8TH GEORGIAN - GERMAN SCHOOL AND WORKSHOP IN BASIC SCIENCE (GGSWBS'18)

Rezo Shanidze

I.Javakhishvili Tbilisi State University High Energy Physics Institute

Nuclear Medicine Physics in Tbilisi State University

23 August 2018 Tbilisi, Georgia

August 20 - 25, 2018 · Tbilisi, Georgia

TANDEM@Caucasus

Tbilisi Accelerator based Nuclear, Dating and Environmental Monitoring Regional center

R.Shanidze

University of Erlangen

HEPI TSU

- The Accelerator Mass Spectrometry (AMS):
 Ultrasensitive analysis tool for:
- Archeology
- Biology, medicine and pharmacology
- Chemistry
- Environmental studies,
- Physics, . . .
- Modern experimental tools for scientific research and high education.
- Reasonable installation/running costs.
- Possibilty to serve large scientific community in Georgia and South Caucasus region.
- Close collaboration with research groups in EU (USA, Japan,..)

Contents

NMP in Georgia - teaching in TSU - prospects for research

Introduction

Nuclear medicine in Georgia

Nuclear medicine physics (NMP) program in TSU

Future research projects

Summary and Outlook

Nuclear Medicine

Radionuclide Production

Nuclear Reactor

Cyclotron

Radiopharmaceuticals

Nuclear medicine imaging

Therapy

Brachytherapy

Teletherapy (External Beam Radiation Theraphy, EBRT)

As Low As Reasonably Applicable

Nuclear Medicine Centers in Georgia

Nuclear Medicine Equipment in Georgia

Nuclear medicine centers in Georgia:

MN Centers	Diagnostics Nucl. imaging		Theraphy Brachy EBRT		Radioisotops
RICM ("Todua")	SPECT	PET	Yes	3	¹⁸ F, ^{99m} Tc, ¹³¹ I, ¹⁹² Ir
HTMC ("Ingorokva")	SPECT	PET	Yes	2 + 1	¹⁸ F, ^{99m} Tc, ¹³¹ I, ¹⁹² Ir
RMC	SPECT	-	-	2 + 1	^{99m} Tc, ¹³¹ I, ⁶⁰ Co
Aversi	SPECT	-	-	2	^{99m} Tc, ¹³¹ I,
Ewex (Kutaisi)	-	-	-	2	-
Batumi	_	-	-	1	-

Radioisotopes for nuclear medicine in Georgia: M. Abramisvili

Nuclear Medicine Equipment in Georgia

New generation PET/CT: GE Discovery IQ
 was recently installed in Research Institute of Clinical Medicine (Medical Center of Acad. Todua)*

5 ring detector system

 Lightburst detector with enhances sensitivity for F18 labeled pharmacies by factor 2

 Highest sensitivity in the industry at up to 22 cps/kBq

http://www3.gehealthcare.com/en/products/categories/molecular_imaging/pet-ct/pet-ct_scanners/discovery_iq

^{*} http://clinicalmedicine.ge/siaxleebi/ptomografi

Treatment Planning Systems

Brachytheraphy:

In the students session:

Tea Avaliani - Brachytheraphy treatment planning

Nino Batselashvili - Teletherapy treatment plannig

World Health Organization

Gamma cameras (equipments per 100 000 population)

GGSWBS-2018, Tbilisi R. Shanidze (TSU)

Tbilisi State University

- Oldest University in Georgia and Caucasus
- Largest University in Georgia: > 20 000 active students of all levels
- 7 Faculties:
 Economics and business, Exact and natural sciences, Humanities,
 Law, Medicine, Psychology and educational sciences, Social and political sciences
- 67 BS, 96 MS and 50 PhD programms
- Largest research institution in Georgia: 16 research instututes

GGSWBS-2018, Tbilisi R. Shanidze (TSU)

Nuclear Medicine Physics in TSU

Faculty of Exact and Natural Sciences

Radiation Biology

Medical Dosymetry

Physical Principles of

Radiation Therapy

- Nuclear Medicine Instrumentation

Computing in Nuclear Medicine Physics

R. Shanidze (TSU) GGSWBS-2018, Tbilisi

Nuclear Medicine Physics Program in TSU

• Physics department, MS program **Applied Physics** (120 ESCT credits)

	Semester						
	T	II	III	IV			
1	Introduction in Condensed Matter Physics	Radiation Detectors*	Computing in Medical Physics				
2	Propagation of E-M Waves	Radiation Biology	Applications of Nuclear Magnetic Resonance *	esis			
3	Theory of Radiation	Medical Dosimetry	Diagnostic Radiology Physics*	ject/Th			
4	Introduction in Microelectronics	Medical Physics Instrumentation	Physics Principles of Radiation Therapy	Master Project/Thesis			
5	Applied Nuclear Physics	Selected Course 1	Selected Course 3	Ma			
6	Anatomy	Selected Course 2	Selected Course 4				

TSU: Nuclear Medicine Physics -2018

Program of nuclear medicine physics in TSU was prepared by:

B. Bochorishvili, L. Chelidze, G. Japaridze, R. Shanidze

First students of the program: T.Avaliani, N. Batselashvili

Geant4 Research Tool

a toolkit for the simulation of the passage of particles through matter

https://geant4.web.cern.ch/gean4/

Software tool, which was developed for particle physics at CERN and found many applications in: Medicine, Space and radiation, Technology

Medical application examples:

GAMOS: Geant4 based Architecture for Medicine-Oriented Simulations

GATE: Geant4 Application for Tomographic Emission

GHOST: Geant4 Human Oncology Simulation Tool

Geant4 in HEPI TSU

Geant4 @ HEPI TSU

(M. Abuladze, G. Macharashvili, G. Papalashvili, R. Shanidze)

- Applications for particle and astroparticle physics projects (ATLAS, JEDI, KM3NeT)
- G4 in nuclear medicine physics talk of M. Abuladze

JavaSript for Nuclear Medical Physics

Web-application example:

Calculations for radioisotope activiy, mass inasample, . . .

ბირთვული სამედიცინო ფიზიკა

მაგალითი 1

ამ მაგალითში ხდება რადიო-იზოტოპის ($_{\rm Z}{
m X}^{
m A}$) მასის ($_{
m m}$) გამოთვლა იმ წივთიერებაში, რომლის აქტიობა ($_{
m A}$) გამოწვეულია ამ რადიო-იზოტოპით. რადიო-იზოტოპის წახევარ-დაშლის პერიოდია $_{
m T}{
m A}$, ატომური მასა ($_{
m m}{
m A}$).

მასის გამოთვლისთვის შეიყვანეთ რადიო-იზოტოპის აქტიობა, ნახევარ-დაშლის პერიოდი (დრო) და ატომური მასა. წინასწარ შეარჩიეთ აქტიობის და ნახევარ-დაშლის პერიოდის ერთეულები. მასის გამოთვლა ხდება შესაბამისი ღილაკის (**გამოთვლა**) საშუალებით.

100 MBq ▼ რადიო-იზოტოპის აქტიობა (A)
 108 წუთი ▼ ნახევარ-დაშლის პერიოდი (T_{1/2})
 19 რადიო-იზოტოპის ატომური მასა (m_A)

გამოთვლა

რადიო-იზოტოპის მასა წივთიერებაში:

16

2.9503e-11 გრამი

Summary and Outlook

- MS program in nuclear medicine physics (NMP) is active in TSU from the Winter Semester of 2017/2018.
- The program is supported by the Reserch Institute of Clinical Medicine, the leading nuclear medicine and radiation therapy instutution in Georgia.
- Research directions for this program are under consideration (Geant4 tool for physics and medicine)
- Next step: internationalization of nuclear medicine program and research projects in TSU.

Vielen Dank!

დიდი მადლობა!