square**

If one drops the constraint of a rectangular shape, one finds even a solution with a larger area and even higher symmetry: **circle**

Fundamental Symmetry Transformations in Physics

- **Parity** \mathcal{P} (or a point reflection at the origin)
- Time Reversal T (flip direction of time)
- Charge Conjugation C (Exchange particles with antiparticles)

$\textbf{Parity} \ \mathcal{P}$

$\textbf{Parity} \ \mathcal{P}$

Time Reversal ${\cal T}$

Charge Conjugation C: Matter–Anti-matter

matter: exists naturally on earth anti-matter: created in laboratory

 \Rightarrow huge asymmetry between amount of matter and anti-matter

Fundamental Symmetry Transformations in Physics

- **Parity** \mathcal{P} (or a point reflection at the origin)
- Time Reversal T (flip direction of time)
- Charge Conjugation C (Exchange particles with antiparticles)

For a long time, people believed that physical laws are invariant unter these transformations

Today we know that all these three symmetries are violated.

Electric Dipole Moments (EDMs)

Electric Dipoles

Classical definition:

EDM must be parallel to **spin** vector \vec{s}

Spin, Magnetic and Electric Dipole Moments

${\mathcal T}$ and ${\mathcal P}$ violation of EDM

 $\Rightarrow \text{EDM measurement tests violation of fundamental symmetries } \mathcal{P} \text{ and } \mathcal{T}(\stackrel{\mathcal{CPT}}{=} \mathcal{CP})$

Symmetries in Standard Model

	electro-mag.	weak	strong
${\mathcal C}$	\checkmark	£	\checkmark
${\cal P}$	\checkmark	£	(√)
$\mathcal{T} \stackrel{\textit{CPT}}{\rightarrow} \mathcal{CP}$	\checkmark	(ź)	(√)

- *C* and *P* are maximally violated in weak interactions (Lee, Yang, Wu)
- *CP* violation discovered in kaon decays (Cronin,Fitch) described by CKM-matrix in Standard Model
- CP violation allowed in strong interaction but corresponding parameter $\theta_{QCD} \lesssim 10^{-10}$ (strong CP-problem)

$\mathcal{CP}-\text{Violation}$ and connection to EDMs

Standard Model			
Weak interaction			
CKM matrix	ightarrow unobservably small EDMs		
Strong interaction			
θ_{QCD}	\rightarrow best limit from neutron EDM		
beyond Standard Model			
e.g. SUSY	\rightarrow accessible by EDM measurements		

Connection to Cosmology: Matter-Antimatter Asymmetry

Excess of matter in the universe:

	observed	SCM* prediction
$\eta = \frac{n_B - n_{\bar{B}}}{n_{\gamma}}$	$6 imes 10^{-10}$	10 ⁻¹⁸

Sakharov (1967): \mathcal{CP} violation needed for baryogenesis

 \Rightarrow New \mathcal{CP} violating sources beyond SM needed to explain this discrepancy

They could show up in EDMs of elementary particles

* SCM: Standard Cosmological Model

EDM: Current Upper Limits

EDM: Current Upper Limits

FZ Jülich: EDMs of charged hadrons: p, d, ³He

How to measure charged particle EDMs?

Experimental Method: Generic Idea

For **all** EDM experiments (neutron, proton, atoms, ...): Interaction of \vec{d} with electric field \vec{E} For charged particles: apply electric field in a storage ring:

build-up of vertical polarization $s_{\perp} \propto |d|$

Spin Precession: Thomas-BMT Equation

$$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$ec{d} = \eta rac{q}{2m} ec{s}, \quad ec{\mu} = 2(G+1) rac{q}{2m} ec{s}$$

BMT: Bargmann, Michel, Telegdi

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} \cdot \left(G - \frac{1}{\sqrt{2} - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$

$$\vec{d} = \eta \frac{q}{2m} \vec{s}, \quad \vec{\mu} = 2(G + 1) \frac{q}{2m} \vec{s}$$
BMT: Bargmann, Michel, Telegdi

Spin Precession: Thomas-BMT Equation

$\frac{\mathrm{d}\vec{s}}{\mathrm{d}t} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$				
	\odot	\odot		
1.) pure electric ring	no \vec{B} field needed, CW/CCW beams simultaneously	works only for particles with $G > 0$ (e.g. p)		
2.) combined ring	works for $p, d, {}^{3}$ He,	both <i>Ē</i> and <i>Ē</i> required		
3.) pure magnetic ring	existing (upgraded) COSY ring can be used, shorter time scale	lower sensitivity, precession due to <i>G</i> , i.e. no frozen spin		

$$ec{d} = \eta rac{q}{2m} ec{s}, \quad ec{\mu} = 2(G+1) rac{q}{2m} ec{s}$$

BMT: Bargmann, Michel, Telegdi

Different Options

- Plans for a dedicated ring: CPEDM collaboration (CERN, JEDI, Korea, ...)
 CPEDM
- First measurement with existing magnetic ring COSY at FZ Jülich

JEDI = Jülich Electric Dipole Moment

JEDI Project at COSY/Jülich

Cooler Synchrotron COSY

COSY provides (polarized) protons and deuterons with p = 0.3 - 3.7 GeV/c \Rightarrow Ideal starting point for charged hadron EDM searches

Running Conditions

COSY circumference	183 m
deuteron momentum	0.970 GeV/ <i>c</i>
$eta(\gamma)$	0.459 (1.126)
magnetic anomaly G	pprox -0.143
revolution frequency $f_{\rm rev}$	752543 Hz
cycle length	100-1500 s
nb. of stored particles/cycle	pprox 10 ⁹
event rate at $t = 0$	$5000 { m s}^{-1}$

Experimental Setup at COSY

• Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$

Experimental Setup at COSY

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip polarization with help of solenoid into horizontal plane, precession starts

Experimental Setup at COSY

- Inject and accelerate vertically polarized deuterons to $p \approx 1 \text{ GeV}/c$
- flip polarization with help of solenoid into horizontal plane, precession starts
- Extract beam slowly (in \approx 100 s) on target
- Measure asymmetry and determine spin precession

Polarimeter

serves to determine polarisation vector

Experimentally: Measure asymmetry of scattered particles: e.g. $P_{\text{vertical}} \propto A_{\text{left,right}} = \frac{N_{\text{left}} - N_{\text{right}}}{N_{\text{left}} + N_{\text{right}}} \propto d$

see also talks by I. Keshelashvili, D. Mchedlishvili, F. Müller, D. Shergelachvili, O. Javakhishvili

Asymmetries

Polarization Flip

Polarization Flip

Polarization Flip

Results: Spin Coherence Time (SCT)

Short Spin Coherence Time

unbunched beam $\Delta p/p = 10^{-5} \Rightarrow \Delta \gamma/\gamma = 2 \cdot 10^{-6}, T_{rev} \approx 10^{-6} \text{ s}$ \Rightarrow decoherence after < 1 s bunched beam eliminates 1st order effects in $\Delta p/p$ \Rightarrow SCT τ = 20 s

Results: Spin Coherence Time (SCT)

Long Spin Coherence Time

SCT of $\tau =$ 400 s, after correction with sextupoles (chromaticities $\xi \approx$ 0)

SCT: Longer Cycles

SCT: Longer Cycles

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarization feed back
 - RF- Wien filter design and construction

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarization feed back
 - RF- Wien filter design and construction
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarization feed back
 - RF- Wien filter design and construction
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results
 - spin tracking simulation

- required for first EDM measurement:
 - maximize spin coherence time (SCT)
 - precise measurement of spin precession (spin tune)
 - polarization feed back
 - RF- Wien filter design and construction
- to reduce systematic errors:
 - development of high precision beam position monitors
 - beam based alignment
- Interpretation of results
 - spin tracking simulation
- Design of dedicated storage ring
 - design of dedicated storage ring
 - polarimeter development
 - development of electro static deflectors

Results from Nov. 2017 Beam Time

Results from Nov. 2017 Beam Time

JEDI Collaboration

• **JEDI** = **J**ülich **E**lectric **D**ipole Moment Investigations

 ≈ 100 members
 (Aachen, Bonn, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...)

• \approx 10 PhD students

http://collaborations.fz-juelich.de/ikp/jedi/index.shtml

Summary

- EDMs of elementary particles are of high interest to disentangle various sources of CP violation searched for to explain matter - antimatter asymmetry in the Universe
- EDM of charged particles can be measured in storage rings by observing the influence on the polarisation vector
- First **deuteron EDM** measurement planned at COSY in 2018
- Design of a **new dedicated storage ring** ongoing