Optical Tracking System For Target Following Camera

Ο

Rati Chkhetia

Student At

Agricultural University of Georgia

Department of

Electrical and Computer Engineering

Target Following Camera

target

Keeps the target in frame

• • •

Can be used to track: Performer on stage; Specific player of outdoor sports game;

Goals of the Project

• Design a positioning system for a target following camera

• Build a prototype

Wearable tag, that is worn by the target, consists of an infrared emitter, which is constantly transmitting encrypted signal. The device rotates the platform around two axes so that the angle between the light rays coming from the transmitter and the surface of the platform approaches 90⁰.

Phototransistor alignment

Limit switches are installed on the construction

 \bigcirc

 \bigcirc

 \bigcirc

end

IR modulation

IR modulation

Standard Transmitter

Digital infrared receiver's sensing angle is 35°

Phototransistor's sensitivity is very low for light that is directed at more than 20⁰

0

Block diagram

ρ

Electrical circuit

 \bigcirc

 \bigcirc

 \square

С

Electrical circuit

 \bigcirc

 \square

С

Modeling the system for a single axis input-output relationships to determine:

- Angle relative to the transmitter θ phototransistor outputs_ Vp=f(θ)
- Electrical circuit _ Vout=f(Vp)
- DC motor $_\omega=f(Vin)$

 \square

Light coming from the transmitter

Simulating DC motor

Back emf, $E \sim \omega$

V = E + IRWhen E = 0, V = IR

For approximating inertia:

Block Parameters: DC Motor			×
speed and stall torque. If no information is available on armature inductance, this parameter can be set to some small non-zero value.			^
When a positive current flows from the electrical + to - ports, a positive torque acts from the mechanical C to R ports. Motor torque direction can be changed by altering the sign of the back-emf or torque constants.			
Settings			
Electrical Torque Mechanical			
Model parameterization:	By equivalent circuit parameters		I
Armature resistance:	6.38	Ohm v	
Armature inductance:	1e-7	H v	
Define back-emf or torque constant:	Specify back-emf constant	•	I
Back-emf constant:	0.26	V/rpm ~	
Rotor damping parameterization:	By no-load current 🔹		
No-load current:	0.1	A v	
DC supply voltage when measuring no-load current:	1.5	V ~	
			- -
<		2	,
	<u>O</u> K <u>C</u> ancel	<u>H</u> elp <u>A</u> pply	

Source: Halliday _ fundamentals of physics

Simulation results

 \bigcirc

Kp = 100

Simulation results

Kp = 300

Kp = 150 Kd = 10

Future plans

- Install lenses for phototransistors
- Reduce electrical noise
- Add sensors to measure position

Thank you for your attention

 \bigcirc

 \square