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The standard model (SM) is widely accepted as a consistent theory
of the strong, electromagnetic and weak interactions.

Invariance under Lorentz and local gauge SU(3)¢ x SU(2). x U(1)
transformations is taken as the underlying symmetry of the SM.

Salam-Weinberg (SW) model is the theory of electroweak
interactions based on SU(2); x U(1) group.

Particle content of the model, i.e. quarks, leptons, Higgs particle,
and also vector bosons is an input.

It is very often claimed that the existence and the interactions of the
vector bosons is a consequence, i.e. an output of the non-Abelian
gauge group ...



Non-Abelian Gauge Theories

The quantum field theories that have proved successful in describing the
real world are all non-Abelian gauge theories, theories based on principles
of gauge invariance more general than the simple U(1) gauge invariance
of quantum electrodynamics. These theories share with electrodynamics
the attractive feature, outlined at the end of Section 8.1, that the existence
and some of the properties of the gauge fields follow from a principle
of invariance under local gauge transformations. In electrodynamics,
fields_wy(x) of charge e, undergo the gauge transformation wy(x) —
explie,A(x))ya(x) with arbitrary A(x). Since d,pn(x) does not transform
Tike ,(x), we must introduce a field 4,(x) with the gauge transformation
property A,(x) — A,(x)+08,A(x), and useit to construct a gauge-covariant
derivative 8, yn(x)—iendu(x)1pn(x), Which transforms just like wa(x) and can
therefore be used with ,(x) to construct a gauge-invariant Lagrangian. In
a similar way, the existence and some of the properties of the gravitational

field g, (x) in general relativity follow from a symmetry principle, under

general dinate transformations.” Given these distinguished precedents,

it was natural that local gauge invariance should be extended to invariance
under local non-Abelian gauge transformations.

In the original 1954 work of Yang and Mills,' the non-Abelian gauge
group was taken to be the SU(2) group of isotopic spin rotations, and
the vector fields analogous to the photon field were interpreted as the

v fields of strongly-interacting vector mesons of isotopic spin unity. This
' proposal immediately encountered the obstacle that these vector mesons

would have to have zero mass, like photons, and it seemed that any such
particles would already have been detected. Another problem was that,
like all strong-interaction theories at that time, there was nothing that

auge invariance and goneral covariance can be realized in
g A,(x) and g,,(x) fo be non-dynamucal c-number functions
that simply charz - & choice of phase or coordinate system, respectively. These
symmetries become physically significant when we treat A, (x) and g,(x) as dynamical
Tields, over which we integrate in calculating S-matrix elements.

*Of course, both lo
-a frivial way, by

1




In connection with the SW model one often hears/reads that
Higgs mechanism is the origin of the masses ...



In connection with the SW model one often hears/reads that
Higgs mechanism is the origin of the masses ... of quarks and
leptons ...



In connection with the SW model one often hears/reads that
Higgs mechanism is the origin of the masses ... of quarks and
leptons ...

which make only a tiny part of the baryon masses!



In connection with the SW model one often hears/reads that
Higgs mechanism is the origin of the masses ... of quarks and

leptons ...
which make only a tiny part of the baryon masses!

Where do the masses come from?



In connection with the SW model one often hears/reads that
Higgs mechanism is the origin of the masses ... of quarks and

leptons ...
which make only a tiny part of the baryon masses!

Where do the masses come from?

Equally valid question:
Where do the all kind of charges come from? ...



In connection with the SW model one often hears/reads that
Higgs mechanism is the origin of the masses ... of quarks and
leptons ...

which make only a tiny part of the baryon masses!

Where do the masses come from?

Equally valid question:
Where do the all kind of charges come from? ...
From the same place where the particles come from ...



In connection with the SW model one often hears/reads that
Higgs mechanism is the origin of the masses ... of quarks and
leptons ...

which make only a tiny part of the baryon masses!

Where do the masses come from?

Equally valid question:

Where do the all kind of charges come from? ...

From the same place where the particles come from ...
that is: | do not know!!!



Right question:

If SU(2), x U(1) is an underlying fundamental symmetry of the EW
interaction then where do the quark and lepton masses come from?

Answer: Higgs mechanism is responsible for that!



Right question:

If SU(2), x U(1) is an underlying fundamental symmetry of the EW
interaction then where do the quark and lepton masses come from?

Answer: Higgs mechanism is responsible for that!

However ... where does this gauge symmetry come from?



The electromagnetic and gravitational forces are long-ranged and
therefore if they are indeed mediated by massless photons and
gravitons, then the corresponding local Lorentz-invariant quantum
field theories must be gauge theories

S. Weinberg, The Quantum Theory Of Fields. Vol. 1: Foundations
(Cambridge University Press, Cambridge, England, 1995).

The weak interaction is mediated by massive particles,
Why should it be described by a gauge theory?

A gauge-invariant theory with the spontaneous symmetry breaking
has been derived by demanding tree-order unitarity

C. H. Llewellyn Smith, Phys. Lett. B 46, 233 (1973).

J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. Lett. 30,
1268 (1973) [Erratum-ibid. 31, 572 (1973)].

J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Phys. Rev. D 10,
1145 (1974) [Erratum-ibid. D 11, 972 (1975)].

S. D. Joglekar, Annals Phys. 83, 427 (1974).



This result could be considered as an answer to the above raised
question, however, the modern point of view considers the SM as an
EFT which inevitably violates the tree-order unitarity.

Original requirement of perturbative renormalizability which lead to a
gauge theory of the EW is no longer a valid requirement either.

This motivated us to revisit the problem.

Our final aim is to construct a consistent most general
Lorentz-invariant EFT of interacting three massive vector bosons,
fermions and a scalar.

We start with vector bosons and a scalar.



Starting assumptions and required constraints

Free massive vector bosons are described by Proca Lagrangian
which incorporates the second class constraints.

To have a consistent theory of interacting massive vector bosons
interaction terms have to be consistent with these constraints.

This generates some relations between coupling constants.
Next we impose the renormalizability in the sense of an EFT.

The condition of perturbative renormalizability cannot be satisfied
unless the coupling constants satisfy further restricting conditions.



SMis LO approximation to an EFT in which higher order operators
are suppressed by powers of some large scale.
The value of this large scale is determined by new physics.

This leads to the next condition on our EFT - separation of scales.

That is, divergences of loop diagrams contributing in physical
scattering amplitudes generated by the LO Lagrangian should be
removable by renormalizing the parameters of the LO Lagrangian.

This condition is equivalent to demanding renormalizability of the LO
EFT Lagrangian in the traditional sense, however not for off-shell
Green’s functions but for on-shell S-matrix.



To illustrate the problem with the scale separation consider an EFT
specified by the following Lagrangian
1 L MP

£:—Z Fina; +?VV5WaM+£hOa
where F2, = 9, W2 — 9, W2 + gedte W[j WS, W2 is a triplet of vector
bosons and Ly, contains all possible local terms with coupling
constants of inverse mass dimensions which are invariant under
local SU(2) gauge transformations.

Massive Yang-Mills theory is perturbatively non-renormalizable.

Therefore to get rid of divergences generated by interactions with
dimensionless couplings one needs to renormalize couplings of Ly,.



Consider the vector boson self-energy.

Calculating divergent parts of one-loop diagrams we obtain

gzéab
96m2M4(n — 4)

Ti(p) = B — 14122 — o] (p'p" — pPg)

The M* term is canceled by the vector field renormalization.

The second (magenta) term in the square brackets is removed by
renormalizing the coupling constant of the following term:
Lhp = T2 Do Y Do o,

where D3 = §9b9,, — ge@CW¢ .



Renormalization of the coupling gup leads to the following
renormalized coupling:
7g°In -

Ho

9Hp (1) = gHp (1o) — 962M2

Even if the renormalized coupling gup (1), corresponding to 1 = g

is suppressed by some large scale A > M, for u ~ e x pg the

. . . 2
renormalized coupling will become gup (1) ~ 127# - not

suppressed by A.

Analogously, for all other couplings with inverse mass dimensions
the scale of the renormalized couplings is set by M?.



EFT Lagrangian and constraint analysis

We start with the most general Lorentz-invariant Lagrangian of
charged vector fields V£ = (V! +iV?2)/v/2, and charge-neutral
vector boson VS’ and scalar ¢ fields.

Below we analyse the Lagrangian containing only interaction terms
with coupling constants of non-negative mass dimensions:

2
L = _% Vi” Ve 4 Aga Vlf Vel _gabc V:I Vfau Ve
- gf\bc e,ulloaﬁ VS Vl?aa Vg - habcd V: Vf \V/CH le/
1 m? b A
— b — 2 _ I A Y
+ 50,000 - 02 —a0— 2 0*— S0

—  Quss 0, V392 — gB VA VOO — gab  va VP9?

where Vlfy =0,V23-0, Vj, My (My = M, = M) and m are masses
and the summations run from 1 to 3.



Coupling of the linear term a vanishes at tree order. and further
corrections can be fixed by demanding that the VEV of ¢ vanishes.

The interaction terms of ® with two vector fields can be written as

915 = s = Jows: G2.s = Oovs: 1,55 = Guss = Jovss: J2.ss = s

and all other g2, and g22.. couplings do not contribute.

The three-vector boson interaction term depends on ten parameters,
333 213

113 123 _

gy = G, Gy =092, 9y =03, Gy =03,

92\/23 = 0o 9\3/11 = 04, 9321 = —0s, 9312 = 05,

gsvzz — g, 93/31 — 06, 96/31 S— gc/sz _ 92V32 .
L PR . e
A7 = g = ol = o ~ o

All other constants vanish.



Charge conservation relates the couplings h2°? to each other.

Four-vector interaction term can be parameterized in terms of five
parameter dy, - - , 0s.



The canonical momenta corresponding to ¢, V& and V7

oc _
ob 7

oL

oV~ = —9vVGVE — Qussdas 9,

oL bca c bca ijk0\/by/c
a"/a_VO/“'g VOVi +0p7¢ Vjvk'

Second equation leads to the primary constraints

¢1 — 7T0 + gbca VO VOC ‘|‘ gvss 533 ¢2 .

On the other hand, from the first and third equations we solve

va

1

)

ﬂ;? + 0 Vda _ gbca VO Vc gbca ijkO Vb Vc
p.



For the total Hamiltonian we have:
m:/&uﬁf+m

with aa )
s 1 M
”'2”' +mPOVE + VIV - 2

and the z2 are arbitrary functions which must be determined.

H = Vavar 4 ...



Condition of conserving primary constraints ¢¢ leads to
{¢f, Hi} = A28 @ = 0.
The 3 x 3 matrix A is given by
0 —2v1 V§ V2V =1 VG
A= 271 V§ 0 NV +2V¢ |,
—(eVg = VE) —(n Vg +72V) 0

where v = g5 + g7 and 2 = g4 + gs — 2g2. The above system of
equations can be satisfied only if (secondary constraint):

b2 =x" (Vg +72VE) + X2 (mVE — V) —x*2n V§ =

If at least one of v4 or +» is non-zero then we obtain that

S - XatmZ Vg 4722V
nVE -V ’
- X1+2’Y122Vg
2 Vg —m V¢

and z2 can be solved from conservation of ¢, {¢o, H;} = 0.



However, in this case we obtain four constraints of the second class
instead of six.
Therefore, for a self-consistent theory we must require

Y1=7%2=0= g7=-05, 202 =04+ 06 -
Thus we are left with secondary constraints:
{63, Hi} = 9+ gP°VPrl4+ ... =03 a=1,23.

If no more constraints appear then our Lagrangian describes a
system with the right number of constraints.

If this is the case, then all z% have to be solvable from the condition
of the constraints ¢3 being conserved in time.



From the condition of conservation of ¢3 in time we obtain
{98, Hi} = M*2°+ Y2 =0, a=1,23,

where
M = MRgab (geca n gaba) Ve L. ..,

and the particular form of Y@ is not important for our purposes. To
obtain a self-consistent field theory we demand that det M does not
vanish.

For small fluctuations this is indeed the case and we proceed by
quantizing these small fluctuations and deriving further constraints
on the couplings by investigating the conditions of perturbative
renormalizability and scale separation.



Perturbative renormalizability

We analyze one-loop diagrams using dimensional regularization.

We impose the on-mass-shell renormalization condition, i.e. require
that all divergences in physical quantities should be removable by
redefining the parameters of the effective Lagrangian.



We start by calculating the one-loop contribution to the scattering
amplitude V3V3 — V3V3, shown below

ja@=gogulni
VN TR T TS

Figure: One-loop contributions to the four-vector vertex function. The
dashed and the wiggly lines correspond to the scalar and the vector-boson,
respectively. Blobs indicate the corresponding one-loop two- and

Non-pole parts of one-particle reducible diagrams have to be taken
into account together with one-particle irreducible diagrams.



We write the sum of divergent parts of the loop diagrams in the form
of a polynomial in terms of the Mandelstam variables:

4
UvAo __ i of PHVAC
VT =N " uls cy
i,j=0

where C,fjf’”” depend on the momenta, masses and couplings.
Scale separation demands that terms with / + j ## 0 must vanish.

Demanding that the term proportional to u* vanishes leads to

g14M§+2ggM8:07:>g1 :07 92:0



The next condition is obtained by demanding that the term
proportional to u? also vanishes. This leads to:

d = 0, 9g4=0, g5s=—gs,
gre = 0. gas=—0ga, O3=—03
Demanding the vanishing of the term proportional to s?, we obtain
dy = g5 .
Divergent part of the amplitude V3 V2 — V3V3 becomes
~ [8M8 (2M§QZ,SS + 9575) 2 + M34 <g§/\/l34 - 4M291,5927s> 2}

For ds = gy = 0, the tree-order amplitude V3 V2 — V3V3 vanishes
and therefore the one-loop divergent expression has also to vanish,
leading to:

_95M3
G2ss = 32M4g1757
214
gsM
Qos — 33

4Mzg1,s '



Next, as there is no tree order one-particle irreducible contribution in
the amplitude V'V' — V'V we have to demand that the divergent
part of the corresponding one-loop contribution vanishes.

Ba requiring that the terms with s? and s t vanish, we obtain:

2
(dy + db) <d2+§;3> _o,

2 2 4
1 M
<d2+923> +(d1+d2)2+zg§ (1—) 0.



Considering ® — VV decay and requiring that the divergences of
corresponding diagrams do not contribute in the renormalization of
the couplings of the higher-order operators, we find:

g2
Ji.s <(d1 +0b)+ b+ ;) =0.

The coupling g4 s cannot be vanishing and therefore we obtain
2

d1:*d229273, MSZM



Analyzing the vertex function V; Vo V3 and demanding that the
divergent part of the sum of loop diagrams has the same Lorentz
structure as the tree one, we obtain

M
J1s =02s = igsT .

Going back to the V; V4 — V4 V4 amplitude the condition of the
vanishing of its divergent part reduces to

(891753 +g§)2 = 07

from which we obtain
2
93

J1ss = — 8



Next, we have calculated the divergent parts of one-loop diagrams
contributing to the ® V3 — ¢ V3 scattering amplitude.

As the coupling of the V3V3-®? term is given by g» s = —g3/8, i.e.
in terms of the coupling of the three- and four-vector interactions,
the divergent pieces of the corresponding amplitudes have to be
correlated.

In a self-consistent theory the renormalized value for the coupling g3
should be independent from the process that was used to fix it.

After a lengthy one-loop calculation we found that this consistency
condition requires that the coupling gyss has to vanish.



All obtained relations can be written as

My, = My=M; =M,
gabc = -0 Eabc’ gf‘bc = ga Eabc,
habcd — % gﬁbe gﬁde7 Quss = 0,
gsM g5

J1s = Gos—= o J1,ss = 092,ss = — 8
Denoting g3 = g the effective Lagrangian takes the form

1 v 1 g 2 bc _pvo b
L= —5 GLG™ + VAV (M= J0) = gueee VIV, Vg

4
1 2 b A

m
o Ldy _ 0 b2 R A Y.
+ zaucbacb 2¢ ao 3!<D 4!d>,
where
bc | /b
G, =Va -9 VVve.

This Lagrangian coincides with the SU(2) locally gauge invariant
Lagrangian with spontaneous symmetry breaking in the unitary
gauge except for the self-interaction terms of the scalars.



We checked that in all processes with three and four particles
one-loop divergences are absorbed in coupling constants and
masses and no further conditions on the couplings are obtained.

This leaves the two scalar self-interaction couplings unfixed.

We expect that the investigation of the one-loop diagrams
contributing in five and six-point functions will fix the couplings of
three and four scalar self-interactions.



Summary

» We revisited the problem of the uniqueness of a theory with
spontaneously broken gauge symmetry.

» We analyzed the most general Lorentz-invariant LO EFT
Lagrangian of massive vector bosons interacting with a massive
scalar field.

» From the constraint structure of the effective Lagrangian we
obtained consistency conditions.

» Further conditions were obtained by requiring perturbative
renormalizability and scale separation for one-loop order
amplitudes with three and four particles.



» All these conditions impose restrictions on the couplings such
that the Lagrangian of spontaneously broken gauge symmetry
in unitary gauge is obtained, except that the couplings of the
self-interactions of the scalar field remain unfixed.

» These are not pinned down by the analysis of the UV
divergences of all one-loop three- and four-point functions.

» We expect that condition of perturbative renormalizability for
one-loop order amplitudes with five external legs will fix these
two free couplings such that the Lagrangian with spontaneously
broken SU(2) gauge symmetry taken in unitary gauge appears
as an unique LO Lagrangian of a self-consistent EFT of a
massive scalar interacting with massive vector bosons.



