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Synthesizer:

noun
e "An electronic machine for producing different sounds ..."

- Oxford Advanced Learner's Dictionary
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T 31950 = 512 (cycles)
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generating waveforms

sine wave (naive implementation):

float time=0;
float delta=0.1;

float generate_output(){
time=time+delta;
return sin(time)*512;
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generating waveforms

sine wave (naive implementation):

float time=0;
float delta=0.1;

float generate output(){
time=time+delta;
return sin(time)*512;

e -Os build
 just for one sin call
e huge amounts of asm = SLOW
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generating waveforms - using looRup tables

sine_wave[253]=
{

127, 130, 133,
171, 174, 177,

209, 211, 214,
237, 239, 240,
253, 253, 254,
253, 252, 251,

.
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scaling by using fixed point arithmetic:
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scaling by using fixed point arithmetic:

==

232-0.32 =74.24
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scaling by using fixed point arithmetic:

mﬂﬂ WJMWM[f\ﬂﬂﬂ[\f\ﬂﬂ/\[\fﬁWTﬂﬁﬂmmm_

I

232-0.32 =74.24

instead of using real numbers, we can pre-scale both operands by same factor
and operate using integers:

(232 - 28) - 81
and later we just divide it by our scaling factor squared:

(232-28)-81
S =73
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sequencer - definition

musical notation:
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sequencer - definition

musical notation:

f)

ﬂ’a'f
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sequencer representation:
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sequencer - definition

musical notation:

f)

ﬂ’a'f

~e

~E

<L

sequencer representation:

layout in memory:

Note: F

Duration: 2
Volume: 10

position: 4
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sequencer - memory layout problem

inserting a new note after the first one:
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sequencer - memory layout problem

inserting a new note after the first one:

now elements in our array are out of order:

we can try to reorder old elements but depending on the number of notes this
can take a lot of processor operations (cycles).
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sequencer - optimal data-structure

linked list:

e

1

S
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sequencer - optimal data-structure

linked list:

e

1

S
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sequencer - optimal data-structure

linked list:

e

1

S

Th

not available* on microprocessor which we're using.

Sandro Razmadze

uuuuuuuuuuuuuuuuu

nnnnnnnnnnnn

22129



uuuuuuuuuuuuuuuuu

sequencer - optimal data-structure

linked list:

e B

1 - ™~

not available* on microprocessor which we're using. But we can emulate its
features within an array:

b |

1 2 3 4 5
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sequencer - optimal data-structure

linked list:

e B

1 - ™~

not available* on microprocessor which we're using. But we can emulate its
features within an array:

b |

1 2 3 4 5
1 2 3 4 5
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sequencer - optimal data-structure

when an element is removed, its place will be reused for next new element.

1 2 3 4 5

last empty ‘ ‘ ‘
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sequencer - optimal data-structure

when an element is removed, its place will be reused for next new element.

1 2 3 4 5

last empty ‘ ‘ ‘

if multiple elements are removed, we add new elements in reverse order to
their deletion.

‘ . ‘ nextgmpty ‘ last empty ‘ ‘ ‘
1 2 > ’ 5

this information is stored in the same array. In this way, we avoid
fragmentation as well as overhead associated with other data-structures.
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Conclusions:

With limited processing power I was able to achieve:

multiple waveforms (sine, square, saw, triangle)
4 note polyphony
MIDI support (12 octaves™, velocity, cc messages)
sequencer

o song timeline

o chords

o automations
unnoticeable delay for external MIDI
responsive graphics
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ThanR you for your time
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