

Quarkonium spectroscopy

with ATLAS experiment at LHC

Vakhtang Kartvelishvili

GGSWBS'18 Workshop, Tbilisi, 21 August 2018

Talk outline

Several topics I cover today: Recent results on quarkonium production:

- $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$
- $X_{c1,2} \rightarrow J/\psi \gamma$ Recent results in spectroscopy proper
- Discovery of $\chi_b(3P)$
- Search for X_b
 Asymmetric quarkonium B_c
 X(3872) production

Heavy quarkonium states present a rich spectroscopy

Complex "ecosystem" – understanding quarkonium requires careful study of many transitions and decay channels

ATLAS has a long-standing and evolving programme of studies on various aspects of quarkonium physics

χ_{c2} (2P)

 $\chi_{c2}^{}$ (1P)

Υ(11020)

The ATLAS detector at LHC

ATLAS event display: $\chi_c \rightarrow J/\psi(\mu^+\mu^-)\gamma$ candidate

Cross section views perpendicular and parallel to the beam line

Two muon tracks spanning the Inner Detector and the **Muon System**

A photon tower in **Eclectromagnetic Calorimeter**

Invariant mass in the χ_c region

Muon and dimuon triggers in ATLAS

Lancaster University

Trigger thresholds and yields

Most of the results presented here used data selection based on di-muon triggers

- typically mu4mu4, sometimes mu6mu4
- mu4mu4 un-prescaled at 7 TeV, mu6mu4 un-prescaled at 8 TeV
- little/no efficiency at low pt of the di-muon system
- unpleasant angular biases at high pt, where the two muons get close together

Single-muon triggers also used for data-driven determination of trigger efficiencies

Inevitably need to increase thresholds with increasing luminosity

Other trigger chains in place, so far mostly used for performance studies

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

Rich spectrum of states with a variety of quantum numbers

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

About a third of all $\psi(2S)$ decays into J/ ψ and a pair of charged pions

Mass (MeV)

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

$J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ candidates

Page 9

Scatter plot in p_T - rapidity space of $J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ candidates in the vicinity of $\psi(2S)$ mass

JHEP 09 (2014) 079 arXiv:1407.5532

Resolution in $\mu^+\mu^-\pi^+\pi^-$ mass is greatly improved by a kinematic fit constraining $\mu^+\mu^-$ to J/ ψ mass, and all four tracks to the same vertex

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

Lancaster 283 University

 $l_{J/\psi} = L_{xy} \cdot \frac{m_{J/\psi}}{2}$

Use transverse decay length (lifetime) of the $\mu^+\mu^-\pi^+\pi^-$ vertex relative to the primary vertex to separate:

- 1. <u>Prompt</u> production -- from QCD (or short-lived) sources, with lifetimes consistent with resolution JHEP 09 (2014) 079 arXiv:1407.5532
- 2. <u>Non-prompt</u> production -- from long-lived sources such as b-hadron decays

2D mass vs lifetime unbinned maximumlikelihood fit is done to extract <u>Prompt</u> and <u>Non-prompt</u> yields in each p_T – rapidity bin

Two projections shown for a sample bin

$\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ production

Measurement with 2.1 fb⁻¹ of pp data at 7 TeV Muon $p_T > 4$ GeV, pion candidate tracks $p_T > 0.5$ GeV

JHEP 09 (2014) 079 arXiv:1407.5532

Lancaster 🔀 University

- Baseline channel for study of X(3872), extended p_T range probed to 100 GeV
- Good agreement with similar data from CMS and LHCb

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 :: Page 11

JHEP 09 (2014) 079 arXiv:1407.5532

High precision wide reach prompt production cross-section in $\psi(2S) \rightarrow J/\psi \pi \pi$.

- Agreement with NRQCD, possible slight overestimate at highest p_T
- k_T-factorisation model does not describe data well
- Colour Singlet NNLO* predictions undershoot at highest scales

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

$\chi_{c} \rightarrow J/\psi (\rightarrow \mu \mu) \gamma$

Important to understand this production channel to get a complete picture of quarkonium production.

Experimentally challenging:

- Iow p_T muons
- precise reconstruction of soft (p_T>1 GeV) photon through conversions
 - low efficiencies

Perform unbinned maximum likelihood fit on acceptance- and efficiency-corrected mass and lifetime.

Extract prompt and non-prompt production of various χ_{c} states

JHEP 07 (2014) 154 arXiv:1404.7035

Page 14

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

Prompt $\chi_c \rightarrow J/\psi\gamma$ and $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ ratio

ഹ്

Fraction of prompt J/ ψ produced in χ_c feed-down (right) \rightarrow

Data show that between 20–30% of prompt J/ ψ are produced in χ_c decays

Lancaster

Prompt χ_c cross-section ratio \leftarrow (left)

Data show more χ_{c1} than χ_{c2}

Possible sensitivity to presence of colour octet contributions in NRQCD ?

JHEP 07 (2014) 154 arXiv:1404.7035

Absolute χ_c production rates

JHEP 07 (2014) 154 arXiv:1404.7035

First absolute prompt (right) and non-prompt (below) χ_{c1} and χ_{c2} differential cross sections, compared to predictions

NRQCD / FONLL able to describe the data, but some hints at high- p_T excess in the latter?

Measurement of $Br(B^{\pm} \rightarrow \chi_{c1}K^{\pm})$

Branching fraction measurement using same χ_c data sample and selections, can extract measurement of Br(B[±] $\rightarrow \chi_{c1}$ K[±])

Use precisely-known $B^{\pm} \rightarrow J/\psi K^{\pm}$ decay as control.

$$\mathcal{B}\left(B^{\pm} \to \chi_{c1}K^{\pm}\right) = \mathcal{A}_B \cdot \frac{N_{\chi_{c1}}^{\mathcal{B}}}{N_{J/\psi}^{\mathcal{B}}} \cdot \frac{\mathcal{B}\left(B^{\pm} \to J/\psi K^{\pm}\right)}{\mathcal{B}\left(\chi_{c1} \to J/\psi \gamma\right)}$$

ATLAS measurement not far from best B-factory results; prospects for improvements!

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

Observation of the \chi_b states

 2^{-1}

Thresholds:

 B_sB_s

 B^*B^*

 $B\overline{B}$

 $\Upsilon(1^{3}D_{2})$

ππ

First observation of the $\chi_{bJ}(3P)$ state

The three peaks correspond to decays $\chi_{bJ}(1P)$, $\chi_{bJ}(2P)$, $\chi_{bJ}(3P)$ into $\Upsilon(1S) + \gamma$

First observation of $\chi_{bJ}(3P)$

In fact, the first new state seen at the LHC

PRL 108 (2012) 152001 arXiv:1112.5154

Significance of the new peak calculated through the difference of log-likelihoods with and without the peak in the fit:

 $D = \log (L_{with} / L_{without})$

With moderately large numbers involved, -2D is distributed as $\Delta\chi^2$

The "with" hypothesis won, with significance in excess of 6σ (separately for converted and unconverted photon cases)

Since then, confirmed by DØ and LHCb

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

Observation of the \chi_{bl} (3P) state (media)

It is called Chi b (3P) and will help scientists understand better the forces that hold matter together.

BBC

particle

in 2009.

By Jonathan Amos Science correspondent, BBC News

Mobile

L M	R	ED.	CO.	UΚ	Search V	Vired.co.uk	
HOME	NEWS	REVIEWS	PHOTOS	VIDEOS	MAGAZINE	PODCAST	TOPICS
Technolog	gy Cultu	re Science	Business	Gaming	g Autopia	Geek Dad	The Grea

Home > News > Science > LHCs first new particle

SCIENCE

Large Hadron Collider discovers a new particle: the Chi-b(3P)

By Mark Brown 22 December 11

PRL 108 (2012) 152001 arXiv:1112.5154

PRL 108 (2012) 152001 arXiv:1112.5154

Measured by ATLAS to be 10.530 +/-0.005 (stat.) +/-0.009 (syst.) GeV

No quoted systematic for early LHCb observation, latest LHCb measurement results not included

Recently confirmed by CMS too...

Lancaster 🔀 University 🐏

 $\chi_{\rm b} \rightarrow \gamma \ \Upsilon (\rightarrow \mu^+ \mu^-)$

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 :: Page 22

Search for X_h

.B740 (2015) 199-217 arXiv:1410.4409

ATLAS searched for an exotic bottomonium state X_h (analog of X(3872) in charmonium)

The $\pi^+\pi^-\Upsilon(1S)$ invariant mass distribution was analysed in the kinematic range most sensitive to an X_h signal: |y| < 1.2, $p_T > 20$ GeV, and $\cos \theta^* > 0$.

The only apparent peaks seen are at the masses of the **Υ(2S) (10023 MeV) and Υ(3S) (10355 MeV).**

MeV

Candidates / 8

8000

7000

6000

5000

4000

Lancaster 🖾 University

|y| < 1.2

p_>20 GeV $\cos\theta^* > 0$

ATLAS

vs = 8 TeV, 16.2 fb⁻¹

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

Search for more peaks

Detailed fit results in one of interesting mass ranges \rightarrow

Left scale: observed local p-value for the background-only hypothesis

Right scale: significance of a peak in $\pi^+\pi^-$ Y(1S) (right scale)

vs mass of a hypothetical X_b parent state.

Dashed: expected values for various $R=(\sigma B)/(\sigma B)_{2S}$

Upper limits

arXiv:1410.4409

Solid line:

Observed 95% CL_s upper limits on the relative production rate R = $(\sigma B)/(\sigma B)_{2S}$ of an X_b state

Dashed line:

median expectation, with the corresponding $\pm 1\sigma$ (green) and $\pm 2\sigma$ (yellow) bands Assuming isotropic decay into $\pi^+\pi^-\Upsilon(1S)$

In general, sensitivity depends on spin alignment of X_{b}

Limits are somewhat weaker for longitudinal polarisation, stronger for transverse

In short: no X_b candidate has been seen yet Note: X_b may not exist at all analogy with X(3872) may not be good (isospin): F.-K. Guo, U.-G. Meißner, W. Wang, arXiv:1402.6236

Lancaster University

B_c and $B_c(2S)$ observation

B_c system is arguably very interesting from the point of view of quarkonium spectroscopy

- well positioned in-between charmonium and bottomonium
- reliable predictions exist within various models

Ground state pseudoscalar B_c observed in ATLAS in J/ $\psi\pi$ mode, both at 7 TeV and 8 TeV

- J/ $\psi \rightarrow \mu\mu$ trigger, followed by "mu6mu4" selection

- Mass-constrained vertex fit with a pion track of p_T>4 GeV and significant impact parameter wrt primary vertex PRL 113 (2014) 212004 arXiv:1407.1032

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 :: Page 26

 B_c^{\pm} candidates combined with nearby tracks assuming pion masses

- p_T of B_c^{\pm} candidates > 15 GeV (at 7 TeV) and > 18 GeV (at 8 TeV)

An excited state of the B_c^{\pm} meson was observed in the decay mode into $B_c^{\pm}\pi^+\pi^-$, with $B_c^{\pm} \rightarrow J/\psi\pi^{\pm}$

- significances: 3.7 σ (7 TeV), 4.5 σ (8 TeV), 5.2 σ (combined)

Appears as a peak in Q = m($B_c^{\pm} \pi \pi$) - m(B_c^{\pm}) - 2m(π^{\pm})

- observed mass 6842±4(stat)±5(syst) MeV

Stability of yields checked with $B^{\pm} \rightarrow J/\psi K^{\pm}$

PRL 113 (2014) 212004 arXiv:1407.1032

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 :: Page 27

Mass (MeV)

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 ::

What is X(3872) ?

Lancaster 🤒 University

hep-ex/0309032

'Exotic' resonance first observed by Belle in 2003 in $J/\psi\pi^+\pi^-$ final state Soon after confirmed by BaBar, CDF, D0 and now LHC experiments Current world average (3871.69 ± 0.17) MeV places X(3872) mass very close to the D⁰ D⁰⁺ threshold

What is it? No clear picture yet!

<u>Loosely bound $D^0 - D^{0*}$ molecule?</u> Unlikely: NRQCD with this premise over-predicts production compared to CMS 2011 measurement

<u>New excited charmonium state?</u> Unlikely: LHCb measured $J^{PC} = 1^{++}$, no such state expected around that mass

<u>A mix of these two, $\chi_{c1}(2P) - (D^0 D^{0*})$, with hadronic decays dominated</u> <u>by the $\chi_{c1}(2P)$ component?</u> Maybe, if the mixture is determined through fit to CMS results (arxiv:1304.6710)

<u>Tetraquark (diquark – diantiquark)?</u> Possible, but hard to make any solid predictions

ATLAS has performed a measurement that may help answer some of these questions, and/or create new ones

D⁰-D^{*0} "molecule"

Diquark-diantiquark

Measuring X(3872) and the well-studied ψ (2S) in the same analysis and in the same final state J/ $\psi \pi^+\pi^-$ helps reduce systematics for various ratios and comparisons

Event selection

Di-muon trigger with 4 GeV p_{T} threshold on each muon Effective integrated luminosity 11.4 fb⁻¹ at 8 TeV **Muon cuts:**

- **Opposite sign** `combined' muons
- MCP cuts, $p_{T} > 4$ GeV, $|\eta| < 2.3$
- Good trigger object matching ($\Delta R < 0.01$)

J/ψ cuts:

- $\chi^2_{dimu_vtx} < 200, p_T > 8 \text{ GeV } \& |y| < 2.3$
- $| m(J/\psi) m(J/\psi)_{PDG} | < 120 \text{ MeV}$

Pion cuts

Opposite sign, $p_T > 600$ MeV, $|\eta| < 2.4$

$J/\psi \pi^+\pi^-$ background suppression cuts

- P(χ²_{J/ψππ}) > 4%
- Opening angle $\Delta R(J/\psi, \pi^{\pm}) < 0.5$
- $Q = m(J/\psi\pi^{+}\pi^{-}) m(J/\psi)_{PDG} m(\pi^{+}\pi^{-}) < 300 \text{ MeV}$

Constrained vertex fit on each $\mu^+\mu^-\pi^+\pi^-$ candidate:

- di-muon with (2.8 < $m_{\mu\mu}$ < 3.4) GeV fitted to a common vertex
- di-muon mass constrained to the J/ ψ mass
- pion mass hypothesis used for the other two tracks

Analysis performed for |y| < 0.75 of the J/ $\psi \pi^+ \pi^-$ system, for optimal tracking resolution

p_T bin boundaries: [10, 12, 16, 22, 40, 70] GeV

Effective pseudo-proper lifetime

$$au = rac{L_{xy}m}{p_T}$$
 with $L_{xy} = rac{\vec{L}\cdot\vec{p}_T}{p_T}$

bin boundaries: [-0.3, 0.025, 0.3, 1.5, 15.0] ps

Each J/ $\psi \pi^+\pi^-$ candidate weighted to correct for trigger/reco/acceptance losses

<u>For each p_T and lifetime bin</u>, binned minimum χ^2 fit in the J/ $\psi \pi^+\pi^-$ invariant mass to determine $\psi(2S)$ and X(3872) signal yields

For each p_T bin, the yields in individual lifetime windows are subsequently fitted: to determine lifetime dependence and hence separate the signal into prompt and non-prompt components

The lifetime fits are performed separately for $\psi(2S)$ and X(3872)

 $\chi^2 / n_{dof} = 94.4 / 90$

3 85

 $\chi^2 / n_{dof} = 103.8 / 90$

3.9

Mass fits: double-Gaussian signal peaks on a smooth background:

$$f(m) = f_{12} \left(Y^{\psi} G_1^{\psi}(m) + Y^X G_1^X(m) \right) + (1 - f_{12}) \left(Y^{\psi} G_2^{\psi}(m) + Y^X G_2^X(m) \right)$$

+ N_{bkg} $(m - m_0)^{p_2} e^{p_1(m - m_0)} P(m - m_0)$

(data - fit) / errol

3.65

3.7

3.75

3.8

Fraction of narrow Gaussian f₁₂ shared between $\psi(2S)$ and X(3872)

Resolution parameters linked by

$$\sigma_X = \kappa \sigma_\psi$$

Values of parameters f_{12} and κ determined from global fits Verified with MC and varied during systematic studies

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 :: Page 32

Single lifetime fit - results

- same lifetimes for $\psi(2S)$ and X(3872) in each p_T bin
- pT spectra of $\psi(2S)$ and X(3872) linked through kinematics

Effective lifetimes

- for $\psi(\text{2S})$ independent of \textbf{p}_{T}
- for X(3872) possibly slightly shorter in low p_T bins

<u>Kinematic template</u> obtained from simulations of various

- b-hadron decays into $\psi(2S)$ and X(3872)
 - takes into account mass difference and
 - possible variation in mass of hadronic association

<u>Non- prompt X(3872) : ψ(2S) ratio</u>

- fit to kinematic template

$$R_B^{1L} = \frac{\mathcal{B}(B \to X(3872) + \text{any})\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any})\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = (3.95 \pm 0.32(\text{stat}) \pm 0.08(\text{sys}))$$

 $J/\psi\pi^+\pi^-$ decay

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 :: Page 33

Alternative lifetime model: two-lifetime fit

 $F^i_{NP}(\tau) = (1-f^i_{SL})F_{LL}(\tau) + f^i_{SL}F_{SL}(\tau)$

- non-prompt component presented as a sum of short-lived and long-lived
- two single-sided exponentials smeared with the same resolution function
- f_{SL} is a fraction of short-lived within non-prompt supposedly from B_c decays
- statistical power of data does not allow determination of two free lifetimes
- the two lifetimes fixed, the fraction of short-lived contribution left free in the fit

Fixing the two lifetimes

- effective pseudo-proper lifetime depends on parent's lifetime and decay kinematics
- τ_{LL} determined from fits to ψ (2S), allowing for some SL contribution
- τ_{sL} obtained from simulation, varying B_c decay mode
 (low mass association gives shorter effective lifetime)
- both varied within shown limits during systematic studies

```
τ(B<sup>±</sup>) = 1.638 \pm 0.004 ps

τ(B<sup>0</sup>) = 1.525 \pm 0.009 ps

τ(B<sub>s</sub><sup>0</sup>) = 1.465 \pm 0.031 ps

τ(Λ<sub>b</sub>) = 1.451 \pm 0.013 ps
```

```
τ(B<sub>c</sub>) 0.507 +/-0.009 ps
```

 $\tau_{SL}=0.40\pm0.05~\text{ps}$

Two-lifetime fit results quoted from now on, unless stated otherwise

X(3872) cross sections

\s=8 TeV, 11.4 fb⁻¹ Prompt X(3872)

50 60 70

X(3872) p₋ [GeV]

40 50 60 70

X(3872) p₋ [GeV]

ATLAS

30

30

+ ATLAS data III NLO NRQCD

20

40

<u>Prompt:</u> Described well by NLO NRQCD

assumes X(3872) is a mix $\chi_{c1}(2P) - (D^0 D^{0*})$ $\chi_{c1}(2P)$ coupling assumed responsible for production parameters fitted to CMS data

not surprising, CMS and ATLAS consistent

Non prompt:

3r(X(3872)→J/ψ(μ⁺μ`)π⁺π`)d²ơ/dp_Tdy[nb/GeV] use the same kinematic template / Data to recalculate FONLL from $\psi(2S)$ Theory

BR not measured – used estimate 0.5 from Artoisenet, Braaten 10 based on Tevatron data [hep-ph:0911.2016]

$$R_B = \frac{Br(B \to X(3872))Br(X(3872) \to J/\psi\pi^+\pi^-)}{Br(B \to \psi(2S))Br(\psi(2S) \to J/\psi\pi^+\pi^-)} = 18 \pm 8 \%$$

 10^{-2}

 10^{-3}

 10^{-4}

10⁻⁵

10⁻⁶

2.5

10

+ ATLAS data

NLO NRQCD

Prompt

Clearly overshoots the data: factor of 4 to 8, increasing with pT

Non-prompt fraction and ratio

ATLAS, |y| < 0.75, 8 TeV, 11.4 fb⁻¹

40

Sum of Fits

50 60 70

CMS, |v| < 1.2, 7 TeV, 4.8 fb⁻¹

30

- no visible p_T dependence
- consistent with CMS result within errors

Ratio of non-prompt X(3872) : $\psi(2S)$

- long-lived part fitted to kinematic template

$$R_B^{2L} = \frac{\mathcal{B}(B \to X(3872) + \text{any})\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any})\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = (3.57 \pm 0.33(\text{stat}) \pm 0.11(\text{sys})) \times 10^{-2}$$

short-lived part: non-fragmentation contributions dominate at low p_T [Berezhnoy, arXiv:1309.1979] - fit with $\mathbf{A} \cdot \mathbf{p}_{T}^{-2}$

- integrate the fits to determine the fraction of non-prompt X(3872) that is short-lived, for pT>10 GeV:

$$\frac{\sigma(pp \to B_c)Br(B_c \to X(3872))}{\sigma(pp \to \text{non-prompt } X(3872))} = (25 \pm 13(\text{stat}) \pm 2(\text{sys}) \pm 5(\text{spin}))\%$$

B_c production much smaller than other **B** X(3872) production enhanced in B_c decays? =>

20

0.6

0.4

0.3

0.2

10

ATLAS

ATLAS Preliminary 0.5 √s=8 TeV, 11.4 fb⁻¹

Von-Prompt X(3872) Fraction

In $\psi(2S)$ to $J/\psi\pi^+\pi^-$ decays

- dipion mass distribution peaks at high masses
- fit to Voloshin-Zakharov function

$$\frac{1}{\Gamma} \frac{d\Gamma}{dm_{\pi\pi}} \propto \left(m_{\pi\pi}^2 - \lambda m_{\pi}^2\right)^2 \times \text{PS}$$

- found λ = 4.16 ± 0.06(stat) ± 0.03(syst)
- in agreement with previous measurements

- dipion mass distribution has an even sharper peak at high masses
- in agreement with simulation where the di-pion system is produced via ρ^0 meson decay
- also in agreement with previous observations

Summary of X(3872) results

Differential cross sections are measured for prompt and non-prompt production of $\psi(2S)$ and X(3872) states in the J/ $\psi\pi^+\pi^-$ decay mode.

Lancaster Star University

- **Prompt production is described reasonably well by NRQCD with previously determined LDMEs.**
- **Two lifetime models for non-prompt production:**
 - single-lifetime model (with fitted effective lifetime)
- two-lifetime model (two fixed lifetimes, fitted fraction)
- **Cross section results, non-prompt fractions largely indifferent to lifetime model**
- **Branching fraction ratios measured in the two models are slightly different:**

$$R_B^{1L} = \frac{\mathcal{B}(B \to X(3872) + \text{any})\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any})\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = (3.95 \pm 0.32(\text{stat}) \pm 0.08(\text{sys})) \times 10^{-2}$$
$$R_B^{2L} = \frac{\mathcal{B}(B \to X(3872) + \text{any})\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B \to \psi(2S) + \text{any})\mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = (3.57 \pm 0.33(\text{stat}) \pm 0.11(\text{sys})) \times 10^{-2}$$

- Both are smaller than 18 \pm 8 % estimated from Tevatron data, made under implicit same-parent-mix assumption.
- Two-lifetime model allows for a significant fraction of non-prompt X(3872) to be produced in decays of B_c, which have shorter lifetime and expected to have steeper p_T dependence.
- In this model the fraction of non-prompt X(3872) produced from B_c decays is measured to be (for pT>10 GeV) $\frac{\sigma(pp \rightarrow B_c + any)\mathcal{B}(B_c \rightarrow X(3872) + any)}{\sigma(pp \rightarrow \text{non-prompt } X(3872) + any)} = (25 \pm 13(\text{stat}) \pm 2(\text{sys}) \pm 5(\text{spin}))\%$

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 :: Page 38

The big puzzle is still there – what are the quarkonium states and how are they produced in hadronic collisions?

Vast amounts of data are now available from both the Tevatron and the LHC experiments

A number of new analyses are now in progress in ATLAS, some at an advanced stage

In general, very good synergy between the LHC experiments – complement each other in pT and rapidity, covering a huge range between them

More and more bits of the puzzle are becoming available

Maybe we are (slowly) getting (slightly) closer to the point of a big breakthrough in understanding?

THANK YOU!

V Kartvelishvili – Quarkonium spectroscopy in ATLAS :: GGSWBS'18 Tbilisi :: 21 August 2018 :: Page 40