

IN BASIC SCIENCE (GGSWBS'18) SCIENCE AT MULTIDISCIPLINARY SMART LABS IN GEORGIA

GEORGIAN – GERMAN SCHOOL AND WORKSHOP

August 20 - 25, 2018 • Tbilisi, Georgia

Atmospheric Models with Data

Hendrik Elbern with Jonas Berndt, Nadine Goris, Xueran Wu Institute for Energy Climate Research-8 (Troposphere) and Rhenish Institute for Environmental Research at the University of Cologne

Contents

- 1. Introduction: is the atmosphere predictable?
 - 1. physics
 - 2. numerics
- 2. How can data control the prediction?
 - 1. observation systems
 - 2. On observability
- 3. Tropospheric chemistry data assimilation and inversion

4. Conclusion and outlook

European Centre for Medium-range Weather Forecast numerical model: the dynamic core

$$\begin{aligned} \frac{\partial U}{\partial t} + \frac{1}{a\cos^2\theta} \bigg\{ U \frac{\partial U}{\partial \lambda} + v\cos\theta \frac{\partial U}{\partial \theta} \bigg\} + \dot{\eta} \frac{\partial U}{\partial \eta} \\ & \left(-fv \right) + \frac{1}{a} \bigg\{ \frac{\partial \phi}{\partial \lambda} + R_{dry} T_v \frac{\partial}{\partial \lambda} (\ln p) \bigg\} = P_U + K_U \\ \frac{\partial V}{\partial t} + \frac{1}{a\cos^2\theta} \bigg\{ U \frac{\partial V}{\partial \lambda} + V\cos\theta \frac{\partial V}{\partial \theta} + \sin\theta (U^2 + V^2) \bigg\} + \dot{\eta} \frac{\partial V}{\partial \eta} \\ & + fU + \frac{\cos\theta}{a} \bigg\{ \frac{\partial \phi}{\partial \theta} + R_{dry} T_v \frac{\partial}{\partial \theta} (\ln p) \bigg\} = P_V + K_V \\ \frac{\partial T}{\partial t} + \frac{1}{a\cos^2\theta} \bigg\{ U \frac{\partial T}{\partial \theta} + V\cos\theta \frac{\partial T}{\partial \theta} \bigg\} + \dot{\eta} \frac{\partial T}{\partial \eta} - \frac{\kappa T_v \omega}{(1 + (\delta - 1)q)p} = P_T + K_T \end{aligned}$$

$$\frac{\partial q}{\partial t} = \frac{1}{a\cos^2\theta} \left\{ U \frac{\partial q}{\partial \lambda} + V \cos\theta \frac{\partial q}{\partial \theta} \right\} = \eta \frac{\partial q}{\partial \eta} = P_q + K_q$$

Einstein on weather predictability

"When the number of factors coming into play in a phenomenological complex is too large, scientific method in most cases fails. One need only think of the weather, in which case the prediction even for a few days ahead is impossible."

— Albert Einstein

The minimalistic nucleus of (weather) chaos:

Lorenz, E. N. Deterministic non-periodical flow. J. Atmos. Sci. 20, 130–141, (1963).

One of the most influential papers establishing the fundamentals of chaos theory applied to numerical weather prediction.

Lorenz (1963) system: A technical realisation: Convection in a torus

Lorentz (1963) equations

A transition to non-dimensional variables X, Y, Z is achieved by defining

$$X := \frac{q}{aK}, \qquad Y := \frac{g\alpha T_3}{2a\Gamma K}, \qquad Z := \frac{g\alpha T_4}{2a\Gamma K}, \qquad t' := tK,$$

to arrive at

$$\begin{array}{rcl} \frac{dX}{dt} &=& -PX + PY \\ \frac{dY}{dt} &=& -Y + rX - XZ \\ \frac{dZ}{dt} &=& -bZ + XY, \end{array}$$

where

$$P := rac{\Gamma}{K}, Prandtlnumber, \qquad r := rac{glpha T_1}{2a\Gamma K}, Rayleigh\,number \qquad b = 8/3\,heat\,transfer$$

11. September 2018

Why poor predictability in practice?

Instabilities:

- convective scale clouds and convection
- □ barotropic instabilities (rotational modes)
- baroclinic instabilities (low pressure systems)
- phase transitions of: water (Earth), methane (Titan)

Another realm of advances: Numerics a naïve starting point with the advection equation (fails after a few time steps) $\frac{\partial \chi(t, \mathbf{r})}{\partial t} + \mathbf{v}(t, \mathbf{r}) \cdot \nabla \chi(t, \mathbf{r}) = g(t, \mathbf{r})$

Raum

leapfrog

for progress see presentation by **Tamari Janelidze** Folie 9

There is more progress: e.g. Nature article 2015 Bauer, Thorpe, Brunet

REVIEW

doi:10.1038/nature14956

The quiet revolution of numerical weather prediction

Peter Bauer¹, Alan Thorpe¹ & Gilbert Brunet²

ECMWF forecast skill evolution

Ensemble modelling: predicting uncertainties O(#50) model integrations example: likelihood of precipitation

The main reasons for uncertain forecasts

There are two classes of reasons, why forecasts are uncertain:

 \Box one is induced by model insufficiencies, and by

□ the uncertainty of initial values.

The latter problem is addressed by data assimilation.

Initial value uncertainty

A quadratic form is reduced, defining a cost function, penalizing discrepancies between observations and a priori knowledge

$$J(\mathbf{x}) = 1/2(\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}_b) + 1/2(\mathbf{y} - H(\mathbf{x}))^T \mathbf{R}^{-1}(\mathbf{y} - H(\mathbf{x})).$$
(1)

The Hessian of J is the inverted analysis error covariance matrix

$$\nabla^2 J = \mathbf{B}^{-1} + H^T \mathbf{R}^{-1} H =: \mathbf{A}^{-1}$$
(2)

The evolution of the uncertainty as quantified by the analysis error covariance matrix is given by the generalized eigenvector equation

$$M^T M \delta \mathbf{x}(t_0) = -\lambda \mathbf{A}^{-1} \delta \mathbf{x}(t_0)$$
(1)

Model uncertainties

Key source of uncertainties result from

- not sufficiently well known processes and their controlling parameters,
- the finite resolution of calculations due to the model discretization. or errors due to truncation of dynamics and
- unresolved features of "`subgrid processes"'.

Energy meteorology: wind

Can we predict the likelihood of imminent fatal forecast failures? 1000 parallel model runs with WRF

Ensemble size of (*O*)1000 member to apply a Sequential Importance Resampling Smoother

a novel, non-linear data assimilation technique in atmospheric science.

Parcticle filtering consists of representing the initial density of the state by an ensemble of size N $p(\Psi|d) = \sum_{i=1}^{N} w_i \delta(\Psi - \Psi_i)$

we estimate the posteriori density of the model state, given the observ $w_i = -\frac{p}{2}$

$$p_i = \frac{p(d|\Psi_i)}{\sum_{j=1}^N p(d|\Psi_j)}.$$

 Minimize ensemble variance by neglecting members with least weights and spawn members with highest weights

ESIAS super ensemble modelling system

(Ensembles for Stochastic Integration of Atmospheric Systems)

Stamp plots of an only 12-member sub-ensensemble selection with either

- GFS or ECMWF boundary and initial conditions and
- SKEBS (Stochastic Kinetic Energy Backscatter Scheme) perturbation.

How can data control the prediction?

Observation systems

Observability

Terminology

Inverse Modelling

The inverse modelling problem consists of using the **actual** result of some **measurements** to **infer the values of the parameters** that characterize the system.

A. Tarantola (2005)

Data Assimilation in general

The ambitious and elusive goal of data assimilation is to provide a dynamically consistent motion picture of the atmosphere and oceans, in three space dimensions, with known error bars.

M. Ghil and P. Malanotte-Rizzoli (1991)

Observation systems (2): In-situ observations

Observation systems (3): polar orbiting satellites (e.g. AMSU-A)

Data coverage for the NOAA-15 (red), NOAA-16 (cyan) and NOAA-17 (blue) AMSU-A instruments, for the four 6-hour periods centred at 00, 06, 12 and 18 UTC 12 November 2002. The plots show the data used for AMSU-A channel 5, which is a temperature-sounding channel in the mid and lower troposphere.

Source

EGMW

Observation systems (4): geostationary

Data coverage provided by the GOES satellites (cyan and orange) and the METEOSAT satellites (magenta and red) ^{11. September 000} UTC 10 May 2003. The total number of observations

Satellite data sources in 2007+

Number of satellite sources used at ECMWF

Source: ECMWF Folie 29

Improving the quality of analyses by the observation configuration

- optimise the observation network, subject to given constraints, [Szunyogh et al. 1999; Langland et al. 1999), Bishop et al. (1999); Berliner et al. (1998), Bellsky et al. 2014),...]
- to evaluate the value of individual or types of observations for the analyses, [Cardinali et al. (2004); Cardinali (2009), Liu and Kalnay (2008), Baker and Daley (2000), ...]

to quantify the degree of which the analysis can be influenced by the observations, that is the sensitivity (Degree of Freedom for Signal). [Fisher (2003) Eyre 1990; Rodgers 2000; Rabier et al. 2002; Fourrié et al. 2003; Martynenko et al. 2010), ...]

2. How can the observation configuration be optimized?

Given CTM (here RACM and EURAD-IM) acting as tan.-lin. model operator \mathcal{L} :

$$\delta \mathbf{c}(t_F) = \mathcal{L}_{t_I, t_F} \, \delta \mathbf{c}(t_I), \quad \mathcal{L}_{t_I, t_F} = \left. \frac{\partial \mathcal{M}_{t_I, t_F}}{\partial \mathbf{c}} \right|_{\mathbf{c}(t_I)}$$

1. Berliner et al., (1998) Statistical design: "Minimize" the analysis error covariance matrix **A** (say, via trace):

For this find maximal eigenvectors as observation operators **H**, which configure observations.

2. Palmer (1995) Singular vector analysis: Observe maximal SV configuration:

$$\min_{\mathbf{H}} \mathbf{A} = \mathbf{B} - \underbrace{\mathbf{B}\mathbf{H}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1}\mathbf{H}\mathbf{B}}_{\mathbf{H}^{T}(\mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R})^{-1}\mathbf{H}\mathbf{B}}$$

to be maximized by ${\bf H}$

$$\mathcal{L}_{t_I,t_F} \mathbf{B} \mathcal{L}_{t_I,t_F}^T \mathbf{H}^T = \lambda \mathbf{H}^T$$

 $\max_{\delta \mathbf{c}(t_I)} \frac{\|\delta \mathbf{c}(t_F)\|_{\mathbf{B}}^2}{\|\delta \mathbf{c}(t_I)\|_{\mathbf{B}}^2} = \max_{\delta \mathbf{c}(t_I)} \frac{\delta \mathbf{c}(t_I)^T \mathcal{L}_{t_I, t_F}^T \mathbf{B} \mathcal{L}_{t_I, t_F} \delta \mathbf{c}(t_I)}{\delta \mathbf{c}(t_I)^T \mathbf{B} \delta \mathbf{c}(t_I)},$

Table 1. Photolysis reactions included in the SA(Phase space variables per grid point				
represents constituents that are not con Table 2. Gas phaStratoSph	eric chemistry	example		FORSCHUNGSZENTRUM
Reaction "products" represents 67 0 as n	hase reactions	. ·		
(R1) $O_2 + h\nu \rightarrow O(^3P) + O(^3P)$ (R2) $O_2 + h\nu \rightarrow O(^3P) + O_2$ Reaction			n a la r	
$\begin{array}{ccc} (R2) & O_3 + h\nu \rightarrow O(P) + O_2 \\ (R3) & O_3 + h\nu \rightarrow O(^1D) + O_2 \end{array} \end{array} $ $(R38) & O(^3P) + O_3 \rightarrow O_2 + O_2 \\ \hline \end{array}$	ogeneous react	ions on	polar s	strat. Ciol
(R4) $H_2O + h\nu \rightarrow H + OH$ (R39) $O(^1D) + O_2 \rightarrow O(^3P) + O_2$				
(R5) $H_2O_2 + h\nu \rightarrow OH + OH$ (R40) $O({}^1D) + O_3 \rightarrow O_2$ Table 2. (R6) $NO_2 + h\nu \rightarrow O({}^3P) + NO$ (R41) $O({}^4D) + O_2 \rightarrow O({}^3P)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
(R7) $NO_2 + h\nu \rightarrow O(P) + NO + O(P)$ (R7) $NO_3 + L_{222} \rightarrow NO + O(P)$ (R41) $O(P) + O_3 \rightarrow O(P)$ (R41) $O(P) + O_3 \rightarrow O(P)$				
(R8) NO ₃ + Table 3. Heterogeneous reactions included in	n the SACADA reaction s	cheme. The	notation "(c)"
(R9) $N_2O + 1$ (R10) $N_2O_2 + 1$ indicates a species in the condensed (liquid en eq.)	d) above. The terms "manda		a an atitura	
$(R10)$ R_{205} indicates a species in the condensed (liquid or sol (R11) HNO ₃	id) phase. The term "produ	icts" represent	s constitue	nts
(R12) HNO ₄ which are not considered in the reaction scheme.				O+NO ₂
(R13) $Cl_2O_2 + \frac{1}{2}$ which are not considered in the reaction scheme: (R14) $Cl_2 + h$ Pagetion	Uptaka coefficient) ₂ 1
(R15) OCIO +		11.0	· · ·	1 I+HO ₂
(R16) HC1+/	liquid/STS	NAT	ice	+NO ₂
$ \begin{array}{c} (R17) & HOC14 \\ (R18) & CIONO \end{array} (R168) & BrONO_2 + H_2O(c) \rightarrow HOBr + HNO \end{array} $	$f(t, p_{H_2O})^a$	-	0.26	+CH ₃
(R19) CH ₃ Cl (R169) $N_2O_5 + H_2O(c) \rightarrow HNO_3 + HNO_3$	$f(t, p_{H_2O})^a$	0.0004	0.02)+ClO
(R20) CCl ₄ + (R170) ClONO ₂ + H ₂ O(c) \rightarrow HNO ₃ + HOC	1 $f(t, p_{H_2O}, p_{HCl})^b$	0.004	0.3	$+C1_2+O_2$
$\begin{array}{c} (R21) & CFCl_3 \\ (R22) & CE_3Cl_3 \\ (R171) \\ \end{array} CIONO_2 + HCl(c) \rightarrow Cl_2 + HNO_3 \end{array}$	$f(t, p_{H_2O}, p_{HCl})^b$	0.2	0.3	+OH
(R23) CH_2CI_2 (R172) $HOCl + HCl(c) \rightarrow Cl_2 + H_2O$	$f(t, p_{H_2O}, p_{HCl})^b$	0.1	0.2	Clo+NO ₃
(R24) CF ₂ CIC (R173) $N_2O_5 + HCl(c) \rightarrow HNO_3 + products$	-	0.003	0.03	NO_2
$\begin{array}{c} (R25) CH_3CC \\ (R26) BrO_{\pm\pm} \end{array} (R174) HOBr + HCl(c) \rightarrow BrCl + H_2O \end{array}$	0.01	-	0.3	$+NO_2+O_2$
(R27) BrCl + (R175) ClONO ₂ + HBr(c) \rightarrow BrCl + HNO ₃	-	0.3	0.3	-OC10
(R28) HOBr + (R176) HOCl + HBr(c) \rightarrow BrCl + H ₂ O	-	-	0.05	$+O_2$
$ \begin{array}{l} (R29) & BrONC \\ (R30) & CH_{*}Br \end{array} (R177) \qquad BrONO_{2} + HCl(c) \rightarrow BrCl + HNO_{3} \end{array} $	0.3	-	0.3	-C1+O ₂
(R31) CF_2CIE				r+OH
(R32) CF_3Br a: as recommended by Sander et al. [2006]				OH+BrO
(R33) HNO ₄ (R34) CIONO (R34) CIONO (R34)				I ₂ O
(R35) $N_2O_5 + b$: Shi et al. [2001], as recommended by Sander	et al. [2006]			$H_{2}O$
(R36) $CH_2O + h\nu \rightarrow H + HCO$ (R71) $OH + HO_2 \rightarrow H_2C(R105)$ (R37) $CH_2O + h\nu \rightarrow H_2 + CO$ (R72) $OH + HO_2 \rightarrow H_2C(R105)$	ClO+OH→Cl+HO ₂	(R141) (R142)	$Br+HO_2 \rightarrow I$	HBr+O ₂
$(R73) \qquad (R73) \qquad (R7) \qquad (R$	$C1O+OH \rightarrow HC1+O_2$	(R142) (R143)	$Br+O_{9}\rightarrow Br$	→HOBI+O ₂ :0+O ₂
(R74) $HO_2 + HO_2 \rightarrow H_2$ (R107)	$HC_1+OH \rightarrow HOC_1+U_2$	(R144)	CH ₂ O+Br-	→HBr+HCO

RIU Transport-diffusion-reaction equation and its FORSCHUNGSZENTRUM adjoint

Tendency Equations

direct chemistry transport equation

$$\frac{\partial c_i}{\partial t} + \nabla \cdot \left(\mathbf{v}c_i\right) - \nabla \cdot \left(\rho \mathbf{K} \nabla \frac{c_i}{\rho}\right) - \sum_{r=1}^R \left(k(r)\left(s_i(r_+) - s_i(r_-)\right) \prod_{j=1}^U c_j^{s_j(r_-)}\right) = E_i + D_i$$

- c_i concentration of species i
- **v** wind velocity
- k(r) reaction rate of reaction r
- U number of species in the mechanism
- E_i emission rate of species *i* (source)

- c_i^* adjoint of concentration of species *i*
- *s* stoichiometric coefficient
- \mathbf{K} diffusion coefficient
- R number of reactions in the mechanism
- D_i deposition rate of species i (sink)

adjoint chemistry transport equation

 $-\frac{\partial \delta c_i^*}{\partial t} - \mathbf{v} \nabla \delta c_i^* - \frac{1}{\rho} \nabla \cdot \left(\rho \mathbf{K} \nabla \delta c_i^*\right) + \sum_{r=1}^R \left(k(r) \frac{s_i(r_-)}{c_i} \prod_{j=1}^U \bar{c_j}^{s_j(r_-)} \sum_{n=1}^U \left(s_n(r_+) - s_n(r_-)\right) \delta c_n^*\right) = 0$

RIU Use of In Situ and Remote Sensing Data Dischungszentrum

In Situ

EBAS special stations: Jungfraujoch

For an optimal observation network design two central questions :

1. Is the observation system sensitive to both initial value and emission rate optimisation?

2. Which chemical constituents should be observed with preference? And

Relation: Which parameter is to be optimised by inverse modelling?

In the troposphere, for emission rates, the product (paucity of knowledge) x (importance for forecast) is high

Folie 38

An example from air quality inversion FORSCHUNGSZENTRUM

Semi-rural measurement site Eggegebirge

11. September 2018

Repervation location impact assessment of parameter optimisation by Ensemble Kalman Smoother

We seek to infer **normalised sensitivity maps**, which exhibit the control capacity of observations on parameters to be optimised: here *emission rates* and *initial values* separate vector sections

Extended model with emission rates

initial values, emission rates

 $\begin{pmatrix} \delta c(t_0) \\ \delta e(t_0) \end{pmatrix}$.

$$\left(\begin{array}{c} \delta c(t) \\ \delta e(t) \end{array}\right) = \left(\begin{array}{cc} M(t,t_0) & \int_{t_0}^t M(t,s)M_e(s,t_0)ds \\ 0 & M_e(t,t_0) \end{array}\right)$$

Typically, there is no direct observation for emissions.

$$\delta y(t) = [H(t), 0_{n \times n}] \begin{pmatrix} \delta c(t) \\ \delta e(t) \end{pmatrix} + \nu(t),$$

11. Souther $\mathfrak{G}_{n \times n}$ is a $n \times n$ matrix with zero elements. from Wu, Elbern, Jacob, SIAM, 2016, and GMDD, 2017

Is the information needed available? Exhibiting the control capacity of observations on parameters to be optimised

Infer **normalised sensitivity maps**, for here **emission rates** and **initial values**

Costly:

calculate the **observability Gramian** matrix (control theory) by forward and adjoint model M, observation operators H, and observation error covariance matrix.

$$\mathcal{G} = \begin{pmatrix} H(t_0)M(t_0, t_0) \\ H(t_1)M(t_1, t_0) \\ \vdots \\ H(t_N)M(t_N, t_0) \end{pmatrix}, \rightarrow \quad \mathcal{G}^{\mathcal{T}}\mathcal{R}\mathcal{G}$$

11. September 2018

from Wu et al. , GMDD, $2\overline{0}17^{42}$

Recall Kalman Filter equations

RIU Singular vectors for initial state and schuldszentum emission sensitivity

Define the *relative improvement covariance matrix*

(scaled forecast – analysis error covariance matrix from KS)

$$\tilde{P} = P^{-\frac{N_1}{2}}(t_0|t_{-1}) P(t_0|t_{-1}) P(t_0|t_N) P(t_0|t_{-1})$$

$$= I - (I + P^{\frac{1}{2}}(t_0|t_{-1})\mathcal{G}^{\top}\mathcal{R}^{-1}\mathcal{G}P^{\frac{1}{2}}(t_0|t_{-1}))^{-1}$$

$$= I - (I + VSS^{\top}V^{\top})^{-1} = \dots =$$

singular value decomposition

 $= V(I - (I + SS^{\top})^{-1})V^{\top}$ separate singular vector sections initial values

from Wu et al., GMDD, 2017

Sensitivity by partial singular vectors

Given:

1 observation site 1 windward emission source location assimilation window: advection time source \rightarrow observation (35 units) *Question:*

can **both** initial values and emission rates be analysed?

^{11. September 20} Answer: Yes, both sensitivities are of stame order GMDD, 2017/15</sup>

What should be observed?

Is NO_x always <u>the</u> controlling key to ozone production? And consequently, its observation the key to better <u>forecast?</u>

Singular value analysis

to identify the direction of maximal error/perturbation growth model operator $(t_i \rightarrow t_f)$ $c(t_F) = \mathcal{M}_{t_I, t_F} c(t_I)$ with initial perturbation $\delta c(t_I)$ error evolution with : tangentlinear model $\delta c(t_F) = L_{t_I, t_F} \delta c(t_I)$ maximise

$$\frac{\| \delta \boldsymbol{c}(t_F) \|_2}{\| \delta \boldsymbol{c}(t_I) \|_2} = \frac{\sqrt{\delta \boldsymbol{c}(t_I)^T \mathbf{L}_{t_I, t_F}^T \mathbf{L}_{t_I, t_F} \delta \boldsymbol{c}(t_I)}}{\sqrt{\delta \boldsymbol{c}(t_I)^T \delta \boldsymbol{c}(t_I)}}$$

Optimal perturbations (Singular Vectors) for scenario MARINE

1st Grouped Singular Vectors (δ VOC)

1st Grouped Singular Vectors (δNO_x)

not | very important to observe

Goris and Elbern, ACP, 2013

SV components VOC (left) and NO_x (right) for scenarios "free troposphere" and "urban

from Goris and Elbern, ACP, 2013

Where should be observed?

Example observation targeting: SV optimal placement of observation sites

Initial concentrations and optimal horizontal placement of NO (left) and O3 (right) at surface level . Isopleths of the optimal horizontal placement are indicated with black lines.

11. September 2018

from Goris and Elbern, GMD, 5201.

Conclusions and outlook

There is still progress possible in improving predictive skills of atmospheric models

quantify uncertainties on predictive time scales, "tiny causes, large impacts"

→improved ensembles, "slow manifold identification"

❑ adaptive observations and remote sensing: can we observe "tiny causes" early enough?
 →improved data selection, weighting, and deployment

Process plethora of ensemble and observation data by big data analytics