Designing a feature-rich polyphonic MIDI
synthesizer

Sandro Razmadze
Student of Electrical and Computer Engineering at

Agricultural University of Georgia

Sandro Razmadze

uuuuuuuuuuuuuuuuu

nnnnnnnnnnnn

1/29

Synthesizer:

noun
e "An electronic machine for producing different sounds ..."

- Oxford Advanced Learner's Dictionary

Sandro Razmadze

nnnnnnnnnnnnnnnnn

nnnnnnnnnnnn

229

‘SCIENTIA - LABOR - LIBERTAS

O

33@IMICN
6032mLNOION

AR e Yo

P Tosen ot EAspionE o R
00
_=Roland @ Q-Q @ Prumatix
INSTRUMENT MODE VOLUME

- I3

16

TRACK
LATOR BANK '

= TR-606

) "o Computer Controlled
- wire

| JAIXER

3/29

Sandro Razmadze

33@IMICN
6032mLNOION

4/29

Sandro Razmadze

d igita I a U d i 0 2603016000

/—\ continuous voltage
/ >

5/29

Sandro Razmadze

uuuuuuuuuuuuuuuu

d igita I a U d i 0 2603016000

\Y,

A
/—\ continuous voltage
/ >

t
0 o e

6/29

Sandro Razmadze

d igita I a U d i 0 2603016000

\Y,

A
///////’_‘\\\\\\\\\ continuous voltage
/ >

t

A
n 16 samples DAC
32 bit
48khz
T]
t
A
n PWM
9 bit
31250hz
I [[T T] 1 sample buffer
£ >

t

71]29

Sandro Razmadze

d igita I a U d i 0 2603016000

A
///////’_‘\\\\\\\\\ continuous voltage
/ >

t

\Y,

A
n 16 samples DAC
32 bit
48khz
T]
t
A
n PWM
9 bit
31250hz
I [[T T] 1 sample buffer
£ >

t

16000000
T 31950 = 512 (cycles)

8/29

Sandro Razmadze

generating waveforms

sine wave (naive implementation):

float time=0;
float delta=0.1;

float generate_output(){
time=time+delta;
return sin(time)*512;

9/29

Sandro Razmadze

generating waveforms

sine wave (naive implementation):

float time=0;
float delta=0.1;

float generate output(){
time=time+delta;
return sin(time)*512;

e -Os build
 just for one sin call
e huge amounts of asm = SLOW

Sandro Razmadze

generated asm:

33@IMICN
6032mLNOION

10/29

generating waveforms - using looRup tables

sine_wave[253]=
{

127, 130, 133,
171, 174, 177,

209, 211, 214,
237, 239, 240,
253, 253, 254,
253, 252, 251,

.

Sandro Razmadze

nnnnnnnnnnnn

scaling by using fixed point arithmetic:

)l..

qn

WMWWWWWWM

L

Sandro Razmadze

IENTIA - LABOR - LIBERTAS

aaaaaaaa
nnnnnnnnnnnn

12 /29

IENTIA - LABOR - LIBERTAS

scaling by using fixed point arithmetic:

==

232-0.32 =74.24

13/29

Sandro Razmadze

IENTIA - LABOR - LIBERTAS

scaling by using fixed point arithmetic:

mﬂﬂ WJMWM[f\ﬂﬂﬂ[\f\ﬂﬂ/\[\fﬁWTﬂﬁﬂmmm_

I

232-0.32 =74.24

instead of using real numbers, we can pre-scale both operands by same factor
and operate using integers:

(232 - 28) - 81
and later we just divide it by our scaling factor squared:

(232-28)-81
S =73

14 /29

Sandro Razmadze

sequencer - definition

musical notation:

A

ﬂ’q'f

e

e

e

<L

Sandro Razmadze

nnnnnnnnnnnnnnnnn

nnnnnnnnnnnn

15/29

sequencer - definition

musical notation:

f)

ﬂ’a'f

~2

~E

<L

sequencer representation:

Sandro Razmadze

ﬁﬁﬁﬁﬁﬁﬁﬁ
aaaaaaaaaaaa

16 /29

sequencer - definition

musical notation:

f)

ﬂ’a'f

~e

~E

<L

sequencer representation:

layout in memory:

Note: F

Duration: 2
Volume: 10

position: 4

Sandro Razmadze

ﬁﬁﬁﬁﬁﬁﬁﬁ
aaaaaaaaaaaa

17/29

sequencer - memory layout problem

inserting a new note after the first one:

Sandro Razmadze

IENTIA - LABOR - LIBERTAS

aaaaaaaa
aaaaaaaaaaaa

18/29

sequencer - memory layout problem

inserting a new note after the first one:

now elements in our array are out of order:

we can try to reorder old elements but depending on the number of notes this
can take a lot of processor operations (cycles).

Sandro Razmadze

IENTIA - LABOR - LIBERTAS

aaaaaaaa
aaaaaaaaaaaa

19/29

sequencer - optimal data-structure

linked list:

e

1

S

Sandro Razmadze

nnnnnnnnnnnnnnnnn

nnnnnnnnnnnn

20/ 29

sequencer - optimal data-structure

linked list:

e

1

S

Sandro Razmadze

uuuuuuuuuuuuuuuuu

nnnnnnnnnnnn

21/29

sequencer - optimal data-structure

linked list:

e

1

S

Th

not available* on microprocessor which we're using.

Sandro Razmadze

uuuuuuuuuuuuuuuuu

nnnnnnnnnnnn

22129

uuuuuuuuuuuuuuuuu

sequencer - optimal data-structure

linked list:

e B

1 - ™~

not available* on microprocessor which we're using. But we can emulate its
features within an array:

b |

1 2 3 4 5

23/29

Sandro Razmadze

uuuuuuuuuuuuuuuuu

sequencer - optimal data-structure

linked list:

e B

1 - ™~

not available* on microprocessor which we're using. But we can emulate its
features within an array:

b |

1 2 3 4 5
1 2 3 4 5

24 /29

Sandro Razmadze

nnnnnnnnnnnnnnnnn

sequencer - optimal data-structure

when an element is removed, its place will be reused for next new element.

1 2 3 4 5

last empty ‘ ‘ ‘

25/29

Sandro Razmadze

sequencer - optimal data-structure

when an element is removed, its place will be reused for next new element.

1 2 3 4 5

last empty ‘ ‘ ‘

if multiple elements are removed, we add new elements in reverse order to
their deletion.

‘ . ‘ nextgmpty ‘ last empty ‘ ‘ ‘
1 2 > ’ 5

this information is stored in the same array. In this way, we avoid
fragmentation as well as overhead associated with other data-structures.

26 /29

Sandro Razmadze

Conclusions:

With limited processing power I was able to achieve:

multiple waveforms (sine, square, saw, triangle)
4 note polyphony
MIDI support (12 octaves™, velocity, cc messages)
sequencer

o song timeline

o chords

o automations
unnoticeable delay for external MIDI
responsive graphics

Sandro Razmadze

uuuuuuuuuuuuuuuuu

nnnnnnnnnnnn

27129

ThanR you for your time

Sandro Razmadze

uuuuuuuuuuuuuuuuu

nnnnnnnnnnnn

29/29

