

Polarimeter Electronics and Data Readout

D. Shergelashvili, PhD @ SMART|EDM_Lab, TSU, Georgia Supv: Dr. David Mchedlishvili @ TSU; Dr. Irakli Keshelashvili @ FZJ August 23, 2018 – 8th GGWBS

Polarimetry Overview

LYSO Module

3D drawing of the module

of 3x3 mm (SensL J – series) 64x14K ~ 900K pixel

https://sensl.com/products/j-series/

	Parameter	Min.	Тур.	Max.	Units	Notes
	Breakdown Voltage (Vbr)		24.5		٧	
	Recommended overvoltage (Voltage above Vbr)	+1		+6	٧	
	Spectral Range	200		900	nm	
	Peak Wavelength		420		nm	
	PDE (Photon Detection Efficiency)		50		%	35um microcell @ Vbr + 6V and 420nm
	Gain (anode to cathode readout)		6.3x10 ⁶			35um microcell @ Vbr + 6V
	Dark Count Rate		50		kHz/mm ²	@ Vbr + 2.5V
	Temperature dependence of Vbr		21.5		mV/°C	

LYSO Modules Assembling

Two layers of foils:

- I Four different inner layers (reflector)
- II Tedlar (outer) foil (light tightness)

1. Teflon – 50 μm

- 2. Tyvek \sim 100 μ m
- 3. Smooth Mylar 25 µm
- 4. Wrinkled Mylar 25 μm

3D printed plastic for centering silicon

Silicon layer

- Optical coupling
- Mechanical stability
 - Radiation protection

Cut corners for mechanical fixation

Tedlar 50 µm

Teflon

LYSO Module Assembling

12 cm LYSO module

3rd hand during assembling

Enough depth to stop 270 MeV deuterons

SiPM array

2 x 50 µm Teflon

2 x 50 µm Tedlar

2 x 25 µm Kapton

Energy loss can be estimated

LYSO Modules Lab Tests

- Light Tightness
- Measurements of ²²Na, ⁶⁰Co, ¹⁷⁶Lu (internal)
- Optimal supply voltages
- Signal offset (current leakage)

Redpitaya DAQ

Redpitaya

- ✓ FPGA based 2 ch 125 MS/s DAC and function generator
- Linux on board
- √ C/C++ compiler
- ✓ Communication via LAN

Raspberry Pi

✓ Root based online analysis software

LAN

LYSO Modules Lab Tests Analysis

⁶⁰Co + ¹⁷⁶Lu, 30 V Supply, 4 mV threshold, Left Down 3rd Module

Polarimetry Overview: FADC

Struck SIS3316 FADC

- 16 channels per module
- 250 MS/s per channel
- 125 MHz analog bandwidth
- 14-bit resolution
- Offset DACs
- Internal/External clock
- Readout in parallel to acquisition
- Capable of working in a chain
- Built-in hardware features (Pile-up detection, averaging and more)
- Self triggering

Struck SIS3316 FADC: Time Resolution

250 MS/s = 4 ns Timestamps, Even Better...

Cosmic Run with PMT & LYSO

Polarimetry Overview: Servers & Scripts

DAQ & online analysis

DAQ & online analysis

EMS cluster server

- Reads data and structures it
- Saves data stream to file / sends over LAN

Event builder (multi-threaded)

- Reads structured FADC data stream and reorganizes it
- Synchronizes different channels data using timestamps
- Builds events

Data manager (multi-threaded)

- Reads event stream / file
- Runs analyses modules
- Listens to clients and sends histograms

Client

- Controls data manager
- Gets results from analyses modules and draws spectra
- · Handles configuration files

Clients (access spectra)

Online analysis results

Summary

- ✓ LYSO module assembling and testing procedure
- ✓ More then 50 module ware assembled and tested successfully
- ✓ First version of modular voltage supply for SiPMs was successfully tested.
- √ 128 channels voltage monitoring system was made

Outlook

Upgrade HW/SW packages for the read out system

- ☐ Further development of online analysis and readout system
- ☐ Flash ADC configuration set-up (user friendly ② , in progress)

This work was supported by the Shota Rustaveli National Science Foundation (SRNSF)

Online Analysis

