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The standard model (SM) is widely accepted as a consistent theory
of the strong, electromagnetic and weak interactions.

Invariance under Lorentz and local gauge SU(3)C × SU(2)L × U(1)
transformations is taken as the underlying symmetry of the SM.

Salam-Weinberg (SW) model is the theory of electroweak
interactions based on SU(2)L × U(1) group.

Particle content of the model, i.e. quarks, leptons, Higgs particle,
and also vector bosons is an input.

It is very often claimed that the existence and the interactions of the
vector bosons is a consequence, i.e. an output of the non-Abelian
gauge group ...



Figure: Phase shifts of fit-I.
Dots - RS phase shifts; Circles - GWU phase shifts; Red lines - our results.
Red narrow and wide bands - uncertainties propagated from the errors of
LECs and theoretical uncertainties, respectively.



In connection with the SW model one often hears/reads that
Higgs mechanism is the origin of the masses ... of quarks and
leptons ...
which make only a tiny part of the baryon masses!

Where do the masses come from?

Equally valid question:
Where do the all kind of charges come from? ...
From the same place where the particles come from ...
that is: I do not know!!!
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Right question:

If SU(2)L × U(1) is an underlying fundamental symmetry of the EW
interaction then where do the quark and lepton masses come from?

Answer: Higgs mechanism is responsible for that!

However ... where does this gauge symmetry come from?
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The electromagnetic and gravitational forces are long-ranged and
therefore if they are indeed mediated by massless photons and
gravitons, then the corresponding local Lorentz-invariant quantum
field theories must be gauge theories
S. Weinberg, The Quantum Theory Of Fields. Vol. 1: Foundations
(Cambridge University Press, Cambridge, England, 1995).

The weak interaction is mediated by massive particles,
Why should it be described by a gauge theory?

A gauge-invariant theory with the spontaneous symmetry breaking
has been derived by demanding tree-order unitarity
C. H. Llewellyn Smith, Phys. Lett. B 46, 233 (1973).
J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. Lett. 30,
1268 (1973) [Erratum-ibid. 31, 572 (1973)].
J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. D 10,
1145 (1974) [Erratum-ibid. D 11, 972 (1975)].
S. D. Joglekar, Annals Phys. 83, 427 (1974).



This result could be considered as an answer to the above raised
question, however, the modern point of view considers the SM as an
EFT which inevitably violates the tree-order unitarity.

Original requirement of perturbative renormalizability which lead to a
gauge theory of the EW is no longer a valid requirement either.

This motivated us to revisit the problem.

Our final aim is to construct a consistent most general
Lorentz-invariant EFT of interacting three massive vector bosons,
fermions and a scalar.

We start with vector bosons and a scalar.



Starting assumptions and required constraints

Free massive vector bosons are described by Proca Lagrangian
which incorporates the second class constraints.

To have a consistent theory of interacting massive vector bosons
interaction terms have to be consistent with these constraints.

This generates some relations between coupling constants.

Next we impose the renormalizability in the sense of an EFT.

The condition of perturbative renormalizability cannot be satisfied
unless the coupling constants satisfy further restricting conditions.



SM is LO approximation to an EFT in which higher order operators
are suppressed by powers of some large scale.
The value of this large scale is determined by new physics.

This leads to the next condition on our EFT - separation of scales.

That is, divergences of loop diagrams contributing in physical
scattering amplitudes generated by the LO Lagrangian should be
removable by renormalizing the parameters of the LO Lagrangian.

This condition is equivalent to demanding renormalizability of the LO
EFT Lagrangian in the traditional sense, however not for off-shell
Green’s functions but for on-shell S-matrix.



To illustrate the problem with the scale separation consider an EFT
specified by the following Lagrangian

L = −1
4

F a
µνF aµν +

M2

2
W a
µW aµ + Lho,

where F a
µν = ∂µW a

ν − ∂νW a
µ + gεabcW b

µW c
ν ,W a

µ is a triplet of vector
bosons and Lho contains all possible local terms with coupling
constants of inverse mass dimensions which are invariant under
local SU(2) gauge transformations.

Massive Yang-Mills theory is perturbatively non-renormalizable.

Therefore to get rid of divergences generated by interactions with
dimensionless couplings one needs to renormalize couplings of Lho.



Consider the vector boson self-energy.

Calculating divergent parts of one-loop diagrams we obtain

Σab,µν
div (p) =

g2δab

96π2M4(n − 4)

[
84M4 − 14M2p2 − p4

] (
pµpν − p2gµν

)
.

The M4 term is canceled by the vector field renormalization.

The second (magenta) term in the square brackets is removed by
renormalizing the coupling constant of the following term:

LHD =
gHD

4
Dab
µ F b

νλDac,µF cνλ ,

where Dab
µ = δab∂µ − gεabcW c

µ .



Renormalization of the coupling gHD leads to the following
renormalized coupling:

gHD (µ) = gHD (µ0)−
7g2 ln µ

µ0

96π2M2 .

Even if the renormalized coupling gHD (µ0), corresponding to µ = µ0
is suppressed by some large scale Λ� M, for µ ∼ e × µ0 the
renormalized coupling will become gHD (µ) ∼ g2

16π2
1

M2 - not
suppressed by Λ.

Analogously, for all other couplings with inverse mass dimensions
the scale of the renormalized couplings is set by M2.



EFT Lagrangian and constraint analysis

We start with the most general Lorentz-invariant Lagrangian of
charged vector fields V±

µ = (V 1
µ ∓ iV 2

µ )/
√

2, and charge-neutral
vector boson V 3

µ and scalar Φ fields.

Below we analyse the Lagrangian containing only interaction terms
with coupling constants of non-negative mass dimensions:

L = −1
4

V a
µνV aµν +

M2
a

2
V a
µV aµ − gabc

V V a
µV b

ν ∂
µV cν

− gabc
A εµναβV a

µV b
ν ∂αV c

β − habcdV a
µV b

ν V cµV dν

+
1
2
∂µΦ ∂µΦ− m2

2
Φ2 − a Φ− b

3!
Φ3 − λ

4!
Φ4

− gvss ∂µV 3µΦ2 − gab
vvs V aµ V b

µΦ− gab
vvss V aµ V b

µΦ2 ,

where V a
µν = ∂µV a

ν − ∂νV a
µ , Ma (M1 = M2 = M) and m are masses

and the summations run from 1 to 3.



Coupling of the linear term a vanishes at tree order. and further
corrections can be fixed by demanding that the VEV of Φ vanishes.

The interaction terms of Φ with two vector fields can be written as

g1,s = g11
vvs = g22

vvs, g2,s = g33
vvs, g1,ss = g11

vvss = g22
vvss, g2,ss = g33

vvss,

and all other gab
vvs and gab

vvss couplings do not contribute.

The three-vector boson interaction term depends on ten parameters,

g333
V = g1, g113

V = g2, g123
V = −g3, g213

V = g3,

g223
V = g2, g311

V = g4, g321
V = −g5, g312

V = g5,

g322
V = g4, g131

V = g6, g231
V = −g7, g132

V = g7, g232
V = g6 ,

g213
A = −g123

A = gA1, g311
A = g322

A = −g131
A = −g232

A = gA2,

g312
A = −g321

A = −g132
A = g231

A = gA3 .

All other constants vanish.



Charge conservation relates the couplings habcd to each other.

Four-vector interaction term can be parameterized in terms of five
parameter d1, · · · ,d5.



The canonical momenta corresponding to Φ, V a
0 and V a

i :

p =
∂L
∂Φ̇

= Φ̇ ,

πa
0 =

∂L
∂V̇ a

0

= −gbca
V V b

0 V c
0 − gvssδa3 Φ2,

πa
i =

∂L
∂V̇ a

i

= V a
0i + gbca

V V b
0 V c

i + gbca
A εijk0V b

j V c
k .

Second equation leads to the primary constraints

φa
1 = πa

0 + gbca
V V b

0 V c
0 + gvss δa3 Φ2 .

On the other hand, from the first and third equations we solve

V̇ a
i = πa

i + ∂iV a
0 − gbca

V V b
0 V c

i − gbca
A εijk0V b

j V c
k ,

Φ̇ = p .



For the total Hamiltonian we have:

H1 =

∫
d3x (φa

1za +H)

with

H =
πa

i π
a
i

2
+ πa

i ∂iV a
0 +

1
4

V a
ij V a

ij −
M2

a
2

V a
µV aµ + . . . ,

and the za are arbitrary functions which must be determined.



Condition of conserving primary constraints φa
1 leads to

{φa
1,H1} = Aabzb + χa = 0.

The 3× 3 matrix A is given by

A =

 0 −2γ1V 3
0 γ2V 1

0 − γ1V 2
0

2γ1V 3
0 0 γ1V 1

0 + γ2V 2
0

−(γ2V 1
0 − γ1V 2

0 ) −(γ1V 1
0 + γ2V 2

0 ) 0

 ,

where γ1 = g5 + g7 and γ2 = g4 + g6 − 2g2. The above system of
equations can be satisfied only if (secondary constraint):

φ2 = χ1 (γ1V 1
0 + γ2V 2

0 ) + χ2 (γ1V 2
0 − γ2V 1

0 )− χ3 2γ1 V 3
0 = 0 .

If at least one of γ1 or γ2 is non-zero then we obtain that

z1 =
χ3 + γ1z2 V 1

0 + γ2 z2V 2
0

γ1 V 2
0 − γ2 V 1

0
,

z3 =
χ1 + 2 γ1 z2 V 3

0

γ2 V 1
0 − γ1 V 2

0

and z2 can be solved from conservation of φ2, {φ2,H1} = 0.



However, in this case we obtain four constraints of the second class
instead of six.
Therefore, for a self-consistent theory we must require

γ1 = γ2 = 0⇒ g7 = −g5 , 2g2 = g4 + g6 .

Thus we are left with secondary constraints:

{φa
1,H1} = ∂iπ

a
i + gabc

V V b
i π

c
i + . . . ≡ φa

2, a = 1,2,3.

If no more constraints appear then our Lagrangian describes a
system with the right number of constraints.

If this is the case, then all za have to be solvable from the condition
of the constraints φa

2 being conserved in time.



From the condition of conservation of φa
2 in time we obtain

{φa
2,H1} =Mabzb + Y a = 0, a = 1,2,3,

where
Mab = M2

aδ
ab −

(
gbca

V + gcba
V

)
∂iV c

i + . . . ,

and the particular form of Y a is not important for our purposes. To
obtain a self-consistent field theory we demand that detM does not
vanish.

For small fluctuations this is indeed the case and we proceed by
quantizing these small fluctuations and deriving further constraints
on the couplings by investigating the conditions of perturbative
renormalizability and scale separation.



Perturbative renormalizability

We analyze one-loop diagrams using dimensional regularization.

We impose the on-mass-shell renormalization condition, i.e. require
that all divergences in physical quantities should be removable by
redefining the parameters of the effective Lagrangian.



We start by calculating the one-loop contribution to the scattering
amplitude V 3V 3 → V 3V 3, shown below

+ permutations

Figure: One-loop contributions to the four-vector vertex function. The
dashed and the wiggly lines correspond to the scalar and the vector-boson,
respectively. Blobs indicate the corresponding one-loop two- and

Non-pole parts of one-particle reducible diagrams have to be taken
into account together with one-particle irreducible diagrams.



We write the sum of divergent parts of the loop diagrams in the form
of a polynomial in terms of the Mandelstam variables:

Vµνλσ =
4∑

i,j=0

uisjCµνλσ
ij ,

where Cµνλσ
ij depend on the momenta, masses and couplings.

Scale separation demands that terms with i + j 6= 0 must vanish.

Demanding that the term proportional to u4 vanishes leads to

g4
1M8

3 + 2g4
2M8 = 0,⇒ g1 = 0, g2 = 0 .



The next condition is obtained by demanding that the term
proportional to u2 also vanishes. This leads to:

d5 = 0, g4 = 0, g5 = −g3,

gA2 = 0, gA3 = −gA1, d3 = −g2
3 .

Demanding the vanishing of the term proportional to s2, we obtain

d4 = g2
3 .

Divergent part of the amplitude V 3V 3 → V 3V 3 becomes

∼
[
8M8

(
2M2

3 g2,ss + g2
2,s

)
2 + M4

3

(
g2

3M4
3 − 4M2g1,sg2,s

)
2
]

For d5 = g1 = 0, the tree-order amplitude V 3V 3 → V 3V 3 vanishes
and therefore the one-loop divergent expression has also to vanish,
leading to:

g2,ss = −
g4

3M6
3

32M4g2
1,s
,

g2,s =
g2

3M4
3

4M2g1,s
.



Next, as there is no tree order one-particle irreducible contribution in
the amplitude V 1V 1 → V 1V 1, we have to demand that the divergent
part of the corresponding one-loop contribution vanishes.

Ba requiring that the terms with s2 and s t vanish, we obtain:

(d1 + d2)

(
d2 +

g2
3

2

)
= 0 ,

(
d2 +

g2
3

2

)2

+ (d1 + d2) 2 +
1
4

g4
3

(
1− M4

M4
3

)
= 0 .



Considering Φ→ VV decay and requiring that the divergences of
corresponding diagrams do not contribute in the renormalization of
the couplings of the higher-order operators, we find:

g1,s

(
(d1 + d2) + d2 +

g2
3

2

)
= 0 .

The coupling g1,s cannot be vanishing and therefore we obtain

d1 = −d2 =
g2

3
2
, M3 = M .



Analyzing the vertex function V1V2V3 and demanding that the
divergent part of the sum of loop diagrams has the same Lorentz
structure as the tree one, we obtain

g1,s = g2,s = ±g3M
2

.

Going back to the V1V1 → V1V1 amplitude the condition of the
vanishing of its divergent part reduces to(

8g1,ss + g2
3

)2
= 0 ,

from which we obtain

g1,ss = −
g2

3
8
.



Next, we have calculated the divergent parts of one-loop diagrams
contributing to the ΦV3 → ΦV3 scattering amplitude.

As the coupling of the V 3
µV 3µΦ2 term is given by g2,ss = −g2

3/8, i.e.
in terms of the coupling of the three- and four-vector interactions,
the divergent pieces of the corresponding amplitudes have to be
correlated.

In a self-consistent theory the renormalized value for the coupling g3
should be independent from the process that was used to fix it.

After a lengthy one-loop calculation we found that this consistency
condition requires that the coupling gvss has to vanish.



All obtained relations can be written as

M1 = M2 = M3 = M ,

gabc
V = −g3 ε

abc , gabc
A = gA1 ε

abc ,

habcd =
1
4

gabe
V gcde

V , gvss = 0 ,

g1,s = g2,s =
g3M

2
, g1,ss = g2,ss = −

g2
3

8
.

Denoting g3 = g the effective Lagrangian takes the form

L = −1
4

Ga
µνGaµν +

1
2

V a
µV aµ

(
M − g

2
Φ
)2
− gA1ε

abcεµναβV a
µV b

ν ∂αV c
β

+
1
2
∂µΦ ∂µΦ− m2

2
Φ2 − a Φ− b

3!
Φ3 − λ

4!
Φ4 ,

where
Ga
µν = V a

µν − g εabc V b
µV c

ν .

This Lagrangian coincides with the SU(2) locally gauge invariant
Lagrangian with spontaneous symmetry breaking in the unitary
gauge except for the self-interaction terms of the scalars.



We checked that in all processes with three and four particles
one-loop divergences are absorbed in coupling constants and
masses and no further conditions on the couplings are obtained.

This leaves the two scalar self-interaction couplings unfixed.

We expect that the investigation of the one-loop diagrams
contributing in five and six-point functions will fix the couplings of
three and four scalar self-interactions.



Summary

I We revisited the problem of the uniqueness of a theory with
spontaneously broken gauge symmetry.

I We analyzed the most general Lorentz-invariant LO EFT
Lagrangian of massive vector bosons interacting with a massive
scalar field.

I From the constraint structure of the effective Lagrangian we
obtained consistency conditions.

I Further conditions were obtained by requiring perturbative
renormalizability and scale separation for one-loop order
amplitudes with three and four particles.



I All these conditions impose restrictions on the couplings such
that the Lagrangian of spontaneously broken gauge symmetry
in unitary gauge is obtained, except that the couplings of the
self-interactions of the scalar field remain unfixed.

I These are not pinned down by the analysis of the UV
divergences of all one-loop three- and four-point functions.

I We expect that condition of perturbative renormalizability for
one-loop order amplitudes with five external legs will fix these
two free couplings such that the Lagrangian with spontaneously
broken SU(2) gauge symmetry taken in unitary gauge appears
as an unique LO Lagrangian of a self-consistent EFT of a
massive scalar interacting with massive vector bosons.


