

Designing a feature-rich polyphonic MIDI synthesizer

Sandro Razmadze

Student of Electrical and Computer Engineering at

Agricultural University of Georgia

Synthesizer:

noun

• "An electronic machine for producing different sounds ..."

- Oxford Advanced Learner's Dictionary

generating waveforms

sine wave (naive implementation):

float time=0;
float delta=0.1;
float generate_output(){
 time=time+delta;

}

return sin(time)*512;

აგრარუღი უნივერსინები _

generating waveforms

sine wave (naive implementation):

float time=0; float delta=0.1;
<pre>float generate_output(){ time=time+delta;</pre>
<pre>return sin(time)*512;</pre>
}

- -Os build
- just for one sin call
- huge amounts of asm = *SLOW*

generated asm:

586	424: 6f 5f	subi r22, 0xFF ; 2
587	426: 7f 4f	sbci r23, 0xFF ; 25
588	428: 8f 4f	sbci r24, 0xFF ; 25
589	42a: 9f 4f	sbci r25, 0xFF ; 25
590	42c: 08 95	
591		
592	0000042e <fp_sinus>:</fp_sinus>	
593	42e: ef 93	push r30
594	430: e0 ff	sbrs r30, 0
595		rjmp .+14 ; 0:
596	434: a2 ea	ldi r26, 0xA2 ; 162
597	436: 2a ed	ldi r18, 0xDA ; 218
598	438: 3f e0	ldi r19, 0x0F ; 15
599	43a: 49 ec	ldi r20, 0xC9 ; 201
600	43c: 5f eb	ldi r21, 0xBF ; 191
601	43e: Øe 94 3c 02	call 0x478 ; 0x478
602	442: 0e 94 06 02	call 0x40c ; 0x40c
603	446: 0f 90	pop r0
604	448: 03 94	inc r0
605	44a: 01 fc	sbrc r0, 1
606	44c: 90 58	subi r25, 0x80 ; 1
607	44e: e8 e6	ldi r30, 0x68 ; 104
608	450: f0 e0	ldi r31, 0x00 ; 0
609	452: 0c 94 9f 02	jmp 0x53e ; 0x53e <
610	456: Øe 94 cd 01	
611	45a: 38 f0	brcs .+14 ; 0:
612	45c: 0e 94 d4 01	call 0x3a8 ; 0x3a8
613	460: 20 f0	
614	462: 39 f4	brne .+14 ; 0:
615	464: 9f 3f	cpi r25, 0xFF ; 255
616	466: 19 f4	brne .+6 ; 0:
617		brtc .+8 ; 0:
618	46a: Øc 94 ca 01	jmp 0x394 ; 0x394 <
619	46e: Øe f4	brtc .+2 ; 0;
620	470: e0 95	com r30
621		bst r30, 7
622	474: Oc 94 c4 01	
623		
624	00000478 <addsf3x>:</addsf3x>	
625	478: e9 2f	mov r30, r25
626	47a: Øe 94 26 01	call 0x24c ; 0x24c
627	47e: 58 f3	brcs42 ; 0:
628	480: ba 17	cp r27, r26
629		cpc r22, r18
630	484: 73 07	cpc r23, r19
631	486: 84 07	cpc r24, r20

generating waveforms - using lookup tables

sine_wave[253]= {													
127,	130,	133,	137,	140,	143,	146,	149,	152,	155,	158,	162,	165,	168,
171,	174,	177,	179,	182,	185,	188,	191,	193,	196,	199,	201,	204,	206,
209,	211,	214,	216,	218,	220,	223,	225,	227,	229,	231,	232,	234,	236,
237,	239,	240,	242,	243,	244,	246,	247,	248,	249,	250,	251,	251,	252,
253,	253,	254,	254,	254,	254,	254,	255,	254,	254,	254,	254,	254,	253,
253,	252,	251,	251,	250,	249,	248,	247,	246,	244,	243,	242,	240,	239,
}													

ᲐᲒᲠᲐᲠᲣᲦᲘ ᲣᲜᲘᲕᲔᲠᲡᲘᲢᲔᲢᲘ

Jarsurenogon

scaling by using fixed point arithmetic:

scaling by using fixed point arithmetic:

 $232 \cdot 0.32 = 74.24$

ᲐᲒᲠᲐᲠᲣᲦᲘ ᲣᲜᲘᲕᲔᲠᲡᲘᲢᲔᲢᲘ

scaling by using fixed point arithmetic:

 $232 \cdot 0.32 = 74.24$

instead of using real numbers, we can pre-scale both operands by same factor and operate using integers:

$$(232\cdot2^8)\cdot81$$

and later we just divide it by our scaling factor squared:

$$rac{(232\cdot 2^8)\cdot 81}{2^{16}}=73$$

sequencer - definition

musical notation:

sequencer - definition

musical notation:

sequencer - definition

musical notation:

layout in memory:

sequencer - memory layout problem

inserting a new note after the first one:

sequencer - memory layout problem

inserting a new note after the first one:

we can try to reorder old elements but depending on the number of notes this can take a lot of processor operations (cycles).

linked list:

<u>აგრარშვი</u> ამრარშვი

sequencer - optimal data-structure

linked list:

linked list:

not available* on microprocessor which we're using.

linked list:

not available* on microprocessor which we're using. But we can emulate its features within an array:

linked list:

not available* on microprocessor which we're using. But we can emulate its features within an array:

when an element is removed, its place will be reused for next new element.

when an element is removed, its place will be reused for next new element.

if multiple elements are removed, we add new elements in reverse order to their deletion.

this information is stored in the same array. In this way, we avoid fragmentation as well as overhead associated with other data-structures.

Conclusions:

Jakykazou Jeusskinesou

With limited processing power I was able to achieve:

- multiple waveforms (sine, square, saw, triangle)
- 4 note polyphony
- MIDI support (12 octaves*, velocity, cc messages)
- sequencer
 - song timeline
 - chords
 - automations
- unnoticeable delay for external MIDI
- responsive graphics

Thank you for your time