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Plan

e Introduction

e QCD input in the BSM physics searches:
— Neurtinoless double 5-decay
— Direct dark matter searches
— Muon g — 2
— Electric dipole moment of hadrons

e QCD on the lattice:

— Getting started: Lagrangian, hadron masses, decay
constants

— Hadron scattering, resonances, multihadron reactions
— Lattice QCD and effective field theories

e Conclusions, outlook
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Why QCD?

e Because it is a beautiful and challenging theory on its own!

e Because the QCD input is needed in the searches of physics
beyond the Standard Model!

© http://frankwilczek.com/Wilczek_Easy_Pieces/298_QCD_Made_Simple.pdf
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Ex. 1: Neutrinoless double 3-decay

[Double beta decay]

Double beta decay Meutrinoless
which emits anti-neutrinos double beta decay

@© http://www1cm.phys.sci.osaka-u.ac.jp/en/research/r01.html

e What is the nature of the neutrino mass?
e Is the lepton number violated?
e What is the new physics beyond all this?

Best experimental limits on the lifetime:

7("°Ge) > 5.2- 10 yr, T(*3%Xe) > 10.7 - 10%° yr

A. Rusetsky, 8th Georgian-German School and Workshop in Basic Science (GGSWBS’18), Thilisi, August 20th, 2018 - p.4



Double 3-decay: hadronic input

Scaling down from high energies to hadronic scale ~ 1 GeV ...

u - u,
Nn,d - dlp P
W_ v E_ €
W € —_—
d—aot u e
n' d 4 di p n
u > U, P
© https://en.wikipedia.org/wiki/Double_beta_decay
+ nuclear many-body calculations
- _ , _ 1
Input: (pp|77;, (2)7; (y)lnn) with 7, (2) = a(z) 5 (1 ~")d(x)

— Strong interactions non-perturbative, calculations should be
carried out from the first principles
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Ex. 2: Direct DM searches: WIMPS
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© http://cdms.berkeley.edu/Education/DMpages/essays/science/science/images/

e Looking for the nuclear recoil due to interaction with WIMPs
e Estimate for the scattering cross section?
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Scattering cross section

L= Z 34 XXqYq (spin-independent)

T. Falk, A. Ferstl and K.A. Olive, PRD 59(1999) 055009

Am 2
osr = (pr (A_Z)fn)2
I Z i G 22 FN) Qr3q
N q=u,d,s 7 q=c,b,t Mq
N N
1y
q=u,d,s

Input: the o-terms me}iV) = (N|myqq|N)

M. Hoferichter et al., Phys.Rept. 625 (2016) 88 (Roy equations)
ETM coll., PRL 116 (2016) 252001 (lattice)
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Ex. 3: Muon g — 2

Hadronic vac. pol. light by light

i -
- -

@© https://link.springer.com/article/10.1140/epjc/s10052-014-3008-y

@y X 1010
QED (5 loops) 11658471.8951 + 0.0080 Aoyama et al ’12
HVP LO 692.6 £+ 3.3 Davier et al '16
HVP NLO —9.84 +0.07 Hagiwara et al '11
HVP NNLO 1.24 +0.01 Kurz et al ’11
HLbL 10.5 £ 2.6 Prades et al ‘09
Weak (2 loops) 15.36 £0.10 Gnendiger et al '13
SM total 11659180.2 = 4.9 Davier et al ’11
Experiment 11659208.9 £+ 6.3 Bennett et al '06
Experiment-SM  28.7 £ 8.0 Davier et al '11

a,(exp) # a,(theory) 7
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EX. 4: Electric dipole moment

. t— —t1 S
d
TI ) d—d

= "

T ™ 1, ¢P — baryogenesis
@© https://en.wikipedia.org/wiki/Neutron_electric_dipole_moment

Exp. SM (CKM phases, 6-term)
n <3-107% <1073
199 Frg <y <7.9.10725 <1031

JEDI coll. at FZ Julich:
First measurement of the deuteron EDM planned using storage ring
method (2019-2020), ...
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The EDM of hadrons

N gs E : v E : a a 1/
0- term ~ -~ 7\ ~ _,
quark EDM quark chromo-EDM

dW v 2l 7l
+ o fabee GGG+ Y CYnG T @
N - o gkl
gluon chromo-EDM ~

7

4-quark EDM

% £eff — —an(l — Tg)SMNUVFM
— d,N(1+73)S*Nv"F,,, + my Amzmw® + - - -

Hadronic input:

_ . 10, Qy
(p+q|J"|p) = u(p+q) (Fw“ + (Fy + i F37ys) 27’%(] )U(p)
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Why lattice QCD?

e At low energies the coupling o, becomes large

e Emergence of bound states: mesons, baryons, glueballs, ...
The elementary constituents — quarks and gluons — are not
observed in the experiment (confinement)

e Chiral symmetry is spontaneously broken

“—> In the low-energy region, using perturbation theory becomes
iImpossible. Non-perturbative methods should be developed and

applied!

Lattice QCD:

e Calculates properties of hadrons in QCD from first principles

e Path integrals in field theory are evaluated numerically,
using Monte-Carlo technique
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The lattice QCD action

1 Ucx, 1
Sw = — Y Retr(1— P (z)) b s
9" e AN
n 1 * *
+ Z¢<§ ’Yu(vu+vu) - §vuvu>¢ ~ -
TN \ /
_ \\\/ //
+ ; Ym }\\///
a q\/
The covariant derivative: L
1 .
Vo (x) = - (U(z, p)p(z + app) — (x)) — Ax) V,9(x)

The plaquette:
Pu(x) = Uz, m)U(z+ap,)U(z + ad, )" Uz, v) ™!

W(Pu(@)) = Ne— 5 a*(Clu(2)Cpu(x)) + O(a”)
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How does one calculate the pion mass on the lattice?

The choice of the pion field:
Or(z) = d(z)ysu(z), == (x1)

The two-point function:

/ DUDYDY Or (x)OL (0) e "W
Dy (x) = (0|0 ()0} (0)|0) =

/ DUDYD) e "W
Wick contractions:

/DUD@&D@E Ox(2)OL(0)e "W = /DUtr (755w (2)v5Sq(—z)) e G det

Projection of the zero momentum:

Dr(t) = Dx(x,t)
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The effective mass

As t— oo, D (t) — const x exp(—M;,t)

D,(t
— Cr(t) =1In x(?) > aM
DT(' (t + a)
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Pion effective mass plot for point and smeared sources,
S. Darr et al., Science 322 (2008) 1224
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The low-energy spectrum of QCD

M[MeV]
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Recent results on the meson and baryon spectrum in QCD
S. Diirr et al., Science 322 (2008) 1224
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Exotic bound states
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The mass spectrum of glueballs in the pure gauge theory
Y. Chen etal, PRD 73 (2006) 014516
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Static quark-antiqiark potential

Wilson loop
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G. Bali, Phys. Rep. 343 (2001) 1
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The form factors

R¥(1,p',p) = G*(t,, p’,p)\/

f+(d®)
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Hadronic reactions

e Hadron-hadron scattering

e Resonances

e Multihadron reactions

e Final-state interactions in the matrix elements

1

Lattice QCD simulations are carried out in the Euclidean space,
in a finite box

1

The measured spectrum is discrete, the observables are real

How does one relate the results of the measurements to the
observables in the scattering sector (continuous spectrum,
complex amplitudes, ...)?
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The Luscher method in one dimension

W N W out
— R —

L

e R <« L: the interaction range is much smaller than the box size
o The wave function: ¥"(z) o e and WU () o e?0(P)Fipa

e Periodic boundary conditions: ¥(z + L) = ¥(x)

— Hotirl — 1 < 9i5(p) + ipL = 27n

Measured energy levels <> phase shift

How this method can be used to study hadronic observables?
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Why effective field theories?

Most general effective Lagrangian: all terms with assumed symmetry

—> Most general S-matrix consistent with analyticity, perturbative
unitarity, cluster decomposition and symmetries (Weinberg, 1979)

QCD| — |ChPT (p~M,)| —> |non-rel. EFT (p < M)

o Lattice QCD —> EFT in a finite volume
e Short-distance behavior not changed: the same Lagrangian

—> A bridge between the measured spectrum and scattering sector:

Multichannel resonances

Twisted boundary conditions

Lascher-Lellouch formula, timelike pion formfactor
Resonance formfactors

Few-body systems
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Example: the P-wave 7t 7t phase shift

P- wavep phase shift
Preliminary results
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Preliminary result from ETM collaboration
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Three particles in a finite volume: the problem

Two-particle scattering: The wave function always in the asymptotic
form near the walls: no off-shell effects!

‘\2_
r /
L L

R R

2 particles 3 particles

e The three-particle wave function near the box walls is not always
described by the asymptotic wave function

e Is the three-particle spectrum determined solely in terms of the
S-matrix?

K. Polejaeva and AR, EPJA 48 (2012) 67: Yes!
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The strategy

H.-W. Hammer, J.-Y. Pang and AR, JHEP 1709 (2017) 109, JHEP 1710 (2017) 115

e If R < L (large boxes — small momenta), the energy spectrum
can be calculated, using non-relativistic EFT in a finite volume

e Effective couplings matched to the observables in the infinite
volume on the mass shell

e Analysis of the lattice data: determine these couplings from the
fit to the spectrum, calculate the S-matrix from the dynamical
equations

—> Effective couplings form a convenient set of the parameters to be
determined on the lattice — contain only exponentially
suppressed effects at large L.
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Skornyakov-Ter-Martirosian equation in a finite volume

Mr(p.q; B) = Z(p, a: E) + —5 Y Z(p,q; E)ri(k; E)M(k, q; E)
k
Z(p,q; F) = L +H0+H2(p2+q2)+---
o P’ +9°+pq—mE
4 1

—1 (. ) — L* i
T; (k; E) = k™ cot 0(k )—ﬁ k2 +12 +kl —mE
1

— Poles in the amplitude —  finite-volume energy spectrum
“—> H,, H>,...should be fitted to the three-particle energies
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The finite-volume spectrum

M. Doring, H.-W. Hammer, M. Mai, J.-Y. Pang, AR and J. Wu, PRD 97 (2018) 114508
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The spectrum both below and above the three-particle threshold
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Conclusions/outlook

e The study of QCD on the lattice enables one to calculate
hadronic observables in the Standard Model from the first
principles

e It also provides the hadronic input, needed in the searches of the
physics beyond the Standard Model

e Calculating the hadronic reaction amplitudes on a finite lattice
constitutes a big challenge. The use of the effective field theory
enables one to systematically relate the hadronic observables in
the infinite volume to the results of lattice measurements

e Two particle (coupled channel) scattering: standard by now

e Three and more particles: rapidly advancing
— Three-particle decays
— Inelastic resonances (Roper, etc)
— Applications in nuclear physics and soon ...
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