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European Centre for Medium-range Weather Forecast 

numerical model: the dynamic core 

meanwhile 

T1279L91 

(~15 km) 

 

dim O(108) 
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Einstein on weather predictability 

 

“When the number of factors coming into play in a 

phenomenological complex is too large, scientific method in 

most cases fails. One need only think of the weather, in 

which case the prediction even for a few days ahead is 

impossible.” 

 

― Albert Einstein  

http://www.uni-koeln.de/
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The minimalistic nucleus of (weather) chaos: 

Lorenz, E. N. Deterministic non-periodical flow. J. Atmos. Sci. 

20, 130–141, (1963). 

One of the most influential papers establishing the 

fundamentals of chaos theory applied to numerical 

weather prediction. 
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Lorenz (1963) system: 

 A technical realisation: Convection in a torus 
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Lorentz (1963) equations 

http://www.uni-koeln.de/
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Why poor predictability in practice? 

Instabilities: 

 

 convective scale clouds and convection 

 

 barotropic instabilities  (rotational modes) 

 

 baroclinic instabilities (low pressure systems) 

 

 phase transitions of: water  (Earth) , methane (Titan) 

 

….. 
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Another realm of advances: Numerics 

a naïve starting point with the advection equation 

(fails after a few time steps) 

exact solution by  

characteristics 
naïve finite differences 

“leapfrog” 

for progress see 

 presentation by 

Tamari Janelidze 

http://www.uni-koeln.de/
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 There is more progress: e.g. Nature article 2015 

Bauer, Thorpe, Brunet 

http://www.uni-koeln.de/
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ECMWF forecast skill evolution 

Source: ECMWF 
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Ensemble modelling: predicting uncertainties 

O(#50) model integrations 

example:  

likelihood of precipitation 

http://www.uni-koeln.de/
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The main reasons for uncertain forecasts 

There are two classes of reasons, why forecasts 

are uncertain: 

 one is induced by model insufficiencies, and by  

 

 the uncertainty of initial values.  

 

 

The latter problem is addressed by data 

assimilation.  

http://www.uni-koeln.de/
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Initial value uncertainty 
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Model uncertainties 

Key source of uncertainties result from   

• not sufficiently well known processes and 

their controlling parameters,  

 

• the finite resolution  of calculations due to 

the model discretization. or errors due to 

truncation of dynamics and  

 

• unresolved features of "`subgrid processes"'. 

http://www.uni-koeln.de/
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(Example case   

from PhD Jonas Berndt 

08.08. - 10.08. 2014) 

Can we predict the likelihood  

of  imminent  fatal forecast failures? 

1000 parallel model runs with WRF 

Energy meteorology: wind 

FINO3 measurement tower 101 m height 

L 

http://www.uni-koeln.de/
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Ensemble size of (O)1000 member to apply a 

Sequential Importance Resampling Smoother 

a novel, non-linear data 

assimilation technique in 

atmospheric science. 
 

Parcticle filtering consists of 

representing the initial 

density of the state by an 

ensemble of size N 
 

   

we estimate the posteriori 

density of the model state, 

given the observations d, is                        

                                                          

, 

                                                         
 

 

 

 

 

 

 

     

   

 

 

 

 

Each ensemble 

member gets a certain 

weight with respect to the 

observations  

Minimize ensemble variance by 

neglecting members with least 

weights and spawn members with 

highest weights   
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 ESIAS super ensemble modelling system 
(Ensembles for Stochastic Integration of Atmospheric Systems)  

 Stamp plots of an only 12-member  sub-ensensemble selection with either  

 GFS or ECMWF boundary and initial conditions and  

 SKEBS (Stochastic Kinetic Energy Backscatter Scheme) perturbation.  

24 h forecast for 5.09.2014  UTC 00:00 

http://www.uni-koeln.de/
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How can data control the prediction?  
 

 

 Observation systems 

 

 

 Observability 

http://www.uni-koeln.de/
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Terminology 

Inverse Modelling 

The inverse modelling problem consists of using the actual result of 

some measurements to infer the values of the parameters that 

characterize the system. 

     A. Tarantola (2005) 

 

http://www.uni-koeln.de/
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Data Assimilation in general 

 The ambitious and elusive goal of data assimilation is to 

provide a dynamically consistent motion picture of the 

atmosphere and oceans, in three space dimensions, with 

known error bars. 

M. Ghil and P. Malanotte-Rizzoli (1991) 

http://www.uni-koeln.de/
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Observation systems (2):  

In-situ observations 

http://www.uni-koeln.de/
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Observation systems (3):  

polar orbiting satellites (e.g. AMSU-A) 

Data coverage for the NOAA-15 (red), NOAA-16 (cyan) and NOAA-17 (blue) AMSU-A instruments, for the four 6-hour 

periods centred at 00, 06, 12 and 18 UTC 12 November 2002. The plots show the data used for AMSU-A channel 5, which is a 

temperature-sounding channel in the mid and lower troposphere. 

http://www.uni-koeln.de/
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Observation systems (4): geostationary 

Data coverage provided by the GOES satellites (cyan and 

orange) and the METEOSAT satellites (magenta and red) 

for 00 UTC 10 May 2003. The total number of observations 

was 266,878. 

Source:  

ECMWF 

http://www.uni-koeln.de/
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Satellite data sources in 2007+ 
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Improving the quality of analyses by the 

observation configuration 

optimise the observation network, subject to given 
constraints, [Szunyogh et al. 1999; Langland et al. 1999), Bishop et al. 

(1999); Berliner et al. (1998), Bellsky et al. 2014),…] 

 

 to evaluate the value of individual or types of 
observations for the analyses,  [Cardinali et al. (2004); Cardinali 

(2009), Liu and Kalnay (2008), Baker and Daley (2000), …] 

 

 to quantify the degree of which the analysis can be 
influenced by the observations, that is the 
sensitivity (Degree of Freedom for Signal). [Fisher 

(2003) Eyre 1990; Rodgers 2000; Rabier et al. 2002; Fourrié et al. 2003; 
Martynenko et al. 2010 ), …] 

http://www.uni-koeln.de/
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2. How can the observation configuration 

be optimized? 

1. Berliner et al., (1998) Statistical design: 

“Minimize” the analysis error  

covariance matrix A (say, via trace):  

For this find maximal eigenvectors 

as observation operators H,  

which configure observations. 

Given CTM (here RACM and  EURAD-IM)  
acting as tan.-lin. model operator L : 

2. Palmer (1995) Singular vector analysis: 

Observe maximal SV configuration:  

http://www.uni-koeln.de/
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Phase space variables per grid point 

stratospheric chemistry example  

167 gas phase reactions + 

  10 heterogeneous reactions on polar strat. clouds 

http://www.uni-koeln.de/
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Transport-diffusion-reaction equation and its 

adjoint 

http://www.uni-koeln.de/
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AIRBASE  

routine measurement sites 

EBAS 

special stations: Jungfraujoch 

IAGOS 

METOP 

IASI 
Terra/MOPPIT 

METOP/GOME-2 

A train 

In Situ 

Remote Sensing 

Use of In Situ and Remote Sensing Data 

Terra/MODIS 

http://www.uni-koeln.de/
http://idw-online.de/pages/de/image44111
http://en.wikipedia.org/wiki/Image:EUMETSAT_METOP_model.jpg
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For an optimal observation network design two central 

questions : 

 

1. Is the observation system sensitive to both initial value and 

emission rate optimisation? 

 

2. Which chemical constituents should be observed with 

preference? And 

http://www.uni-koeln.de/
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emission biased model state 

only emission rate opt. 

only initial value opt. 

true state 

observations 

time 

co
n
ce

n
tr

at
io

n
 

joint opt. 

Additional “emission observations” would be desirable 

for  balancing (e.g. via Damköhler number). 

A simple example 

Key question: Which parameter  

is to be optimised by inverse modelling? 

In the troposphere, for emission rates, the product  

(paucity of knowledge) x (importance for forecast)  

is high  

http://www.uni-koeln.de/
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Semi-rural measurement site Eggegebirge  

assimilation interval forecast 

7. August                             8. August 1997 

+ observations 

no optimisation 

initial value opt. 

emis. rate opt. 

joint emis +  

ini val opt. 

An example from air quality inversion 

http://www.uni-koeln.de/
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1. Observation location impact assessment on 

parameter optimisation  by  

Ensemble Kalman Smoother 

We seek   to infer normalised sensitivity maps, which exhibit 

 the control capacity of observations on parameters to be optimised:  

here emission rates and initial values 

from Wu, Elbern, Jacob , SIAM, 2016, and GMDD, 2017 

separate vector sections 

initial values,  

 emission rates 

http://www.uni-koeln.de/
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Exhibiting the control capacity of observations on 

parameters to be optimised 

Infer normalised sensitivity maps, for  

here emission rates and initial values 

Costly: 

calculate the observability Gramian matrix (control theory) 

by forward and adjoint model M, observation operators H, and  

observation error covariance matrix. 

Is the information needed available? 

from Wu et al. , GMDD, 2017 

http://www.uni-koeln.de/
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Recall Kalman Filter equations 

http://www.uni-koeln.de/
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Singular vectors for initial state and 

emission sensitivity  
Define the relative improvement covariance matrix 

(scaled forecast – analysis error covariance matrix from KS) 

singular value  

decomposition 

separate singular vector sections 

initial values,  

 emission rates 

from Wu et al. , GMDD, 2017 

http://www.uni-koeln.de/
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Sensitivity by partial singular vectors 

observation  

site 

emission  

source 

maximal sensitivities:  ini. val.  Pc = 0.45  emi rate  Pe = 0.55 

Given:           

1 observation site 1 windward  emission source location  

assimilation window:  advection time sourceobservation  (35 units) 

Question:   

can both initial values and emission rates be analysed? 

Answer: Yes, both sensitivities are of same order from Wu et al. , GMDD, 2017 

http://www.uni-koeln.de/
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Is NOx always the controlling key to ozone production? 

And consequently, its observation the key to better 

forecast? 
  

 
 

Isopleths of ozone production 

[ppmV] 

HCHO [ppmV] 

NO [ppmV] 

Calculations   

 within a fixed time span  

 initial conventrations of NO / HCHO were varied 

 change of final concentration is given by colour 

gradients (SVs) of maximyl ozone  production given by 

arrows 

Nox constrained 

regime: 

better observe 

NOx 

What should be observed? 

from Goris and Elbern , ACP, 2013 

http://www.uni-koeln.de/
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Singular value analysis 

to identify the direction of maximal 

error/perturbation growth 

model operator (titf)              

with    initial perturbation 

error evolution with :          tangent-

linear model 

maximise 

                      

      

http://www.uni-koeln.de/
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  Basic 0-D Regional Atm. Chemistry Mechanism  

(„M=RACM“) 

 

• Optimal perturbations (Singular Vectors) for scenario MARINE       
 

   1st Grouped Singular Vectors (dVOC) 
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What should be observed? 

sunrise            sunset 

Goris and Elbern, ACP, 2013 
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SV components VOC (left) and NOx (right)  

for scenarios  “free troposphere”  and “urban 

plume”  

sunrise            sunset 
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from Goris and Elbern , ACP, 2013 
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Example observation targeting:  

SV optimal placement of observation sites 

Initial concentrations and optimal horizontal placement of NO (left) and O3 

(right) at surface level . Isopleths of the optimal horizontal placement 

are indicated with black lines. 

 Where should be observed? 

from Goris and Elbern , GMD, 2015 

http://www.uni-koeln.de/
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Conclusions and outlook 

There is still progress possible in improving predictive skills 

of atmospheric models 

 quantify uncertainties on predictive time scales, “tiny 

causes, large impacts”  

improved ensembles, “slow manifold identification” 

 

 adaptive observations and remote sensing: can we 

observe “tiny causes” early enough? 

improved data selection, weighting, and deployment 

 

 Process plethora of ensemble and observation data by 

big data analytics 

 

http://www.uni-koeln.de/

