
Designing a feature-rich polyphonic MIDI
synthesizer

Sandro Razmadze

Student of Electrical and Computer Engineering at

Agricultural University of Georgia

Sandro Razmadze
1 / 29

Synthesizer:
noun

"An electronic machine for producing different sounds ..."

- Oxford Advanced Learner's Dictionary

Sandro Razmadze
2 / 29

Sandro Razmadze
3 / 29

Sandro Razmadze
4 / 29

digital audio

t

V

continuous voltage

Sandro Razmadze
5 / 29

digital audio

t

V

continuous voltage

16 samples

t

DAC
32 bit
48khz
16 sample buffer

n

Sandro Razmadze
6 / 29

digital audio

t

V

continuous voltage

16 samples

t

DAC
32 bit
48khz
16 sample buffer

n

t

PWM
9 bit
31250hz
1 sample buffer

n

Sandro Razmadze
7 / 29

digital audio

t

V

continuous voltage

16 samples

t

DAC
32 bit
48khz
16 sample buffer

n

t

PWM
9 bit
31250hz
1 sample buffer

n

 (cycles)

Sandro Razmadze

= 512
16000000

31250

8 / 29

float time=0;
float delta=0.1;

float generate_output(){
 time=time+delta;
 return sin(time)*512;
}

generating waveforms
sine wave (naive implementation):

Sandro Razmadze
9 / 29

float time=0;
float delta=0.1;

float generate_output(){
 time=time+delta;
 return sin(time)*512;
}

-Os build
just for one sin call
huge amounts of asm = SLOW

generated asm:

generating waveforms
sine wave (naive implementation):

Sandro Razmadze
10 / 29

generating waveforms - using lookup tables
sine_wave[253]=
{
127, 130, 133, 137, 140, 143, 146, 149, 152, 155, 158, 162, 165, 168,
171, 174, 177, 179, 182, 185, 188, 191, 193, 196, 199, 201, 204, 206,
209, 211, 214, 216, 218, 220, 223, 225, 227, 229, 231, 232, 234, 236,
237, 239, 240, 242, 243, 244, 246, 247, 248, 249, 250, 251, 251, 252,
253, 253, 254, 254, 254, 254, 254, 255, 254, 254, 254, 254, 254, 253,
253, 252, 251, 251, 250, 249, 248, 247, 246, 244, 243, 242, 240, 239,
...}

Sandro Razmadze
11 / 29

scaling by using fixed point arithmetic:

Sandro Razmadze
12 / 29

scaling by using fixed point arithmetic:

Sandro Razmadze

232 ⋅ 0.32 = 74.24

13 / 29

scaling by using fixed point arithmetic:

instead of using real numbers, we can pre-scale both operands by same factor
and operate using integers:

and later we just divide it by our scaling factor squared:

Sandro Razmadze

232 ⋅ 0.32 = 74.24

(232 ⋅) ⋅ 8128

= 73
(232⋅)⋅8128

216

14 / 29

sequencer - definition
musical notation:

Sandro Razmadze
15 / 29

sequencer - definition
musical notation:

sequencer representation:

Sandro Razmadze
16 / 29

sequencer - definition
musical notation:

sequencer representation:

layout in memory:

1 32 4 5

Note: F

Duration: 2
Volume: 10
position: 4

Sandro Razmadze
17 / 29

sequencer - memory layout problem
inserting a new note after the first one:

Sandro Razmadze
18 / 29

sequencer - memory layout problem
inserting a new note after the first one:

now elements in our array are out of order:

1 32 4 5

we can try to reorder old elements but depending on the number of notes this
can take a lot of processor operations (cycles).

Sandro Razmadze
19 / 29

sequencer - optimal data-structure
linked list:

1

Sandro Razmadze
20 / 29

sequencer - optimal data-structure
linked list:

1
1

Sandro Razmadze
21 / 29

sequencer - optimal data-structure
linked list:

1
1

not available* on microprocessor which we're using.

Sandro Razmadze
22 / 29

sequencer - optimal data-structure
linked list:

1
1

not available* on microprocessor which we're using. But we can emulate its
features within an array:

1 32 4 5

1

Sandro Razmadze
23 / 29

sequencer - optimal data-structure
linked list:

1
1

not available* on microprocessor which we're using. But we can emulate its
features within an array:

1 32 4 5

1

1 32 4 5

1

Sandro Razmadze
24 / 29

sequencer - optimal data-structure
when an element is removed, its place will be reused for next new element.

1 32 4 5

1 last empty

Sandro Razmadze
25 / 29

sequencer - optimal data-structure
when an element is removed, its place will be reused for next new element.

1 32 4 5

1 last empty

if multiple elements are removed, we add new elements in reverse order to
their deletion.

1 32 4 5

1 next empty
3

last empty

this information is stored in the same array. In this way, we avoid
fragmentation as well as overhead associated with other data-structures.

Sandro Razmadze
26 / 29

Conclusions:
With limited processing power I was able to achieve:

multiple waveforms (sine, square, saw, triangle)
4 note polyphony
MIDI support (12 octaves*, velocity, cc messages)
sequencer

song timeline
chords
automations

unnoticeable delay for external MIDI
responsive graphics

Sandro Razmadze
27 / 29

Thank you for your time

Sandro Razmadze
29 / 29

