

Puzzling Neutron: A Window to New Physics?

> A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminarie

Chapter I: Inte the Darkness

Chapter II: In and out of Darkness Puzzling Neutron: A Window to New Physics? *A Detective Story in two parts*

Zurab Berezhiani

University of L'Aquila and LNGS

TSU, Tbilisi, Aug. 20-24, 2018

Contents

Puzzling Neutron: A Window to New Physics?

> A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Int the Darkness

Chapter II: Ir and out of Darkness Preliminaries

2 Chapter I: Into the Darkness

3 Chapter II: In and out of Darkness

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Preliminaries

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Int the Darkness

Chapter II: In and out of Darkness

Useful information

Neutrons – long known particles making 50% of atomic mass in our bodies ...

They are stable in nuclei but decay in free state as $n \rightarrow p e \bar{\nu}_e$ and in unstable nuclei (β -decay)

Fermi Theory of V-A form conserving baryon number – Standard Model

$$rac{G_{\sf F}\,|V_{ud}|}{\sqrt{2}}\;\overline{
ho}(1-g_{\sf A}\gamma^5)\gamma^\mu$$
n $\overline{
u}_e(1-\gamma^5)\gamma_\mu$ e

Yet, we do not know well enough its decay features and lifetime

Puzzling

Neutron: A Window to New Physics? A Detective parts

Preliminaries

The lifetime puzzle

PARTICLE PHYSICS

Two precision experiments disagree on how long neutrons live before decaying. Does the discrepancy reflect measurement errors or point to some deeper mystery?

By Geoffrey L. Greene and Peter Geltenbort

The best experiments in the world cannot agree on how ious intervals, and beam experiments look for the partilong neutrons live before decaving into other particles. trans count the number of neutrons that survive after var-

cles into which neutrons decay. Two main types of experiments are under way: bottle Resolving the discrepancy is vital to answering a number Geoffrey L. Greene is a professor of physics at the University of Tennessee, with a joint appointment at the Oak Ridge National Laboratory's Spallation Neutron Source. He has been studying the properties of the neutron for more than 40 years.

Peter Gekenbort is a staff scientist at the Institut Laue-Langevin in Grenoble, France, where he uses one of the most intense neutron sources in the world to research the fundamental nature of this particle.

Two methods to measure the neutron lifetime

Puzzling Neutron: A Window to New Physics?

> A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Into the Darkness

Chapter II: In and out of Darkness

The Bottle Method

One way to measure how long neutrons live is to fill a container with neutrons and emply in a fer various time intervals under the same conditions to see how many remain. These tests fill in points along a curve that represents neutron decay over time. From this curve, scientists use a simple formula to calculate the average neutron lifetime. Because neutrons occasionally escape through the walls of the bottle, scientists vary the size of the bottle as well as the energy of the neutrons—both of which affect how many particles will escape from the bottle – to extrapolate to a hypothetical bottle that contains neutrons perfectly with no lesses.

The Beam Method

In contrast to the bottle method, the beam technique looks not for neutrons but for not of their decay products, protons. Scientist direct a stream of neutrons through an electromagnetic "trag" made of a magnetic field and ring-shaped high-voltage electrodes. The neutral neutrons pass right through, but if one decays inside the trap, the resulting positively charged protons will get stude. The researchers know how many neutrons were in the beam, and they know how long they spent passing through the trap, so by counting the protons in the trap they can measure the number of neutrons that decayed in that span of time. This measurement is the decay rate, which is the slope of the decay curve at a given point in time and which allows the scientists to acluate the average neutron liteliume.

Problems to meet ...

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Preliminaries

Ream method Beam method average* (blue zone): 888.0 ± 2.1 seconds 895 890 885 Uncertainty-

Neutron Lifetime Measurements

A few theorists have taken this notion seriously. Zurab Berezhiani of the University of L'Aguila in Italy and his colleagues have suggested such a secondary process: a free neutron, they propose, might sometimes transform into a hypothesized "mirror neutron" that no longer interacts with normal matter and would thus seem to disappear. Such mirror matter could contribute to the total amount of dark matter in the universe. Although this idea is quite stimulating, it remains highly speculative. More definitive confirmation of the divergence between the bottle and beam methods of measuring the neutron lifetime is necessary before most physicists would accept a concept as radical as mirror matter.

Why the neutron lifetime measured in UCN traps is smaller than that measured in beam method ? $n \rightarrow n'$ conversion can be plausible β -decay in invisible channel $n \rightarrow n' \rightarrow p' e' \bar{\nu}'$ explanation:

Two methods to measure the neutron lifetime

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Int the Darkness

Chapter II: In and out of Darkness Beam method measures neutron β -decay $(n \rightarrow pe\bar{\nu}_e)$ width $\Gamma_{\beta} = \tau_{\beta}^{-1}$ Trap method measures neutron total decay width $\Gamma_n = \tau_n^{-1}$

Standard Model (and common wisdom of baryon conservation) tell that both should be the same, $\Gamma_n = \Gamma_\beta$ But ...

Chapter I

Puzzling Neutron: A Window to New Physics?

> A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Into the Darkness

Chapter II: In and out of Darkness Chapter I

Into the Darkness

- 日本 - 1 日本 - 日本 - 日本

The Neutron Dark Decay

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Into the Darkness

Chapter II: In and out of Darkness If this discrepancy is real (not due to some yet unknown systematics)

then New Physics should be invoked which could consistently explain the relations between the neutron decay width Γ_n , β -decay rate Γ_β , and the measured values τ_{trap} and τ_{beam}

Some time ago I proposed a way out assuming that the neutron has a new decay channel $n \to n'X$ into a 'dark neutron' n' and light bosons X among which a photon, due to a mass gap $m_n - m_{n'} \simeq 1$ MeV. Then $\Gamma_{\beta} = \tau_{\text{beam}}^{-1}$ and $\Gamma_n = \Gamma_{\beta} + \Gamma_{\text{new}} = \tau_{\text{trap}}^{-1}$,

 $\tau_{\rm trap}/\tau_{\rm beam}$ discrepancy could be explained by a branching ratio ${\rm Br}(n \to n' X) = \Gamma_{\rm new}/\Gamma_n \simeq 0.01.$

Status of the Neutron Dark Decay

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminarie

Chapter I: Into the Darkness

Chapter II: Ir and out of Darkness

 $\begin{array}{l} \operatorname{Br}(n \to \chi \gamma) = 0.01 \quad \operatorname{Br}(n \to n' \gamma) = \operatorname{Br}(n \to n' \gamma') = 0.004 \\ \operatorname{Br}(n \to n' \gamma) = 0.001, \operatorname{Br}(n \to n' \gamma') = 0.009 \end{array}$

 $m_{n'} > m_p + m_e$, DM decays $n' \to pear{
u}_e$ ($au = 10^{14}, 10^{15}, 10^{16}, 10^{17}$ yr) $m_{n'} < m_p + m_e$, Hydrogen atom decays $pe \to n'
u_e$ ($au = 10^{20}, 10^{21}, 10^{22}$ yr)

au_n vs. superallowed $0^+ - 0^+$ and eta-asymmetry

Puzzling Neutron: A Window to New Physics?

> A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminarie

Chapter I: Into the Darkness

Chapter II: In and out of Darkness

 $au_{\mathrm{beam}} = au_{eta}$ seems incompatible with Standard Model

May indicate towards BSM physics? E.g. new contribution to β decay $n \rightarrow pe\bar{\nu}_e$? E.g. scalar form factor – mediated by exchange of charged Higgs (from extra Higgs doublet) – Does not help!

au_n vs. eta-asymmetry

Chapter II

Puzzling Neutron: A Window to New Physics?

> A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminarie

Chapter I: Int the Darkness

Chapter II: In and out of Darkness

Chapter II

In and Out of the Darkness

・ロト ・ 四ト ・ ヨト ・ ヨト

$SU(3) \times SU(2) \times U(1) + SU(3)' \times SU(2)' \times U(1)'$

Puzzling Neutron: A Window to New Physics?

> A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Inte the Darkness

Chapter II: In and out of Darkness

- Two identical gauge factors, e.g. $SU(5) \times SU(5)'$, with identical field contents and Lagrangians: $\mathcal{L}_{tot} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{mix}$
- Exact parity $G \to G'$: no new parameters in dark Lagrangian \mathcal{L}'
- MM is dark (for us) and has the same gravity
- MM is identical to standard matter, (asymmetric/dissipative/atomic) but realized in somewhat different cosmological conditions: $T'/T \ll 1$.

• New interactions between O & M particles \mathcal{L}_{mix}

$SU(3) \times SU(2) \times U(1)$ vs. $SU(3)' \times SU(2)' \times U(1)'$

Two parities

Puzzling Neutron: A Window to New Physics?

A Detective

Chapter II: In and out of Darkness

Left

Left

${\it B}$ violating operators between O and M particles in ${\cal L}_{\rm mix}$

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Int the Darkness

Chapter II: In and out of Darkness Ordinary quarks u, d (antiquarks \bar{u} , \bar{d}) Mirror quarks u', d' (antiquarks \bar{u}' , \bar{d}')

• Neutron -mirror neutron mixing - (Active - sterile neutrons)

 $\frac{1}{M^5}(udd)(udd)$ and $\frac{1}{M^5}(udd)(u'd'd')$ (+ h.c.)

Oscillations $n(udd) \leftrightarrow \bar{n}(\bar{u}d\bar{d})$ $(\Delta B = 2)$ $n(udd) \rightarrow \bar{n}'(\bar{u}'\bar{d}'\bar{d}'), n'(udd) \rightarrow \bar{n}(\bar{u}d\bar{d})$ $(\Delta B = 1, \Delta B' = -1)$

Can co-generate Baryon asymmetries in both worlds of the same sign, B, B' > 0, with $\Omega'_B \simeq 5 \Omega_B$

Neutron- antineutron oscillation

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Int the Darkness

Chapter II: In and out of Darkness Majorana mass of neutron $\epsilon(n^T C n + \bar{n}^T C \bar{n})$ violating *B* by two units comes from six-fermions effective operator $\frac{1}{M^5}(udd)(udd)$

It causes transition $n(udd) \rightarrow \bar{n}(\bar{u}d\bar{d})$, with oscillation time $\tau = \epsilon^{-1}$ $\varepsilon = \langle n | (udd)(udd) | \bar{n} \rangle \sim \frac{\Lambda_{\text{QCD}}^6}{M^5} \sim \left(\frac{100 \text{ TeV}}{M}\right)^5 \times 10^{-25} \text{ eV}$

Key moment: $n - \bar{n}$ oscillation destabilizes nuclei: $(A, Z) \rightarrow (A - 1, \bar{n}, Z) \rightarrow (A - 2, Z/Z - 1) + \pi$'s

Puzzling Neutron: A Window to New Physics? A Detective

Free neutron- antineutron oscillation

Two states, n and \bar{n}

$$H = \begin{pmatrix} m_n + \mu_n \mathbf{B}\sigma & \varepsilon \\ \varepsilon & m_n - \mu_n \mathbf{B}\sigma \end{pmatrix}$$

Story in two parts Zurab Berezhiani

Summary

Preliminaries

Chapter I: Int the Darkness

Chapter II: In and out of Darkness Oscillation probability $P_{n\bar{n}}(t) = \frac{\varepsilon^2}{\omega_B^2} \sin^2(\omega_B t), \quad \omega_B = \mu_n B$

If
$$\omega_B t \gg 1$$
, then $P_{nar{n}}(t) = rac{1}{2} (arepsilon/\omega_B)^2 = rac{(arepsilon t)^2}{(\omega_B t)^2}$

If $\omega_B t < 1$, then ${\cal P}_{nar n}(t) = (t/ au)^2 = (arepsilon t)^2$

"Quasi-free" regime: for a given free flight time t, magnetic field should be properly suppressed to achieve $\omega_B t < 1$. More suppression makes no sense !

Exp. Baldo-Ceolin et al, 1994 (ILL, Grenoble) : $t \simeq 0.1$ s, B < 100 nT $\tau > 2.7 \times 10^8 \rightarrow \varepsilon < 7.7 \times 10^{-24}$ eV At ESS 2 orders of magnitude better sensitivity can be achieved, down to $\varepsilon \sim 10^{-25}$ eV

Neutron – mirror neutron mixing

Effective operator $\frac{1}{M^5}(udd)(u'd'd') \rightarrow \text{mass mixing } \epsilon nCn' + h.c.$ violating B and B' – but conserving B - B'

$$\epsilon = \langle n | (udd) (u'd'd') | \bar{n}'
angle \sim rac{\Lambda_{
m QCD}^6}{M^5} \sim \left(rac{1 \ {
m TeV}}{M}
ight)^5 imes 10^{-10} \ {
m eV}$$

Key observation: $n - \bar{n}'$ oscillation cannot destabilise nuclei: $(A, Z) \rightarrow (A - 1, Z) + n'(p'e'\bar{\nu}')$ forbidden by energy conservation (In principle, it can destabilise Neutron Stars)

Even if $m_n = m_{n'}$, $n - \bar{n'}$ oscillation can be as fast as $\epsilon^{-1} = \tau_{n\bar{n'}} \sim 1$ s, without contradicting experimental and astrophysical limits. (c.f. $\tau_{n\bar{n'}} > 2.5 \times 10^8$ s for neutron – antineutron oscillation)

Neutron disappearance $n \to \bar{n}'$ and regeneration $n \to \bar{n}' \to n$ can be searched at small scale 'Table Top' experiments $\bar{n} \to \bar{n} \to \bar{n}$

Puzzling Neutron: A Window to New Physics?

> A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: In the Darkness

Chapter II: In and out of Darkness

n - n' mixing and transitional moments

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminarie

Chapter I: Int the Darkness

Chapter II: In and out of Darkness n - n' mass mixing $\epsilon \overline{n}n' + h.c.$ Let us assume $\epsilon \sim 10^{-10}$ eV and $m_n - m_{n'} = \Delta m \sim 10^{-7}$ eV transitional magn. moment/EDM $\mu_{nn'}(F_{\mu\nu} + F'_{\mu\nu})\overline{n}\sigma^{\mu\nu}n' + h.c.$ Hamiltonian of n and n' system becomes

$$H = \begin{pmatrix} m_n + \mu_n \mathbf{B}\sigma & \epsilon + \mu_{nn'}(\mathbf{B} + \mathbf{B}')\sigma \\ \epsilon + \mu_{nn'}(\mathbf{B} + \mathbf{B}')\sigma & m_{n'} + \mu_n \mathbf{B}'\sigma \end{pmatrix}, \quad x = \frac{\mu_{nn'}}{\mu_n}$$

If $B, B' \ll \Delta m$, oscillation probability is $P_{nn'} \simeq (\epsilon/\Delta m)^2 \sim 10^{-6}$... Allowed by evaluation of UCN losses in traps

Interplay of ϵ , $\mu_{nn'}$ and $d_{nn'}$ can take place the latter is also interesting since in beam experiments also large electric fields are used

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Beam Experiments

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminarie

Chapter I: In the Darkness

Chapter II: In and out of Darkness 10-4

10-5

10-6

-100

-50

0

z [cm]

n - n' conversion probability depends on magn. field in proton trap $N_n = P_{nn}^{\text{tr}} L \int_A da \int dv \, I(v)/v$ and $N_{n'} = P_{nn'}^{\text{tr}} L \int_A da \int dv \, I(v)/v$

$$\begin{split} \dot{N}_{p} &= e_{p}\Gamma_{\beta}P_{nn}^{\mathrm{tr}}L\int_{A}da\int dv\frac{I(v)}{v}, \quad \dot{N}_{\alpha} = e_{\alpha}\bar{v}P_{nn}^{\mathrm{det}}\int_{A}da\int dv\frac{I(v)}{v}\\ \tau_{\mathrm{beam}} &= \left(\frac{e_{p}L}{e_{\alpha}\bar{v}}\right)\left(\frac{\dot{N}_{\alpha}}{N_{p}}\right) = \frac{P_{nn}^{\mathrm{det}}}{P_{nn}^{\mathrm{tr}}}\tau_{\beta} \end{split}$$

50

Adiabatic or non-adiabatic (Landau-Zener) conversion ?

A Detective Story in two parts

Zurab Berezhian

Summary

Preliminaries

Chapter I: In the Darkness

Chapter II: In and out of Darkness

 $R(z) = (d \ln B/dz)^{-1}$ – characterises the magnetic field gradient at the resonance

au_n vs. eta-asymmetry: $au_eta(1+3g_A^2)=(5172.0\pm1.1)~{ m s}$

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminarie

Chapter I: In the Darkness

Chapter II: In and out of Darkness

PDG_2018 895 $\tau(g_A)$ Brown Mund 890 beam 885 880 material traps magnetic traps 875 1.265 1.270 1.275 1.260 1.280 gΑ $\rightarrow \tau_{\beta}^{\rm SM} = 879.5 \pm 1.3 \text{ s}$ $g_A = 1.2755 \pm 0.0011$ $\tau_{\rm heam} = 888.0 \pm 2.0 \ {
m s}$ $\tau_{\rm trap} = 879.4 \pm 0.5 \ {
m s}$ $\tau_{\rm mat} = 880.2 \pm 0.5$ s, $\tau_{\rm magn} = 877.8 \pm 0.7$ s (2.6 σ discrepancy) So experimentally we have $\tau_{magn} < \tau_{mat} = \tau_{\mu} = \tau_{\beta} < \tau_{beam}$ what s exactly predicted by my scenario So far so Good!

Adiabatic or non-adiabatic (Landau-Zener) conversion ?

A Detective Story in two parts

Zurab Berezhian

Summary

Preliminaries

Chapter I: In the Darkness

Chapter II: In and out of Darkness

 $R(z) = (d \ln B/dz)^{-1}$ – characterises the magnetic field gradient at the resonance

Adiabatic or non-adiabatic (Landau-Zener) conversion ?

Puzzling Neutron: A Window to New Physics?

> A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter I: Int the Darkness

Chapter II: In and out of Darkness If my hypothesis is correct, a simple solenoid with magnetic fields \sim Tesla can be very effective machines that transform neutrons into dark matter.

Some groups in LANL, ORNL and NIST already think how to prepare simple experiments that could test this

Adiabatic conditions can be improved and 50 % transformation can be achieved

$$P_{nn'}^{\rm tr} \approx \frac{\pi}{4}\xi \simeq 10^{-2} \left(\frac{2~{\rm km/s}}{v}\right) \left(\frac{P_{on'}^0}{10^{-6}}\right) \left(\frac{B_{\rm res}}{1~{\rm T}}\right) \left(\frac{R_{\rm res}}{10~{\rm cm}}\right)$$

 $R(z) = \left(d \ln B / dz \right)^{-1}$ – characterises the magnetic field gradient at the resonance

Neutron Stars

Puzzling Neutron: A Window to New Physics?

A Detective Story in two parts

Zurab Berezhiani

Summary

Preliminarie

Chapter I: In the Darkness

Chapter II: In and out of Darkness By $n \to n'$ conversion ordinary neutron star slowly transforms into mixed (50% - 50%) ordinary-mirror neutron star

O and M "neutrons" have same equation of state $p(n) = F[\rho(n)])$ $\sqrt{2}$ rule: $R^{\min}(M) = \frac{1}{\sqrt{2}}R^{\operatorname{ord}}(M)$, $M_{\max}^{\min} = \frac{1}{\sqrt{2}}M_{\max}^{\operatorname{ord}}$,

... solving "mixed" OV equations